

Department
of ENGINEERING FOR
INNOVATION MEDICINE

Gestural Interaction in Extended Reality

Marco Emporio

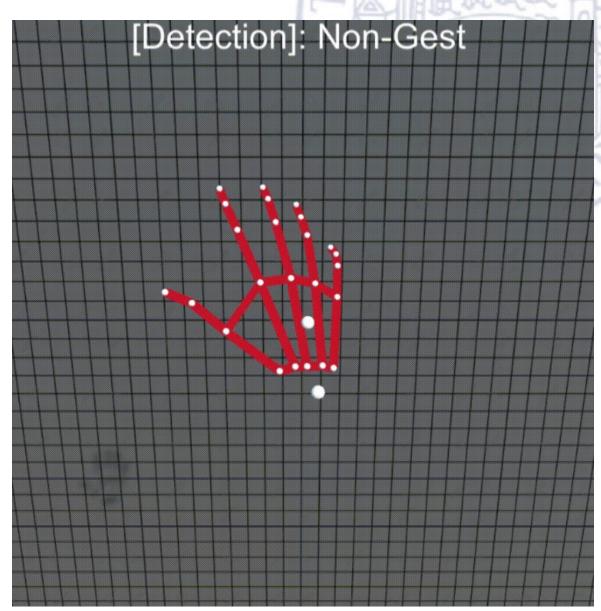
INTELLIGO-GRAIL GRAphics and Interaction Lab

Why gestures matter in HCI

22nd October 2025 - Marco Emporio

- Gestures in daily life:
 - Used for communication and object manipulation.
 - Natural, intuitive, and expressive.

Challenges in Gesture Recognition


- Hand movements tracking
- Variability in gestures:
 - Different users, styles, speeds and variations due to fatigue or environment.
- Gestures don't happen in isolation
- Fast recognition time
- Minimizing false positives and misclassifications.

Taxonomy of Hand Gestures

- Functional Classification:
 - Semaphoric / Language gestures
 - Gesticulation / Non-gesture movements
- Temporal Classification:
 - Static Gestures
 - Dynamic Gestures
 - Coarse, fine and periodic

Gesture Invariance

Position-Invariant:

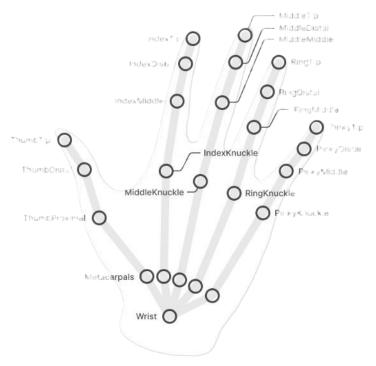
 Gesture meaning remains the same regardless of translation.

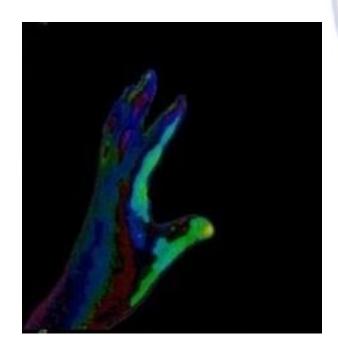
Orientation-Invariant:

 Gesture meaning is unchanged despite hand rotation.

• Direction-Invariant:

 Gesture meaning is unaffected by movement direction.





Input Stream Encoding for Gesture

Video data

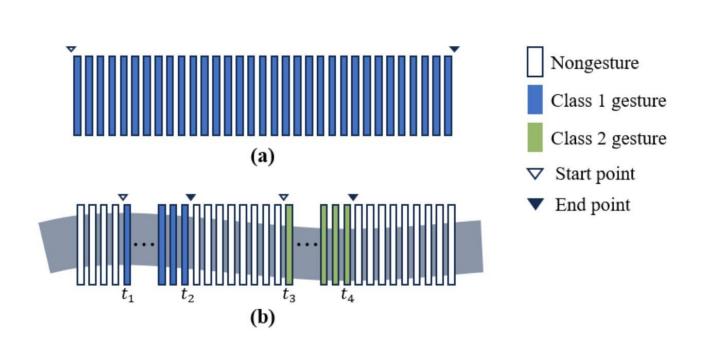
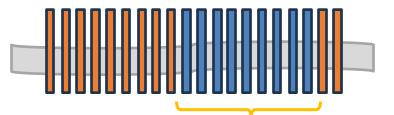

Skeleton data

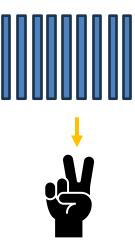
Image feature maps

Non-visual sensors data

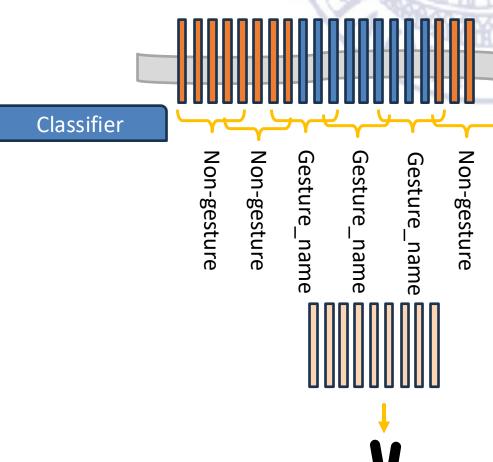
Gesture Recognition


Frame number	0	1	2	3	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Ground Truth	ng	ng	ng	deny	deny	deny	deny	ng	ng	ng	two	two	two	two	ng	ng	ng	ng	ng	knob	knob	knob	ng	ng	three	three	ng
Prediction	ng	three	ng	deny	deny	deny	deny	deny	ng	ng	ng	two	two	ng	ng	ng	ng	ng	knob	knob	knob	knob	ng	ng	three	three	ng

Handling Non-gesture


Two Modules

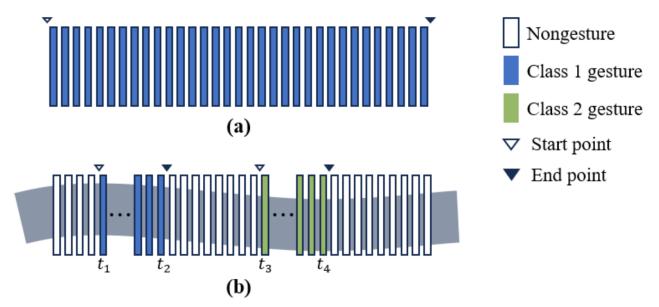
Detector / Segmentator



Gesture found!

Classifier

Sliding Window


Evaluation metrics

Evaluation metrics:

- Frame-Based: treat gesture as labels sequences for comparison
- Event-Based: treat gestures as events (start time, end time, label)

Efficiency-Based: memory requirements, computational complexity, real-time

performance

Frame-Based Metrics

- True positives (TP): correctly recognized gesture frame
- True Negatives (TN): correctly recognized non-gesture frame
- False Positives (FP): misclassified gesture's frame
- False Negative (FN): misclassified non-gesture frame

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{(TP + FP)}$$

$$Recall = \frac{TP}{(TP + FN)}$$

$$F-Score = \frac{2 \cdot (Precision \cdot Recall)}{(Precision + Recall)}$$

Frame-Based Problems

GT						
Prediction						

Fragmented

GT						
Prediction						

Merged and Fragmented

GT						
Prediction						

Event-Based Metrics

A gesture is considered **correctly detected (CD)** if the start (and end) time is closer than a threshold from the ground truth one, if it has the same label as the ground truth annotation, and its time window has an intersection with the annotated one larger than half the ground truth length. False predictions (FP) and ground truth occurence number (ON)

$$DetectionRate = \frac{CD}{ON}$$

$$FalsePositiveScore = \frac{FP}{ON}$$

Hardaware Metrics

- Classification time
- Network Delay
- Number of network parameters

ResNet+ResNeXt

Benchmarks use different metrics

Table 9. Performances of the best methods on the EgoGesture

benchmark. (*) metric from Köpüklü et al. (2020).

2020

Method	Date	JI (%)	Runtime (FPS)	LA (%)*
TMMF	2021	80.3	NA	NA
C3D	2015	71.8	112 Table 8. Perfo	rmances o

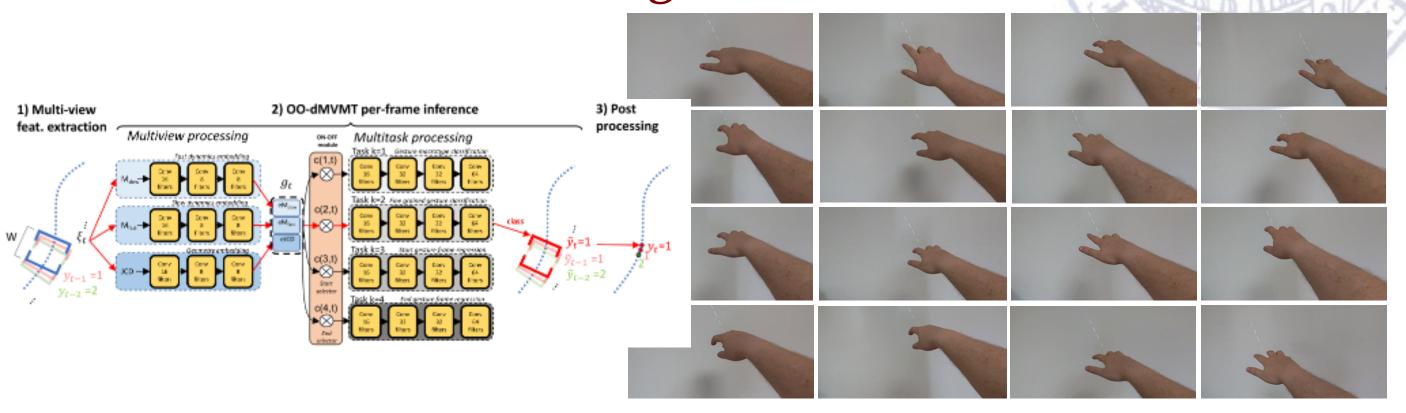
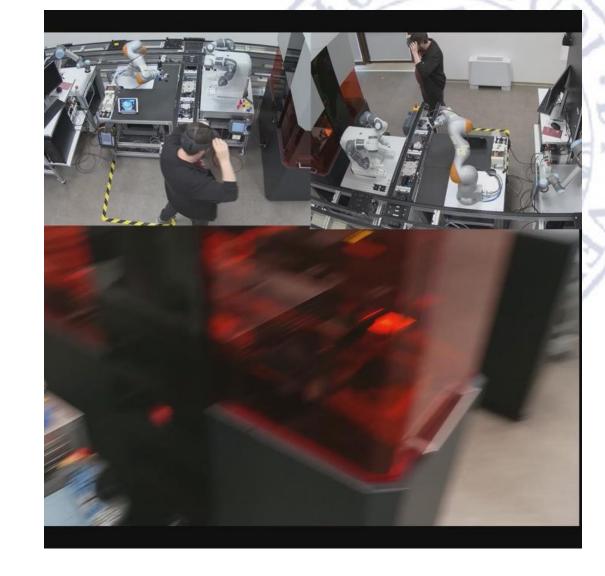

NA

Table 8. Performances of the best methods on the NVGesture benchmark. (*) metric from Köpüklü et al. (2020).

Method	Date	au	AUC	TPR (%)	FPR (%)	NTtD	LA (%)*
R3DCNN	2015	0.3	0.93	88	15	0.56	NA
HSTV	2022	0.16	0.81	85	17	0.2158	NA
ResNet+ResNeXt	2020	0.15	NA	NA	NA	NA	77


OO-dMVMT: A Deep Multi-view Multi-task Classification Framework for Real-time 3D Hand Gesture Classification and Segmentation

Integration of Extended Reality with a Cyber-Physical Factory Environment

- XR Integration in Industry 4.0/5.0
 - Real-World Use Cases & Gesture-Based Interaction
 - Synchronizing Data Between Physical and Digital Twins
- Cyber-Physical Factory & Digital Twin
 - Enhancing Worker Productivity & Safety
 - Real-Time Monitoring and Control

