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In this paper, a class of multi-input/multi-output aeroelastic systems with unstructured nonlinear uncertainty is

considered. By using leading- and trailing-edge control surface actuations, a continuous robust controller is

proposed to suppress the aeroelastic vibrations of a nonlinearwing-sectionmodelwith plunging andpitching degrees

of freedom. Under amild restriction that the system uncertainties are second-order differentiable, the control design

yields a semiglobal asymptotic stability result, leading to rapid suppression of the plunging and pitching motions.

Numerical simulation results demonstrate the performance of the multi-input/multi-output continuous robust

control toward suppressing aeroelastic vibration and limit cycle oscillations at pre- and postflutter flight-speed

regimes, even in the presence of bounded unknown external disturbance.

Nomenclature

a = nondimensional distance from midchord to elastic
axis

b, s = semichord and wing-section spans, m
Cl�, Cm� = rate of change of lift and moment with regard to

angle of attack, 1=rad
Cm��eff = rate of change of effective moment with regard to

angle of attack, 1=rad
Cl�, Cm� = rate of change of lift and moment with regard to

trailing-edge control surface deflections, 1=rad
Cm��eff = rate of change of effective moment with regard to

trailing-edge control surface deflections, 1=rad
Cl� , Cm� = rate of change of lift and moment with regard to

leading-edge control surface deflections, 1=rad
Cm��eff = rate of change of effective moment with regard to

leading-edge control surface deflections, 1=rad
ch = structural damping coefficients in plunging, kg=s
c� = structural damping coefficients in pitching,

kg �m2=s
e1, e2,
r, z

= tracking error, filtered tracking error, and composite
error signals

h = plunging displacement, m
h, f, Gs = system drift vectors and input gain matrix
I� = inertia of wing section about elastic axis, kg �m2

K, �, � = control gain matrices
kh = structural spring stiffness in plunging, N=m
k� = structural spring stiffness in pitching, N �m
L = aerodynamic lift, N
Lg = aerodynamic lift due to external disturbance, N
M = aerodynamic moment, N �m
Mg = aerodynamic lift moment due to external

disturbance, N �m

mw, mT = mass of wing and pitch–plunge system, kg
N, Nd,
~N1, ~N2

= unstructured nonlinear uncertainties

S, D, U = factors of Gs

t = time variables� �U1t=b
U1 = freestream velocity, m=s
x, u,
whd, wg

= vectors of system output, control input, and
external disturbance

x� = dimensionless distance from elastic axis to
midchord

Y, �Y = regressor and adaptation gain
� = pitching displacement, rad
�, � = trailing-edge flap and leading-edge flap

displacements, rad
�, �̂, ~� = ideal parameter, estimated parameter, and estimates

mismatch
T = inverse of matrix S
� = freestream air density, kg=m3

�1, �2 = nondecreasing function and constants
� = dimensionless time variable, U1t=b

I. Introduction

ACTIVE aeroelastic control and flutter suppression of flexible
wings have been a fervid topic of investigation by numerous

researchers. A number of contributions related to the topic are
discussed at length in [1–6]. Among the latest active control
methodologies, adaptive and robust control of nonlinear aeroelastic
models was presented in [5], the �-method for robust
aeroservoelastic stability analysis in [7], gain scheduled controllers
in [8], and neural and adaptive control in [9]. Linear control theory,
feedback linearizing techniques, and adaptive control strategies have
been derived to account for the effect of nonlinear structural stiffness
[10]. A model reference variable structure adaptive control system
for plunge-displacement and pitch-angle control has been designed
using bounds on uncertain functions [11]. This approach yields a
high-gain feedback discontinuous control system. In [12–14], an
adaptive design method for flutter suppression has been adopted
while using measurements of either or both of the pitching and
plunging variables. Results in [15] demonstrated that the proposed
full state feedback active control mechanism with an estimator was
efficient by using a typical section with leading- and trailing-edge
flaps. Disturbance rejection, gust alleviation, and flutter suppression
were also demonstrated in the experimental investigations.

In [16], an adaptive backstepping design technique was used to
control the pitch angle with only output measurements. In [17], an
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adaptive control strategy was proposed using only the feedback for
the pitching variable. Its performance toward suppressing flutter and
limit cycle oscillations (LCOs), as well as reducing the aeroelastic
response in the subcritical flight-speed regime was also demon-
strated. Lee and Singh [18] designed a robust control law for the
global regulation of a two-degree-of-freedom (2-DOF) aeroelastic
system. The model had polynomial type structural nonlinearity and
only the pitch angle was measured for feedback. It was also assumed
that all the systemparameterswere unknown to the designer,whereas
the bounds of uncertainties were assumed to be known in the control
design. Another robust control strategy for active flutter suppression
of a nonlinear 2-D wing-flap system was introduced in [19]. An
optimized state feedback robust stabilizer with a proportional–
integral observer (PI-observer) was designed in which the PI-
observer was adopted to estimate both the system states and the
bounds of the nonlinearities in the aeroelastic system. Based on the
immersion and invariance approach, the adaptive control design
problem for aeroelastic wing sections with structural nonlinearity
was solved in [20].

Several control algorithms were proposed in [21–23] for the 2-
DOFaeroelastic system,which efficiently improved the performance
through an extension to a wing section with both trailing-
edge control surface (TECS) and leading-edge control surface
(LECS). An adaptive full state feedback control law was provided in
[21]. However, only an inversion of a nominal input gain matrix was
used to decouple the control inputs without considering the
uncertainty. In [22], adaptive and radial basis function neural
network controllers were provided in order to compensate for the
system nonlinearity and compared via simulation. In [23], an output
feedback adaptive control algorithm was proposed by using a
backstepping technique, and an SDU decomposition (symmetric-
diagonal-upper triangular factorization) was applied on the input
gain matrix to design a singularity-free controller. The backstepping
approach in [23] led to a very complicated control design: more than
200 parameters needed to be tuned online, due to significant
overparameterization problems. In [24], a modular output feedback
controller was proposed to suppress aeroelastic vibrations on
unmodeled nonlinear wing section subject to a variety of external
disturbances. Although the computation load was reduced greatly in
[24] compared with [23], 82 parameters still needed to be updated
online for the model-free control algorithm using a neural network
approximator.

The active vibration suppression problem for the 2-DOF
aeroelastic system with leading- and trailing-edge controls is formu-
lated as an affine-in-the-control multi-input/multi-output (MIMO)
systemwith unknown uncertainty and bounded external disturbance,
and numerous progress has been reported in recent years on the
control design for this kind ofMIMO systemswith uncertainty based
on a variety of techniques and assumptions. In [25], the high-
frequency gain (HFG) matrix G was assumed to be known for the
control design. In [26], a control law was proposed that required the
existence of a matrix S such that GS is positive-definite and
symmetric. Based on the assumption that the HFG matrix was
known, an adaptive backstepping technique was proposed for
parametric strict feedback systems in [27]. In [28], a Lyapunov-based
adaptive output feedback control was designed for a general class of
MIMO systemwith unknown constant parameters, but susceptible to
singularities owing to the existence of an algebraic loop in the
controller. Later, in [29], this problem was solved by designing a
singularity-free output feedback controller with parameter uncer-
tainty. In [30], the proposed controller yields semiglobal uniformly
ultimately bounded tracking result while compensating for
unstructured uncertainty in both the drift vector and the input
matrix. Later, in [31], a locally uniformly ultimately bounded result
was obtained by applying an output feedback robust continuous
control law for a class of MIMO system with uncertain C2 non-
linearities; a neural network (NN)-based estimator and high-gain
observer were used during the control design. Some other examples
relating to NN applications inMIMO control can be found in [32]. A
summary of the theory and application of robust and sliding mode
control in MIMO system can be found in [33].

In this paper, a novelMIMO continuous robust controller (i.e., C0)
is designed to asymptotically stabilize the MIMO aeroelastic system
with unstructured nonlinear uncertainties and bounded unknown
external disturbance. The result in this paper is motivated by a single-
input/single-output result presented in [34]. The challenge in
extending this result to the MIMO system presented in this paper is
due to the coupling of the control inputs, which causes the leading-
edge flap displacement to appear as a disturbance term in the closed-
loop dynamics of the plunging variable. Here, this issue is addressed
during the design of the trailing-edge flap displacement via use of
robust control alongside a simple adaptive scheme to tackle the C0

component of the coupling-related disturbance terms. The design of
the adaptation law is facilitated by the affine-in-the-parameters
structure of the uncertainties induced by the control coupling. We
note here that adaptation is only carried out for the structured
disturbance induced by the control coupling and is not used for the
unstructured uncertainty in the systemmodel. Specifically, given the
affine-in-the-controlMIMOaeroelastic system, the input gainmatrix
is considered to be unknown, nonsymmetric with nonzero leading
principal minors. Based on limited assumptions on the structure of
the system nonlinearities and external disturbance, as well as
knowledge of the signs of the leading principal minors of the input
gain matrix, the problem is solved using an SDU decomposition to
facilitate design of singularity-free leading- and trailing-edge robust
controllers. Through a Lyapunov analysis, it is possible to show that
semiglobal asymptotic stability can be obtained for the tracking
errors in the pitching and plunging variables. Simulation results also
show that this control strategy can rapidly suppress nonlinear
aeroelastic vibrations including flutter and LCOs. Compared with
previous work by the authors and others, the proposed control
algorithm in this paper significantly reduces the computational
burden in the sense that only one parameter needs to be updated
during the control implementation. Compared with the uniformly
ultimately bounded result obtained in [24] by using the model-free
control design with finite control gains, the robust adaptive control
design in this paper is able to achieve semiglobal asymptotic stability
result with finite control gains, even in the presence of unmodeled
external disturbance. We also note that the proposed algorithm
requires very little information on the wing-section model; only the
signs of leading principal minors of the HFG matrix are needed for
the control design.

The rest of this paper is organized as follows. In Sec. II, the system
dynamics are introduced. Then, the control objective is defined and
the open-loop error system is developed to facilitate the subsequent
control design. In Sec. III, the robust feedback control design is
proposed followed by a Lyapunov-based analysis of stability of the
closed-loop system. Simulation results to confirm the performance
and robustness of the controller are presented in Sec. IV, and
concluding remarks and future outlook are provided in Sec. V.

II. Aeroelastic Model Configuration
and Error System Development

Awing-section model with 2-DOF in plunging and pitching with
both LECS and TECS is illustrated in Fig. 1. The classical aeroelastic
governing equations for the sectional wing subject to bounded
external disturbance are developed from previous models according
to [21,35]

mT mwx�b

mwx�b I�

" #
�h
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" #
�

ch 0

0 c�

" #
_h
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" #
�

kh 0

0 k����

" #
h

�

" #

�
�L�Lg
M�Mg

" #
(1)

All the definitions of symbols used in Eq. (1) can be found in the

Nomenclature. The quasi-steady lift L� _h; _�; h; �; �; �� and aero-

dynamic momentM� _h; _�; h; �; �; �� are given by

WANG, BEHAL, AND MARZOCCA 511



L� �U2
1bsCl�

�
��

_h

U1
�
�
1

2
� a

�
b

_�

U1

�
� �U2

1bsCl��

� �U2
1bsCl��

M � �U2
1b

2sCm��eff

�
��

_h

U1
�
�
1

2
� a

�
b

_�

U1

�
� �U2

1b
2sCm��eff�� �U2

1b
2sCm��eff� (2)

where Cm��eff , Cm��eff , and Cm��eff are defined as follows:

Cm��eff � �12� a�Cl� � 2Cm�

Cm��eff � �12� a�Cl� � 2Cm�

Cm��eff � �12� a�Cl� � 2Cm� (3)

Since this paper ismainly focused on the continuous robust control
design for 2-D airfoils, the aerodynamic model is limited to linear
quasi-steady. The structural nonlinear model accounting for pitch
cubic nonlinearities is also a classical one and has been used in many
archival literature contributions. The idea was to use a classical
nonlinear aeroelastic model, behaving similarly to a Duffing
oscillator, to infer about the effect of the control in the postcritical
flutter regime, where a nonlinear LCO is experienced by the
aeroelastic system. Flutter instability clearly depends upon the type
of nonlinearities included in the model. The instabilities exhibited

limit cycle oscillations, which might transition into divergent flutter.
Cubic hardening effects result in strictly limit cycle oscillations and it
is recognized that it is possible to allow the amplitude of the flutter
oscillations to grow to a limiting amplitude through the introduction
of nonlinear structural stiffness. Dynamic stall and trailing-edge
separation using a modified Beddoes–Leishman’s formulation in
[36–38] will be considered in a future work.

The aerodynamic loads due to the bounded external disturbance
can be given as [35]

Lg � �U2
1bsCl�wG���=U1 � �U1bsCl�wG���

Mg � �12 � a�bLg (4)

where wG��� denotes the disturbance velocity, and � is a
dimensionless time variable defined in the Nomenclature. Motivated
by the result in [28,30,31], the aeroelastic governing equations (1)

can be rewritten into an input–output representation to facilitate the
subsequent control design:

�x� h�x; _x� � whd �Gsu (5)

where x≜ �h; ��T 2 <2 is a vector of system output, x and _x are the
state variables, and

u � �u1; u2�T ≜ ��; ��T 2 <2

denotes the control input vector. Here, h�x; _x� 2 <2 contains
unstructured nonlinear uncertainties, whd 2 <2 represents the
unknown external disturbance terms due to the contributions of the
gusts (i.e.,Lg andMg). It is assumed thath�x; _x� is a C2 function and
whd, _whd, �whd 2 L1. Furthermore,

G s ≜
g11 g12
g21 g22

� �
2 <2	2

is a constant nonsingular input gain matrix explicitly defined as
follows:

g11 ��U2
1�

�1�bs�I�Cl� �mwx�b
2Cm��eff�

g12 ��U2
1�

�1�bs�I�Cl� �mwx�b
2Cm��eff�

g21 �U2
1�

�1�bs�mwx�bCl� �mTbCm��eff�
g22 �U2

1�
�1�bs�mwx�bCl� �mTbCm��eff� (6)

where

�≜ det�Gs� �mTI� �m2
wx

2
�b

2 ≠ 0

Motivated by the matrix decomposition approach introduced in [39]
and the facts that both the leading principal minors g11 and � are
nonzero, Gs can be decomposed as Gs � SDU, where S is a
symmetric positive-definite matrix, D is a diagonal matrix with
diagonal entries �1 or �1, and U is an unknown unity upper-
triangularmatrix. Note that thisSDU decomposition is a key factor in
the proposed algebraic loop-free controller design. By using the
SDU decomposition result from [23], S, D, and U can be explicitly
written as

S�
jg11j sign�g11�g21

sign�g11�g21 sign�g11�sign����g22 � g�111 g21�g12 � g21sign�����

" #
; D�

sign�g11� 0

0 sign�g11�sign���

" #

U� 1
jg�111 j�g12 � g21sign����

sign�g11�
0 1

2
4

3
5 (7)

where the notation sign��� represents the standard signum function.
For purposes of control design, we assume that the signs of the
leading principal minors of the high-frequency gain matrix Gs are
known, i.e., the diagonal matrixD is assumed to be known. It is to be
noted that no knowledge is assumed, during the control design, about
the structure of S and U other than the fact that they are symmetric
positive-definite and unity upper-triangular, respectively. After

multiplying both sides of Eq. (5) with T≜ S�1 2 <2	2, Eq. (5) can
be rewritten as

T �x� f�x; _x� � wd �DUu (8)

where T is a symmetric positive-definite matrix, f�x; _x�≜
T � h�x; _x� 2 <2, and wd ≜ T � whd 2 <2. The tracking error
e1�t� 2 <2 is defined as follows:

e 1 ≜ xd � x (9)

Fig. 1 Two-degree-of-freedom aeroelastic system with both leading-

and trailing-edge control surfaces.
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where xd 2 <2 is the desired bounded output vector that is designed
to be C4 smooth in deference to the requirements of the subsequent
control design such that

x �i�d �t� 2 L1 8 i� 1; 2; 3; 4 (10)

Since the control objective is to suppress the aeroelastic vibrations,
one can simply choose xd to be zero all the time or use another
desirable smooth trajectory xd along which the actual pitching and
plunging variables encoded by x can be driven toward the origin.
Next, an auxiliary error signal e2�t� 2 <2 and filtered tracking error
r�t� 2 <2 are introduced as follows:

e 2 � _e1 � e1; r� _e2 � �e2 (11)

Then, based on the above definitions, a composite error signal
z�t� 2 <6 can be defined as follows:

z ≜ �eT1 ; eT2 ; rT �T (12)

By taking the time derivative of r and substituting from the derivative
of e2, one can easily obtain the following relation:

_r� �e2 � �_e2 (13)

After premultiplying both sides of Eq. (13) by T and applying the
definitions given in Eqs. (8), (9), (11), and (13) can be rewritten as

T _r� T�x:::d � �e1 � �_e2� � _f�x; _x� � e2 � _wd � DU _u � e2 (14)

Furthermore, given a strictly upper-triangular matrix �U�D�
DU 2 <2	2, the open-loop dynamics of Eq. (14) can be rewritten as
follows:

T _r� T�x:::d � �e1 � �_e2� � _f�x; _x� � e2 � _wd � �U _u�D _u � e2

(15)

To facilitate the full state control design for the above open-loop
dynamics, the following manipulations needs to be applied to
Eq. (15):

T _r�N� �U _u�D _u � e2 (16)

where �U _u 2 <2 can be explicitly expressed as

�U _u�� �U12 _u2 0 �T (17)

and

N �x; _x; �x;xd; _xd; �xd; x
:::
d; _wd� 2 <2

in Eq. (16) is defined as

N � T�x:::d � �e1 � �_e2� � _f�x; _x� � e2 � _wd �Nd � ~N1 (18)

where

N d �N�xd; _xd; �xd;x
:::
d; _wd� 2 <2; ~N1 �N � Nd 2 <2�

One can also demonstrate thatNd; _Nd 2 L1 given the boundedness
properties ofxd andwd and the C2 condition on f�x; _x�. Furthermore,
by using the fact thatN is continuously differentiable, one can easily
get the following result:

k ~N1k 
 �1�kzk�kzk (19)

where �1��� is a global invertible nondecreasing function.

III. State Feedback Control Development

A. Full State Feedback Control Design

In this section, it is assumed that both the output vector x and their
first-order time derivative _x can be measured directly. Based on the
previous assumptions, the following full state feedback control law is
proposed:

u�t� �D�1
�
�K� I�e2�t� � �K� I�e2�0� �

Z
t

0

��Y�̂ 0 �T

� �K� I��e2��� � �sign�e2����� d�
�

(20)

where

K ≜Kp � diagfKd1; 0g 2 <2	2; � 2 <2	2

are both diagonal gain matrices, and I 2 <2	2 is an identity matrix
and � is a positive constant. By taking the time derivative of Eq. (20),
one can obtain

_u�t� �D�1f�Y�̂ 0 �T � �K� I�r�t� � �sign�e2�t��g (21)

where Y 2 < and �̂�t� 2 < denote a regressor and a parameter
estimate, which will be defined subsequently. After substituting
Eq. (21) into the open-loop dynamics (16), the following closed-loop
dynamics are obtained:

T _r�Nd � ~N1 � �U _u��Y�̂ 0 �T � �K� I�r � �sign�e2� � e2

(22)

whereNd and ~N1 have been previously defined in Eq. (18). Based on

Eq. (21), one can rewrite �U _u in Eq. (22) as

�U _u��Y� 0 �T � ~N2 (23)

where Y ≜D�122 �22sign�e22� is the regressor, and �≜ �U12 is the
unknown upper-right element from the strictly upper-triangular

matrix �U. Here, Dii and �ii denote the ith diagonal element in the
matrices D and �, e2i represents the ith element in auxiliary error
signal e2. Furthermore, in Eq. (23),

~N 2 ≜ � �U12D
�1
22 �K22 � 1�r2 0 �T 2 <2

can be upperbounded as k ~N2k 
 �2kzk, where �2 is a unknown
constant that depends on the control gain K22. Also note that Kii
denotes the ith diagonal element in the control gain matrixK. After
substituting Eq. (23) into Eq. (22), the closed-loop dynamics can be
further expressed as

T _r�Nd � ~N1 � ~N2 � �Y ~� 0 �T � �K� I�r � �sign�e2� � e2

(24)

where ~�≜ � � �̂ is a parameter estimation error. Motivated by the

ensuing stability analysis, the adaptation law for �̂ is given as follows:

_̂
�� �YYr1 (25)

where ri is the ith element in the filtered error signal r, Y has been
defined above, and �Y 2 < is a positive adaptation gain. It is
important to note that r1 is unmeasurable, since it consists of _e2,
which depends on state variable �x. Therefore, the aforementioned

adaptation law for �̂ cannot be implemented directly in the full state
feedback control design.However, integration by parts can be used to

obtain the following measurable expression for �̂�t�:

�̂�t� � �YD
�1
22 �22

�Xn
j�1
�e21�t�j;f� � e21�t�j;0�� �

Xm
k�1
�e21�t�k;f�

� e21�t�k;0��
�
�
Z
t

0

�YY�e21��� d�

sign�e22� �

8>><
>>:
1; 8 t 2 �t�j;0; t�j;f�; j� 1; . . . ; n

�1; 8 t 2 �t�k;0; t�k;f�; k� 1; . . . ; m

0; otherwise

(26)
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where

�0; t� � �t�1;0; t�1;f� [ � � � [ �t�n;0; t�n;f � [ �t�1;0; t�1;f�
	 [ � � � [ �t�m;0; t�m;f �:�t�j;0; t�j;f�; j� 1; . . . ; n

represents all the intervalwhen e22 > 0, and �t�k;0; t�k;f� (k� 1; . . . ; m)
represents all the interval when e22 < 0. Here we have taken
advantage of the fact that e22 are measurable.

B. Stability Analysis

To facilitate the stability analysis under the full state feedback
control design, the following lemma will be used.

Lemma 1: For the following auxiliary function Q�t� 2 <,

Q� rT�Nd � �sign�e2�� (27)

if the control gain matrix � is chosen as

�i;i > kNd;ikL1 �
1

�
k _Nd;ikL1; 8 i� 1; 2 (28)

where Nd;i is the ith element in the vector Nd, the following integral
relation holds valid: Z

t

0

Q��� d� 
 &Q (29)

where

&Q �
X2
i�1
��i;ije2;i�0�j � e2;i�0�Nd;i�0��

Proof of this lemma can be found in [34].
Theorem 1: Provided the diagonal entries of the control gain

matrixK defined in Eq. (20) is chosen to be large enough relative to
the size of the initial conditions, � is chosen according to Eq. (28),
and � > 1=2, the proposed continuous robust control design ensures
semiglobal asymptotic stability in the sense that the error signals
e1; _e1�t�; �e1�t� ! 0 as t!1.

Proof: First, a nonnegative Lyapunov function candidate V0 is
defined as

V0 �
1

2

X2
i�1

eTi ei �
1

2
rTTr� 1

2
~�
T
��1Y

~�� P (30)

where the nonnegative auxiliary function P can be defined as
follows:

P� &Q �
Z
t

0

Q��� d� (31)

and Eq. (30) can be bounded as

	1kyk2 
 V0 
 	2kyk2

where

y � � z ~�
����
P
p �T 2 <8; 	1 � 1

2
minf1; T;��1Y g

	2 � 1
2
maxf2; �T;��1Y g

and T and �T represent the minimum and maximum eigenvalues
of T. Upon taking the time derivative of Eq. (30), we obtain

_V 0 � eT1 _e1�eT2 _e2 � rTT_r� ~���1Y
_~� �Q (32)

Then, by substituting from Eqs. (11), (24), (25), and (27), the
above expression can be rewritten as

_V0 � eT1 �e2 � e1� � eT2 �r��e2� � ~���1Y �YYr1 � rT�Nd

� �sign�e2�� � rT �Nd � ~N1 � ~N2 � �Y ~� 0 �T

� �K� I�r � �sign�e2� � e2� (33)

After canceling matching terms, one obtains

_V 0 � eT1e2 � eT1e1 � �eT2e2 � rT ~N1 � rT ~N2 � rT�K� I�r (34)

By using the fact that eT1e2 
 1
2
eT1e1 � 1

2
eT2e2, an upper bound for

Eq. (34) can be expressed as

_V0 
 �1
2
ke1k2 � �� � 1

2
�ke2k2 � krk2 � krkk ~N1k

� krkk ~N2k � 	Kkrk2 � Kd1r21 (35)

where � > 1=2 and	K is themaximum eigenvalue for the gainmatrix

Kp. r1 denotes the first element in r 2 <2. Thus, _V0 can be further
upperbounded as

_V 0 
 �	3kzk2 � �1�kzk�krkkzk � 	Kkrk2 � Kd1r21 � r1�2kzk
(36)

where 	3 �minf1=2; �� � 1=2�g. Then, by adding and subtracting
terms

�22
4Kd1

kzk2; �21�kzk�
4	K

kzk2

from the right-hand side of the above inequality, one can upperbound
_V0 as follows:

_V0 
 �	4kzk2 �
�
	3 � 	4

2
� �

2
1�kzk�
4	K

�
kzk2

�
�
	3 � 	4

2
� �22
4Kd1

�
kzk2 (37)

Given a positive constant 	4 < 	3, one can first choose Kp

such that

	K >
�21�kzk�

2�	3 � 	4�

or, equivalently,

z �t� 2 D� ≜ fzjkzk < ��11 �
����������������������������
2	K�	3 � 	4�

p
�g

This ensures that the first parenthesized term in Eq. (37) is
nonnegative. Motivated by Theorem 8.4 in [40] and the definition of
y and D�, the region D can be explicitly given as

D ≜ fyjkyk < ��11 �
����������������������������
2	K�	3 � 	4�

p
�g

Since K≜Kp � diagfKd1; 0g, it is clear to see that K22 is
determined only byKp and is independent ofKd1. Based on the fact
that �2 depends on K22, one can design

Kd1 >
�22

2�	3 � 	4�

such that the second parenthesized term in Eq. (37) is nonnegative.
Thus, it is straightforward to prove that

_V 0 
 �	4kzk2 ��W�y�; 8 y 2 D (38)

From Eqs. (30) and (38), it is known that V0 2 L1, and it is also

straightforward to see that e1; e2; r; ~� 2 L1 and _e1; �̂ 2 L1 given
Eq. (11). Then, by using (11), one can easily see that _e2 2 L1, which
further implies that �e1 2 L1. Next, given the fact thatxd isC4 smooth
and e1; _e1; �e1 2 L1, it is possible to show thatx; _x; �x 2 L1 by using
the definition in Eq. (9) and f�x; _x� 2 L1. Now, by using Eq. (8) and
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the fact thatwd 2 L1, one can show thatu 2 L1. Based on r 2 L1,
we can see that _u2 2 L1 according to Eq. (21). Based on the
definition Y �D�122 �22sign�e22� and previous boundedness result on
�̂, one can also prove that _u1 2 L1 given the definition in Eq. (21),
which further implies _r 2 L1 by using the definition in Eq. (15).
Based on the above analysis, one can draw the conclusion that
_W ��	4zT _z 2 L1 andW�y� is uniformly continuous. Based on the
definition of D, one can also define region S as

S ≜ fy 2 DjW2�y�< 	1���11 �
����������������������������
2	K�	3 � 	4�

p
��2g

Now, one can use Theorem 8.4 in [40] to prove kzk ! 0 as
t!18 y�0� 2 S. From Eq. (12), one can see that
e1�t�; e2�t�; r�t� ! 0 as t!1. Note that e2�t�; r�t� ! 0 as t!
1 further implies that _e1�t�; �e1�t� ! 0, as t!1 by using Eq. (11).
Also note that region of attraction S in this problem can be made
arbitrarily large to include any initial condition through choosing a
large enough control gain. The above facts imply that our stability
result is semiglobal.

Remark 1:When onlymeasurements available are the pitching and
plunging displacements, the remaining states are estimated through
the use of a high-gain observer (HGO).Whenx�t� is the output of the
system and the only measurable state vector, the sole measurable
error signal is e1�t� given the knowledge ofx�t� andxd�t�.Motivated
by the result in [40], an estimate for the error signals ê1 and ê2 can be
obtained via the following HGO:

_̂e1 � ê2 � ê1 �
�1


�e1 � ê1�

_̂e2 � r̂ � �ê2 �
�2

2
�e1 � ê1�

_̂r� �3

3
�e1 � ê1� (39)

where�i 2 <8 i� 1; 2; 3 are gain constants and 
 is a small positive
constant. Note that in this paper, only ê1 and ê2 are used in the output
feedback control design. To suppress the peaking phenomenon due
to using HGO, we modify the full state control design in Eq. (20) to
an output feedback saturated controller as us�t� � satfu�ê1; ê2�g,
where sat��� denotes the standard saturation function and saturation is
applied outside an appropriately defined compact set for the control
input u. For details of the stability analysis of the output feedback
control design, the reader is referred to [40]. Also note that the forced
saturation is applied to the proposed control law if and only if a
strictly output feedback controller is used, i.e., if only e1 is available
and _e1 (and consequently e2) is immeasurable.

Remark 2: Since HGO is basically an approximate differentiator,
thus we can expect that the measurement noise and unmodeled high-
frequency sensor dynamics will put a practical limit on how small the
observer gain 
 could be chosen. On the other hand, the observer gain

must be chosen as small as possible in order to achieve faster speed
of convergence of the observer. Thus, there is a tradeoff between the
converging speed of the estimate to the true state and the noise
amplification in the presence of noise. Therefore, it is better to avoid
use of the estimated r�t� directly for control implementation, since it
would be more sensitive to noise based on the high gain �3=


3 as
compared with the much lower gains �1=
 and �2=


2 used to obtain
ê1 and ê2 as seen in Eq. (39). Finally,wewould also like to clarify that
the observation of r̂ (even though it is not used directly in the output
feedback controller) is necessary to implement the observation of ê2
(and subsequently ê1) and as can be seen from the second equation in
Eq. (39).

IV. Simulation Results

A. Wing-Section and Disturbance Model

In this section, simulation results are presented for a nonlinear
2-DOF aeroelastic system controlled by leading- and trailing- edge
flaps and subjected to external disturbances. The nonlinear wing-
section model is simulated using the dynamics of Eqs. (1) and (2).
The model parameters used in the simulation are the same as used in
[21] and listed in Table 1, and a block diagram for the controller is
shown in Fig. 2.

Similar to [21,23], the desired trajectory variables xd, _xd, and �xd
are simply selected as zero. The initial conditions for pitch angle ��t�
and plunge displacement h�t� are chosen as ��0� � 5:729 deg and

h�0� � 0 m, and all other variables _h�t�, _��t�, �h�t�, and ���t� are
initially set to zero. The initial parameter estimate �̂�0� is set to �2
and �� �U12 ��3:082, according the model and parameters listed
in Table 1. Both the leading-edge��t� and trailing-edge ��t� flaps are
constrained to vary from �15 deg. For the numerical example, the

Table 1 Wing-section parameters

a��0:6719 Icgw � 0:04342 kg �m2

b� 0:1905 m I� � Icam � Icgw �mwingr
2
cg kg �m2

Cl� � 6:757 rad�1 kh � 2844 N=m
Cl� � 3:774 rad�1 k���� � 12:77� 53:47�� 1003�2 N �m
Cl� ��0:1566 rad�1 mT � 15:57 kg

Cm� � 0 rad�1 mw � 5:23 kg
Cm� ��0:6719 rad�1 mwing � 4:340 kg

Cm� ��0:1005 rad�1 rcg ��b�0:0998� a� m
ch � 27:43 kg=s s� 0:5945 m
c� � 0:0360 N � s xa � rcg=b

Icam � 0:04697 kg �m2 �� 1:225 kg �m3

Fig. 2 Controller block diagram.
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signs of the leading principal minors of the high-frequency gain
matrix Gs are encoded in the diagonal matrix D, and D11�
D22 ��1. In this paper, the following sinusoidal gust is considered
as external disturbance:

wG��� �H���w0 sin!� (40)

where!� 0:5 rad=s,w0 � 0:047 m=s in preflutter speed, andw0 �
0:07 m=s in postflutter speed. Based on our previous work [24], the
proposed controller can only compensate the disturbance signal
whose magnitude is under certain threshold, since both ��t� and ��t�
flaps are constrained to vary between ub ��15 deg. Any
disturbance larger than that threshold would result in alternate
equilibria away from the origin. Hence, in order to show the proposed
robust controller can compensator the unknown disturbance, the size
of the disturbance can not be arbitrary large.

Another type of external disturbance is modeled as a triangular
gust, whose velocity distribution wG��� can be given as

wG��� � 2w0

�

�G

�
H��� �H

�
� � �G

2

��

� 2w0

�
�

�G
� 1

��
H�� � �G� �H

�
� � �G

2

��
(41)

where H��� denotes a unit step function and �G �U1tG=b given
tG � 0:25 s. This triangular gust lasts 0.5 s from t� 0 to 0.5 s.
w0 � 0:7 m=s in both pre- and postflutter speeds. This type of
disturbance is tested in order to demonstrate the performance of the
proposed controller under a large ephemeral disturbance that is notC2

smooth and can not be suppressed all the time.

B. Controller Implementation

To account for the integral windup problem stemmed from
integration of the error signal in the proposed controller and
saturation on control signals, a simple antiwindup law is applied to
the integrated terms as follows:

_�ui �
�
0; 8 juij � ub and sign�ui� _�ui > 0
_�ui; otherwise

(42)

where

Table 2 Simulation parameters

Freestream velocity K11 K22 �11 �22 �

8 m=s 10 10 3 3 10
13:28 m=s 1 1 5 5 10
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Fig. 3 System response at preflutter speed U1 � 8 m=s: a) open loop and b) closed loop.
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Fig. 4 System response at postflutter speed U1 � 13:28 m=s: a) open loop and b) closed loop.
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�u�D�1
Z
t

0

��Y�̂ 0 �T � �K� I��e2��� � �sign�e2����� d�

and �ui represents the ith element in �u. For the parameter adaptation

law, based on [24], a method to limit the auxiliary signal
_̂
#�

�YY�e21 is proposed, according to the magnitude of unsaturated
control input signal u, as follows:

_̂
# a �

8>>><
>>>:

_̂
#g

ub
ju1j

; ju1j> ub
_̂
#g; ju1j 
 ub and ju2j> ub
_̂
#; juij 
 ub; 8 i� 1; 2

(43)

where
_̂
#a denotes the actual auxiliary signal used in Eq. (26). g

denotes the auxiliary saturation gains. ui is the ith element in u. The
auxiliary saturation gain and adaptation gain are selected as g� 0:1
and �Y � 0:01. The parameters for the controller in pre- and
postflutter conditions are listed in Table 2.

C. Results

In this section, simulation results for a 2-D wing-section model
under the proposed control are presented. When no external
disturbance is considered, Fig. 3 shows the open-loop and closed-
loop responses of wing-section model at preflutter speed U1�
8 m=s<UF � 11:4 m=s. In Fig. 3b, one can easily see that the
proposed control law successfully drives the plunge and pitch
displacements to zero within 2 s. Note that the controller is turned on
at t� 0 �s�. This test was conducted to evaluate the reaction time and
control surface displacement characteristics, even if in preflutter
speed condition the response will be damped without control
actuation. In Fig. 3b, the plunge and pitch dynamics are rapidly
controlled, within 2 s, although the LECS saturates and both flaps
will continue operation for about 4.5 s. This phenomena might need
to be further investigated as to evaluate the energy expended to
operate the control surfaces, and optimization can be carried out to
minimize it.

Figure 4a and 4b compare the open-loop and closed-loop
responses of the system at postflutter speed U1 � 13:28 m=s>
UF � 11:4 m=s; in the absence of any control input, LCOs are
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Fig. 5 System response under sinusoidal gust at a) preflutter speed U1 � 8 m=s and b) postflutter speed U1 � 13:28 m=s.
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Fig. 6 System response under triangular gust at a) preflutter speed U1 � 8 m=s and b) postflutter speed U1 � 13:28 m=s.

WANG, BEHAL, AND MARZOCCA 517



experienced due to the nonlinearities in the system model. The
control is turned on at t� 5 s in Fig. 4b. As one can see from Fig. 4b,
the pitching displacement converges to zero in less than 2 s, whereas
it takes a little longer time to suppress the plunging displacement
oscillations.

Under a small sinusoidlike gust, with w0 � 0:047 m=s at both
preflutter speed and w0 � 0:07 m=s at postflutter speed, the closed-
loop responses of the system are represented in Fig. 5. The control is
turned on at t� 0 s in Fig. 5a and t� 5 s in Fig. 5b. Compared with
Figs. 3b and 4b, one can see that it takes nearly the same time (2 s) for
the controller to suppress the pitching and plunging displacements,
even in the presence of a sustained external disturbance. One can also
clearly see that the control signal is able to compensate for the
sinusoidal disturbance injected into the wing-section model.

The closed-loop responses of the system under a large triangular
gust (w0 � 0:7 m=s) are represented in Fig. 6 at both pre- and
postflutter speeds. Note that this triangular gust is not C2 smooth and
it can not be compensated all the time under current wing-section
model by a limited control signal. From Fig. 6a, one can see that the
proposed controller can suppress the pitching and plunging
displacements in 4 s at preflutter speed. It is also clearly to see that it
takes less than 3 s at postflutter speed for the pitching and plunging
displacements to converge to zero. Note that in this case, the control
is turned on at t� 0 s at both pre- and postflutter speeds.

V. Conclusions

In this paper, a continuous robust feedback controller has been
proposed to suppress aeroelastic vibrations on an unmodeled
nonlinear plunging and pitching wing section in pre- and postflutter
conditions and subjected to external disturbance. The control
strategy is implemented via leading-edge (�) and trailing-edge (�)
control surfaces. By using a Lyapunov-based method for design and
analysis, a semiglobal asymptotic stability result on the tracking error
is obtained. To account for the integral windup problem generated
from the integration of the error signal present in the proposed
controller, along with the saturation of the control signals, a simple
antiwindup law is implemented. Simulation results under different
operating conditions and disturbance loading show the efficacy of the
control design.

In futurework, an unsteadymodel based onTheodorsen’s function
or the corresponding time-domain Wagner indicial function will be
considered to describe the aerodynamics with the lag effects.
However, the leading and trailing edgeswith their potential nonlinear
flow characteristics that will lead into flow separation and stall might
require experimental empirical corrections, and this model is not
currently available. Work is in progress to account for dynamic stall
and trailing-edge separation using a modified Beddoes–Leishman’s
formulation. Furthermore, future work will also rigorously consider
the effects of actuator saturation and the antiwindup mechanism in
the stability analysis.

References

[1] Mukhopadhyay, V., “Benchmark Active Control Technology: Part 1,”
Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5, 2000,
pp. 913–960.
doi:10.2514/2.4631

[2] Mukhopadhyay, V., “Benchmark Active Control Technology: Part 2,”
Journal of Guidance, Control, and Dynamics, Vol. 23, No. 6, 2000,
pp. 1093–1139.
doi:10.2514/2.4659

[3] Mukhopadhyay, V., “Benchmark Active Control Technology: Part 3,”
Journal of Guidance, Control, and Dynamics, Vol. 24, No. 1, 2001,
pp. 146–192.
doi:10.2514/2.4693

[4] Friedmann, P. P., Guillot, D., and Presente, E., “Adaptive Control of
Aeroelastic Instabilities in Transonic Flow and Its Scaling,” Journal of
Guidance, Control, and Dynamics, Vol. 20, No. 6, 1997, pp. 1190–
1199.
doi:10.2514/2.4175

[5] Wang, Z., Behal, A., and Marzocca, P., “Advances in the Adaptive
Robust Control of Aeroelastic Structural Systems,” International

Journal of Aeronautical and Space Sciences, Vol. 11, No. 4, 2010,
pp. 285–302.
doi:10.5139/IJASS.2010.11.4.285

[6] Librescu, L., and Marzocca, P., “Advances in the Linear/Nonlinear
Control of Aeroelastic Structural Systems,” Acta Mechanica, Vol. 178,
No. 3–4, Aug. 2005, pp. 147–186.
doi:10.1007/s00707-005-0222-6

[7] Lind, R., and Brenner, M., Robust Aeroservoelastic Stability Analysis,
Springer–Verlag, New York, 1999.

[8] Barker, J. M., and Balas, G. J., “Comparing Linear Parameter-Varying
Gain-Scheduled Control Techniques for Active Flutter Suppression,”
Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5, 2000,
pp. 948–955.
doi:10.2514/2.4637

[9] Scott, R. C., and Pado, L. E., “Active Control of Wind-Tunnel Model
Aeroelastic Response Using Neural Networks,” Journal of Guidance,
Control, and Dynamics, Vol. 23, No. 6, 2000, pp. 1100–1108.
doi:10.2514/2.4661

[10] Zhang, R., and Singh, S. N., “Adaptive Output Feedback Control of an
Aeroelastic System with Unstructured Uncertainties,” Journal of

Guidance, Control, and Dynamics, Vol. 24, No. 3, 2001, pp. 502–509.
doi:10.2514/2.4739

[11] Zeng, Y., and Singh, S. N., “Output Feedback Variable Structure
Adaptive Control of Aeroelastic Systems,” Journal of Guidance,

Control, and Dynamics, Vol. 21, No. 6, 1998, pp. 830–837.
doi:10.2514/2.4342

[12] Xing, W., and Singh, S. N., “Adaptive Output Feedback Control of a
Nonlinear Aeroelastic Structure,” Journal of Guidance, Control, and

Dynamics, Vol. 23, No. 6, 2000, pp. 1109–1116.
doi:10.2514/2.4662

[13] Behal, A., Rao, V. M., Marzocca, P., and Kamaludeen, M., “Adaptive
Control for a Nonlinear Wing Section with Multiple Flaps,” Journal of
Guidance, Control, and Dynamics, Vol. 29, No. 3, 2006, pp. 744–749.
doi:10.2514/1.18182

[14] Rao, V. M., Behal, A., Marzocca, P., and Rubillo, C. M., “Adaptive
Aeroelastic Vibration Suppression of a Supersonic Airfoil with Flap,”
Aerospace Science and Technology, Vol. 10, 2006, pp. 309–315.
doi:10.1016/j.ast.2006.03.006

[15] Lazarus, K., “Multivariable High-Authority Control of Plate-Like
Active Lifting Surfaces,” Ph.D. Dissertation, Department of
Aeronautics and Astronautics, Massachusetts Inst. of Technology,
Cambridge, MA, June 1992.

[16] Singh, S. N., and Wang, L., “Output Feedback Form and Adaptive
Stabilization of a Nonlinear Aeroelastic System,” Journal of Guidance,
Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 725–732.
doi:10.2514/2.4939

[17] Behal, A., Marzocca, P., Rao, V. M., and Gnann, A., “Nonlinear
Adaptive Control of an Aeroelastic Two-Dimensional Lifting Surface,”
Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006,
pp. 382–390.
doi:10.2514/1.14011

[18] Lee, K. W., and Singh, S. N., “Global Robust Control of an Aeroelastic
System Using Output Feedback,” Journal of Guidance, Control, and
Dynamics, Vol. 30, No. 1, 2007, pp. 271–275.
doi:10.2514/1.22940

[19] Zhang, F., and Soffker, D., “Active Flutter Suppression of a Nonlinear
Aeroelastic SystemUsingPI-Observer,”Motion andVibrationControl,
edited by H. Ulbrich, and L. Ginzinger, Springer, Amsterdam, 2009,
pp. 367–376.

[20] Lee, K. W., and Singh, S. N., “Immersion and Invariance Based
Adaptive Control of a Nonlinear Aeroelastic System,” Journal

of Guidance, Control, and Dynamics, Vol. 32, No. 4, 2009,
pp. 1100–1110.
doi:10.2514/1.42475

[21] Platanitis, G., and Strganac, T. W., “Control of a Nonlinear Wing
Section Using Leading- and Trailing-Edge Surfaces,” Journal of

Guidance, Control, and Dynamics, Vol. 27, No. 1, 2004, pp. 52–58.
doi:10.2514/1.9284

[22] Gujjula, S., Singh, S. N., and Yim,W., “Adaptive and Neural Control of
a Wing Section Using Leading- and Trailing-Edge Surfaces,”
Aerospace Science and Technology, Vol. 9, 2005, pp. 161–171.
doi:10.1016/j.ast.2004.10.003

[23] Reddy, K. K., Chen, J., Behal, A., and Marzocca, P., “Multi-Input/
Multi-Output Adaptive Output Feedback Control Design for
Aeroelastic Vibration Suppression,” Journal of Guidance, Control,

and Dynamics, Vol. 30, No. 4, 2007, pp. 1040–1048.
doi:10.2514/1.27684

[24] Wang, Z., Behal, A., and Marzocca, P., “Model-Free Control Design
for MIMO Aeroelastic System Subject to External Disturbance,”

518 WANG, BEHAL, AND MARZOCCA

http://dx.doi.org/10.2514/2.4631
http://dx.doi.org/10.2514/2.4659
http://dx.doi.org/10.2514/2.4693
http://dx.doi.org/10.2514/2.4175
http://dx.doi.org/10.5139/IJASS.2010.11.4.285
http://dx.doi.org/10.1007/s00707-005-0222-6
http://dx.doi.org/10.2514/2.4637
http://dx.doi.org/10.2514/2.4661
http://dx.doi.org/10.2514/2.4739
http://dx.doi.org/10.2514/2.4342
http://dx.doi.org/10.2514/2.4662
http://dx.doi.org/10.2514/1.18182
http://dx.doi.org/10.1016/j.ast.2006.03.006
http://dx.doi.org/10.2514/2.4939
http://dx.doi.org/10.2514/1.14011
http://dx.doi.org/10.2514/1.22940
http://dx.doi.org/10.2514/1.42475
http://dx.doi.org/10.2514/1.9284
http://dx.doi.org/10.1016/j.ast.2004.10.003
http://dx.doi.org/10.2514/1.27684


Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011,
pp. 446–458.
doi:10.2514/1.51403

[25] Sastry, S., and Bodson, M., Adaptive Control: Stability, Convergence,
and Robustness, Prentice–Hall, Upper Saddle River, NJ, 1989.

[26] Ioannou, P., and Sun, K., Robust Adaptive Control, Prentice–Hall,
Englewood Cliffs, NJ, 1996.

[27] Krstic, M., Kanellakopoulos, I., and Kokotovic, P., Nonlinear and

Adaptive Control Design, Wiley, New York, 1995.
[28] Chen, J., Behal, A., and Dawson, D. M., “Adaptive Output Feedback

Control for a Class of MIMO Nonlinear Systems,” Proceedings

of the American Control Conference, Minneapolis, MN, 2006
pp. 5300–5305.

[29] Wang, Z., Chen, J., andBehal, A., “RobustAdaptiveControl Design for
a Class of Uncertain MIMO Nonlinear Systems,” Proceedings of the

IEEE Multi-Conference on Systems and Control, Yokohama, Japan,
2010, pp. 2284–2289.

[30] Zhang, X., Behal, A., Dawson, D. M., and Xian, B., “Output Feedback
Control for a Class of Uncertain MIMO Nonlinear Systems with Non-
Symmetric InputGainMatrix,”Proceedings of the IEEEConference on

Decision and Control, Seville, Spain, 2005, pp. 7762–7767.
[31] Chen, J., Behal, A., and Dawson, D. M., “Robust Feedback Control for

aClass ofUncertainMIMONonlinear Systems,” IEEETransactions on

Automatic Control, Vol. 53, No. 2, March 2008, pp. 591–596.
doi:10.1109/TAC.2008.916658

[32] Lewis, F. L., Campos, J., and Selmic, R., Neuro-Fuzzy Control of

Industrial Systems with Actuator Nonlinearities, Society for Industrial
and Applied Mathematics, Philadelphia, 2002.

[33] Utkin, V. I., Sliding Modes in Control and Optimization, Springer–
Verlag, New York, 1992.

[34] Xian, B., Dawson, D. M., de Queiroz, M. S., and Chen, J., “A
Continuous Asymptotic Tracking Control Strategy for Uncertain
Nonlinear Systems,” IEEETransactions onAutomatic Control, Vol. 49,
No. 7, July 2004, pp. 1206–1211.
doi:10.1109/TAC.2004.831148

[35] Marzocca, P., Librescu, L., andChiocchia, G., “Aeroelastic Response of
2-D Lifting Surfaces to Gust and Arbitrary Explosive Loading
Signatures,” International Journal of Impact Engineering, Vol. 25,
2001, pp. 41–65.
doi:10.1016/S0734-743X(00)00033-6

[36] Leishman, J. G., and Beddoes, T. S., “A Semi-Empirical Model for
Dynamic Stall,” Journal of the American Helicopter Society, Vol. 34,
No. 3, 1989, pp. 3–17.

[37] Hansen, M. H., Gaunaa, M., and Madsen, H. A., “A Beddoes–
Leishman Type Dynamic Stall Model in State-space and Indicial
Formulations,” Risø National Lab., Risø-R-1354(EN), Roskilde,
Denmark, 2004.

[38] Arena, A., Lacarbonara, W., and Marzocca, P., “Nonlinear Aeroelastic
Formulation for Flexible High-Aspect Ratio Wings via Geometrically
Exact Approach,” AIAA Paper 2011-1916, Denver, CO, April 4–
7 2011.

[39] Morse, A. S., “A Gain Matrix Decomposition and Some of its
Applications,” Systems and Control Letters, Vol. 21, 1993, pp. 1–10.
doi:10.1016/0167-6911(93)90038-8

[40] Khalil, H., Nonlinear Systems, Prentice–Hall, Upper Saddle River, NJ,
1996.

WANG, BEHAL, AND MARZOCCA 519

http://dx.doi.org/10.2514/1.51403
http://dx.doi.org/10.1109/TAC.2008.916658
http://dx.doi.org/10.1109/TAC.2004.831148
http://dx.doi.org/10.1016/S0734-743X(00)00033-6
http://dx.doi.org/10.1016/0167-6911(93)90038-8

