
Z-Goggles

Cody Baxley, Geoffrey Jean, William Petty,

Christopher J. Silver

School of Electrical Engineering and Computer

Science, University of Central Florida,

Orlando, Florida, 32816-2450

Abstract — Z-Goggles is a vision modification system
meant to alter the user’s view of the world. It accomplishes
this by performing several image processing functions on a
digital video signal and presenting the results to the user via a
helmet mounted display unit. The entire system is worn by
the user and powered by a battery-driven power supply. In
addition to its main image processing functions, the system
has the capability of being expanded to see in the Infrared
and Ultraviolet spectrums through the use of filtering lenses.

Index Terms — Field programmable gate arrays, digital-
analog conversion, parallel programming, digital cameras,
video signal processing.

I. INTRODUCTION

Z-Goggles doesn’t really stand for anything, it is just a

name that makes you wonder what it could possibly be.

The Z-Goggles system is a vision enhancement system,

though not in the normal sense. It allows the user to

modify what they do see in a number of ways. Mainly, this

is done for the enjoyment of the user. Who doesn’t want to

see the world upside down? What does the world look like

when the colors are inverted? What about a blurry image?

Essentially, this is a video/image processing capability,

allowing the user to modify the display with 3 functions.

Z-Goggles can flip the display, create a photo-negative

effect, and simulate blurry vision. Another twist is that the

Z-Goggles are portable and capable of being worn outside.

The Z-Goggles are designed to go where the user goes. It

is battery-powered, and the display is integrated with a

helmet for ease of use. The required power supply is

located in a backpack that is worn with the helmet, so the

complete system is wearable in two sections. Overall, the

system isn’t heavy, so the user should be capable of

wearing it for extended periods. The way the system is

currently designed is as a single camera to FPGA unit.

Conceivably, the unit could be paired with other like units

with differently filtered lenses, to allow viewing in other

spectrums. This allows for future growth of the system for

other applications.

Regarding the technical implementation, the entire

system consists of relatively few parts. A digital camera

connects to an FPGA for processing and display control. A

VGA output card interfaces with the FPGA processor to

output to a helmet-mounted display unit. The user can

select functions via a controller, which is built upon a

microcontroller which interfaces with the processing

FPGA. All power is provided by the backpack power

supply. A concept drawing of the Z-Goggles is shown in

Fig. 1.

Fig. 1. Concept drawing of the Z-Goggles system. The
Display unit is in front of the user’s face, and multiple cameras
are shown to indicate the possibility of using multiple cameras
for multi-spectral viewing.

II. DIGITAL CAMERA

The digital camera used in the Z-Goggles design was

chosen for its digital output and ease of interface with the

FPGA Video Processor. Our group chose the C3188A

Color Camera module based on the OV7620 image sensor

from OmniVision. This camera has a pinout header that

mates well with a modified cable to the FPGA, and also

provides digital 8 or 16-bit RGB progressive video data

output. This is the type of video we wished to use for

processing and VGA output, so it was the ideal choice.

Another reason this camera was chosen was its proven

capability in microsatellite projects. This allowed some

confidence in its ability to perform when compared to

other possible camera options. The Camera/FPGA

interface setup is shown in Fig. 2.

Fig. 2. Camera connected to the FPGA Video Processor.

Communication with the camera consists of I2C control

of the state of its data output and other commands. Due to

difficulties with the camera’s I2C function, our group

decided to deal with the camera data as it is given to the

FPGA. Essentially, the Video Processor takes in YUV

digital data from the C3188A, and converts it into RGB.

The rest of the information, including clock, horizontal

and vertical sync signals, and data, are simply output from

the camera into the FPGA.

III. FPGA VIDEO PROCESSOR

The purpose of the FPGA is to act as a Video Processor

by taking the data output from the camera and reformatting

it into a properly synced series of images. These images

can then be modified with the Z-Goggles image

modification functions, and run into the VGA card. This

may sound simple, but the main processes of image

framing and memory-mapping the data output from the

C3188A digital camera is a large portion of the design

requirement for the entire Z-Goggles system. Also, each

image modification function requires a module be

designed to enact it.

A Digilent Spartan-3 FPGA board was chosen as the

Video Processor. The main reason this board was chosen

was its low cost and its available SRAM. This allows the

memory-mapped video setup necessary for our processing

engine. Doing without this capability turned out to be

unrealistic, especially considering the image modifications

we wish to accomplish that would flip data relative to a

constant position. This is impossible without memory to

hold a single frame.

To begin with, we must frame the image data coming

from the C3188A digital camera. Once properly framed,

the data is stored in memory. If necessary to output

properly using the VGA card, we then convert the YUV

data into RGB format. Next, the data is modified

according to the user’s preference made on the remote.

Finally, the data is output to the VGA card using the VGA

output controller.

A. Image Framing

The image from the camera comes in along two clock

pulses in YU and YV 16-bit words on a 27 MHz bus. The

onboard system uses a 25 MHz clock for video output

synchronization. This means that the system cannot

operate synchronously and needs some form of buffering

to support error-free video throughput.

Because of the mismatched clocks, ideally some form of

internal dual-ported RAM would be the most simple and

reliable method of buffering. The board however contains

2 SRAM chips both holding 256k 16-bit words, with a

shared address bus. Most boards with dual-ported RAM

were too expensive for us to consider. The memory

controller to manage these constrained resources is

discussed in the next section.

Image input data is only latched in within the camera’s

active region, denoted by a low signal on VSYNC and a

high signal on HSYNC, with clock pulses marking valid

pixel input within each line. Internal state variables track

these 3 signals to generate the input pixel coordinates.

Each VSYNC high signal resets all the values, each

HSYNC transition from high to low marks the next input

line, and each clock pulse during HSYNC high denotes a

half pixel of input. With these internal states, tracking can

be accomplished to frame video input into memory in an

asynchronous manner. Fig. 3 shows the timing signals and

system states/behavior.

Fig. 3. Timing signals and system behavior during the image

framing process.

B. Memory-mapping Image Data

To map the input and output data into RAM with the

lowest possible latency, no conversion is done and the x

and y coordinates are used directly for the address space.

The x coordinate uses the lowest 9 bits to fit all the pixels

of a given line into memory. This is enough bits to cover

the entire 480 possible locations, since 2^9 equals 512.

The y coordinate uses the lowest 9 bits as the upper 9 bits

in the memory address. The MSB of the y coordinate

controls the chip enable (CE) lines of the two memory

chips to alternate them for the higher and lower parts of

the frame. This is the solution to the constrained memory

resources we mentioned earlier.

Because the input and output clocks are not

synchronized in any way, including phase adjustment,

characteristic diagonal banding will occur along an error

region. In this region, contention for the address and

memory busses will produce incorrect data on the output

side of the system. To reduce this contention, a memory

controller must be used which accepts input and output

requests and buffers them accordingly.

To reduce the logic involved in the design phase, we

favored reads over writes. Although writes occur more

frequently, the time taken to execute the write is less

important than time taken to execute a read. A delayed

read operation will result in some errant pixel data, and

given that the output DAC latches along the positive edge

of the pixel clock, either the video clock must be delayed

to compensate, or the delayed read will be as bad as a

failed read. This type of failure will happen at regular

intervals forming observable patterns in the output video

even if the distortions themselves are minimal. A delayed

write operation can only fail in the event that the delay

takes longer than the frame takes to write. In most cases it

is likely that the write operation will happen successfully

before the next write operation. As the phase of the clocks

grow apart, it is possible that a write may not be successful

because of a neighboring read request very nearly follows

the end of a failed write request. In our current design, it is

unlikely that more than 1 error will accumulate, and if

consecutive errors occur they will be more dispersed and

thus less noticeable within the video window.

The current design is composed of the memory

interface, internal buffers, and controller logic. The logic

accepts read and write requests and on their positive edge.

If the current request is a write request and there is a read

or write in progress it will be buffered internally until

those requests have been processed. The memory device

I/O latency is 10ns, and the clocks driving the read and

write requests are spaced by about 40ns, so the chance of

having an error persist for more than 1 read/write cycle is

low. When there is no active request, the buffered write

request will be pushed as a normal write request in the

system. If there is a read request during an existing write

request, the current write will be aborted and buffered. If

there is a write request during a read request it will be

buffered until the read request finishes. If a write request

occurs during a write, it will be buffered. Reads can only

take place every 40ns; and, they take precedence over

everything. However, if a read request occurs during a

read, something is severely broken. This case is not

accounted for because the rest of the system will very

obviously be malfunctioning. This memory controller is

sufficient to remove contention for the address and data

lines and remove the entire class of errors related to those

shared busses.

C. YUV to RGB Conversion

There are many different color standards that may be

considered and it’s not precisely clear which color map the

camera uses. The documentation doesn’t lead to a direct

answer, other than the fact that it is known to be a form of

YUV data. The standard we were using specified three

equations for converting YUV format data to RGB format

data. They are

RY V (1)

and

BY U (2)

and

 GY U V. (3)

Without floating point availability or the latency to even

do large fixed-point multiplication, near-approximations

are used. Our actual system implements these three

equations instead:

RY V (4)

and

BY U (5)

and

GY U V. (6)

 This change is made for the sake of time and the

aforementioned accuracy issues. While this change in

order of accuracy is dramatic, the color bias remaining the

same across the image is more important than the color

bias being very true to life. This removes implementation

complexity and reduces latency. Also, quality of color is

not one of the specifications we are required to meet at this

time.

D. Image Modification Functions

The simpler image modification functions directly

operate on a single input pixel supplied from RAM. These

functions include color inversion and palette adjustment.

In the case of color inversion, the current red, green, and

blue components of each pixel are subtracted from the

maximum color value of that component (64 for green, 32

for blue and red, given a 5-6-5 16 bit RGB format). This

results in an image with inverted color components, with

white becoming black, etc. An example of this type of

operation is shown in Fig. 4. A palette shift is not a user

modification, but it is used by the designers to shift colors

to correct any perceived color glitches. Essentially, it is

simply a quick color change to make the output video look

better.

Fig. 4. Color Inversion example.

The second capability of the Z-Goggles is to flip the

video upside down, or do a Vertical Flip. This capability is

accomplished by saving the pixels in memory in a reverse

manner. Instead of the ‘top left’ pixel being saved in the

‘top left’ spot in memory, it is saved in the ‘bottom right’.

This is only a little more complicated than the single pixel

operations. An example of this type of operation is shown

in Fig. 5.

Fig. 5. Vertical Flip example.

More advanced functions like Blur and Edge Detection

have their own input cache. Each input frame, 3 pixels in

the lines of the next pixel are read. Each of these pixels

comes from a different line of input and is stored in a 3x3

matrix of pixels for that particular function to use. On

read, each of the lines of the matrix is shifted over into the

next cell, reducing the memory input latency requirement

to meet the throughput.

Blur is accomplished using an adder with parallel

shifters for each color channel to create an even-weighted

blur across each pixel. The output is otherwise exactly the

same. An example of Blur is shown in Fig. 6.

Fig. 6. Blur example.

Edge detection is more complex. It is implemented

using a spatial mask derived from the Sobel Operator.

With our design, a series of addition and subtraction

circuits and shifters can derive horizontal and vertical

gradient information, which is then summed and measured

against a threshold value to determine if there is in fact an

edge present. A diagram of the Edge Detection system can

be seen in Fig. 7. Edge Detection is not a specified user

function, but the design has been created and may be

included if time allows.

Fig. 7. Edge Detection example.

E. VGA Output

The VGA output section of the Video Processor tracks

the current and future pixels to be used and has a pixel

buffer for the next processed pixel. It generates its own

horizontal and vertical synchronization signals from timing

offsets defined in the system through experimentation.

Many monitors will support various timing adjustments,

and modern LCDs will attempt to do active region

determination from color output sections, but seem to get

it wrong more than right. Without being able to use any

form of EDID queries for the specific monitors, each test

monitor has its own hand-tuned set of constants. To assist

in this tuning a special test pattern generator was

developed which supplies 60x60 pixel blocks at each

corner further divided into 20x20 pixel blocks. This gives

us information about framing, edge behavior, color skew,

and sub-pixel appearance. The next part looks at 8 colors

in different sized bands to see other effects of color bleed

and provide large vertical sections in which any skew

issues will be more apparent and measurable. Below this

are independent color gradients, and full color range

gradients to look at the dynamic range of the monitor and

DAC in use. A small set of gray colors was selected in

various sized bars for more timing and brightness analysis.

This pattern can be seen in Fig. 8.

Fig. 8. Test pattern for output timing estimation.

The pixel data is taken from the buffer and supplied to

the VGA card’s Digital to Analog Converter. The DAC’s

sync generation system is bypassed to supply HSYNC and

VSYNC directly to the monitor, with the DAC’s blanking

input driven high to tell the DAC that it is always in a non-

blanking state. This avoids the superposition of sync

signals in any of the color channels because they are not

needed and lets the DAC operate on a pixel-by-pixel basis

at every clock edge from the input clock. Essentially, this

creates a simple VGA output pipeline for the data sent to

the VGA card from the Video Processor.

IV. USER INTERFACE

The User Interface for the system is necessary to allow

the user to control the image modification functions that

the Video Processor provides. In this way, single or

multiple functions may be selected to modify the video

output shown on the Display screen in real time, as the

user wears the Z-Goggles system. Shown in Fig. 9 is a

simple flow diagram of the User Interface.

 Fig. 9. UI Flow diagram

To accomplish this, we decided to use a simple set of

switches and the Atmel ATMEGA328 microcontroller.

The Arduino Duemilanove board was used to develop

functional code for the microcontroller. In this case, the

microcontroller simply checks for the signal change from

each switch, checks to see if the signals are a valid choice,

and informs the FPGA of the change. There is no set

switch position, so it is a direct on or off command,

depending on what state the function is currently under.

In addition to the switches, there is also an LED that is

included to inform the user if an invalid combination of

image modification functions is chosen. This UI circuit

will be completed on a PCB; Fig. 10 is the schematic that

the PCB design is based upon.

Fig. 10. User Interface Schematic.

V. VGA BOARD

One disadvantage to the chosen FPGA platform is its 8-

color VGA output, which is insufficient to output 8 or 16-

bit video. This is the reason a separate VGA card is

required; the C3188A camera data output has much higher

color depth than the Spartan-3 board can inherently

handle. To solve this problem our group resolved to create

a VGA output card that would handle the 8 or 16 bit color

output data. This would require using a Digital to Analog

Converter chip to convert the digital video signal into an

analog output for our VGA display. Current VGA

conversion circuits use a triple conversion process that

uses one chip to convert the RGB/YUV digital signals into

component red, green and blue signals. Our group chose

the THS8133b digital to analog converter to accomplish

this because of its ability to handle our maximum bit width

for each color, as well as TI’s generous distribution of

samples for student projects.

Instead of designing a PCB to mount the DAC, our

group decided to surface mount it to a premade 40 pin

breakout board and construct connections to a DB-15

connector to connect to the Display unit. This solution was

much quicker and cheaper than designing a PCB. To

ensure a consistent power supply to the DAC, we soldered

a 0.1µF capacitor between the analog power supply and

the compensation terminal. To achieve an internal voltage

reference of 1.35V we soldered a 0.1µF capacitor between

the reference voltage pin and the analog ground. We

wanted to make the full scale current 26.67 mA, so we

soldered a 430Ω resistor between the full scale adjust

control and the analog ground. This is necessary because

we are running with sync on all RGB components instead

of from one color (usually green). The other input pins are

not used, so they are linked to ground to prevent any noise

from interfering with the signal due to open pins [1].

Shown in Fig. 11 is the DAC prior to capacitor and

resistor components being added.

Fig. 11. DAC soldered to the breakout board

VI. DISPLAY UNIT

For the display unit we decided to go with a commercial

off the shelf (COTS) LCD screen, the Accelevision

LCDP5VGA. The screen has a pixel resolution of

640x480 which matches the ideal pixel resolution output

that was specified during the design phase. The decision to

use this display came after we realized that output to a

computer monitor was more directly achievable with our

FPGA than output in a composite format. In essence, this

screen is a small computer monitor. The screen came with

a DB-15 VGA connection so nothing more was needed to

get it to function properly other than give it proper VGA

signals.

Also, this display unit was chosen because it could be

run directly from the 12 Volt battery power source without

the use of DC-to-DC converters. As shown in Fig. 12, the

backlight on the screen is acceptably bright when it is

being run off directly from the battery at roughly 12V. It

has a current draw of 300 mA, which is quite a bit less

than we had originally assumed a display would draw.

This should allow much longer system use-time before

recharging the battery.

Fig. 12. Accelevision LCDP5VGA Display Unit. In this
picture, it is displaying luminance values output from the
camera, but without memory mapping the data.

VII. POWER SUPPLY

To power the entire system, as well as create a portable

system, we must use a battery-powered power supply. Our

chosen design consists of one voltage regulator that

converts the 12VDC power source into a 5V source. The

5V source is for the FPGA Video Processor and the UI

microcontroller. The FPGA has an onboard 5V supply that

will run the C3188A digital camera. The Display unit runs

from the 12V battery directly. The general power supply

design is shown in Fig. 13.

Fig. 13. Power Supply Design

The 5V regulator we have chosen is the LMZ12003.

This is a micromodule from National Semiconductor,

which has low loss due to heat, and high efficiency over its

entire range of current output. In addition, it features

protection against overvoltage and inrush current

situations. The ENABLE pin on the device allows us to set

a low voltage threshold beyond which the system

automatically turns off. Using this feature, when the power

switch is flipped to the off position, the regulator will turn

itself and the rest of the system off [2]. Shown in Fig. 14.

is the LMZ12003 regulator in the evaluation board. This

board need only have two resistors modified to adjust the

voltage output to 5V. RFBT is removed and replaced with a

5.62 kOhm resistor, and RFBB is removed and replaced

with a 1.07 kOhm resistor [2]-[3].

Fig. 14. LMZ12003 Evaluation Board.

The power source we have chosen is a PS1270 battery,

which is a 12V output, 7Ah battery. The maximum current

that the LMZ120003 regulator can output is 3A. Our

system is well under this mark, with expected draw under

1.5A. At this level, the battery will operate for over 4

hours without recharge. Our goal for system battery life is

2 hours, so the battery capacity is double what we need.

The battery is easily left in a charger until use, due to the

fact that it is a Lead Acid battery which prefers to be left

under a maintenance charge.

VIII. PHYSICAL DISTRIBUTION

The overall system is held in two physical places on the

user’s body. The most complex aspect of distribution is the

helmet, where the FPGA Video Processor, camera,

display, UI controller, and most of the power supply is

located. A backpack is included, which holds only the

battery. This is done to isolate the battery from other

aspects of the system for safety reasons. The connections

between these two parts of the system are the power lines

that connect the battery to the rest of the power supply.

The helmet setup consists of a thin sheet of plexiglass

attached to an easily adjustable construction helmet. On

this sheet is the FPGA Video Processor and the evaluation

board portion of the power supply. The system On/Off

switch is located here with the power supply. The UI

controller is attached to the side of the helmet in such a

way as to allow access to the switches for user input. The

display LCD is hung out in front of the user’s face with

metal bars attached to the side of the helmet. On top of the

display fixture, the camera is mounted to allow clear view

in front of the user. The helmet is weighted to balance the

torque these components exert on the helmet. The

backpack setup is simply the battery placed in a backpack.

It is covered for safety and electrical tape is used to cover

the power wire connection to the battery.

IX. CONCLUSION

The Z-goggles system started as a fun way to apply what

our group has learned; and, it ends as an exercise in

problem-solving with low cost components. The difficulty

of the project lies in utilizing these components to create a

portable video processing system from the ground up.

Every component, up to and including such mundane

things as a VGA port, had to be designed and accounted

for within the system. The FPGA Video Processor acts in

the stead of many separate hardware components, and is

built under many constraints on a low cost development

platform. Our group has learned the art of design by

dealing with many design changes throughout the creation

of the system. Some of these changes were forced upon us

by necessity, while some were added to better the system

during the prototyping process. The result of these changes

is a more compact system that has less functionality; but, it

functions much more efficiently than the original design.

In the end, our group takes away a great deal of

experience in the issues and triumphs that go along with a

difficult design endeavor. There is no doubt that the Z-

Goggles project embodies thinking outside the box to

create something interesting. That was always the essence

of our group’s philosophy. Achieving that goal makes the

Z-Goggles a successful Senior Design project.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the advice given by

Dr. Arthur Weeks and Dr. Samuel Richie regarding their

overall project. Also, the authors would like to thank Tina

McArthur of Lockheed Martin for advice regarding the

power supply.

GROUP BIOGRAPHIES

Cody Baxley will be graduating

with a Bachelor’s degree in

Electrical Engineering from UCF

in December, 2010. He plans to

begin work and soon after pursue a

Master’s degree in Optics or EE

with a focus in Opto-Electronics.

Christopher Silver will be

graduating with a Bachelor’s

degree in Electrical Engineering

from UCF in December, 2010. He

plans to begin work soon focusing

on embedded system design and

programming with a special

interest in FPGA development for

time-constrained applications.

Geoffrey Jean is an electrical

engineering student at the

University of Central Florida. His

current interests lie in microwave

engineering, optical engineering

and hardware/software

programming.

Will Petty is a Computer
Engineering major at the

University of Central Florida. His

current interests lie primarily with

software development in C, C++,

Java, and Verilog. In the future,

Will wants to work for a company

doing a wide range of software

development.

REFERENCES

[1] THS8133b Triple 10-bit D/A Converter data sheet
(http://focus.ti.com/docs/prod/folders/print/ths8133b.html)

[2] LMZ12003 3A SIMPLE SWITCHER® Power Module
(http://www.national.com/ds/LM/LMZ12003.pdf)

[3] App. Note 2024: LMZ1200x Evaluation Board
 (http://www.national.com/an/AN/AN-2024.pdf)

http://www.national.com/ds/LM/LMZ12003.pdf
http://www.national.com/an/AN/AN-2024.pdf

