
Amos Kittelson, Todd Denton, Tim Tewolde, Jake Peery: Group 5
EEL4914, 4 Aug 2010

aLife

Project Documentation

DEPARTMENT OF ELECTRICAL &
COMPUTER ENGINEERING

UNIVERSITY OF CENTRAL FLORIDA

EEL4914

Senior Design I

Team 5

ii

Table of Contents
1 -Introduction...v

1.1 -Problem Statement..v
2 -Purpose...8
3 -Research and Component Selection ...10

3.1 -Base Station ...10
3.1.1 -Embedded Linux Kernel ..10
3.1.2 -Android GUI ...11
3.1.3 -Software Life-cycle Models ...11
3.1.4 -Waterfall Model ..11

3.1.4.1 -The V Model ...12
3.1.4.2 -Spiral Model..13
3.1.4.3 -Agile Methods ..14

3.1.5 -Communication Architecture ...15
3.1.5.1 -Peer to Peer..15
3.1.5.2 -Client-Server ..16

3.1.6 -Communication Protocols..17
3.1.6.1 -UDP..17
3.1.6.2 -TCP ..18

3.1.7 -Database Management Systems ..19
3.1.7.1 -IBM's DB2 Express-C...19
3.1.7.2 -Microsoft SQL Server Express ..20
3.1.7.3 -Oracle Database Express Edition ..20
3.1.7.4 -MySQL ...20
3.1.7.5 -PostgreSQL ...21
3.1.7.6 -SQLite ..21

3.1.8 -Display..21
3.2 -Wireless Sense and Control Modules ..22

3.2.1 -US Electric Power Consumption ...22
3.2.2 -Appliance Ghost Power Usage..24
3.2.3 -Existing Smart Home Devices...25

3.2.3.1 -Smart Lighting...27
3.2.3.2 -Security Systems and Access Control29
3.2.3.3 -Appliance Power Monitoring and Shutoff...................................33
3.2.3.4 -Home Theater and Entertainment..34
3.2.3.5 -In-home Communication Systems..35
3.2.3.6 -Climate Control...36
3.2.3.7 -Irrigation..37
3.2.3.8 -Pet Care..38

3.2.4 -Communication Standards...39
3.2.4.1 -ZigBee...40
3.2.4.2 -Z-Wave..41
3.2.4.3 -X10..42

iii

3.2.4.4 -INSTEON..42
3.2.4.5 -Bluetooth...43
3.2.4.6 -WiFi ..44
3.2.4.7 -Conclusions on Wireless Standards...44

3.2.5 -MCU...45
3.2.6 -ZigBee Transceiver..45

3.3 -Remote Client Hardware...45
3.3.1 -Apple iPhone/iPod Touch...45
3.3.2 -Smart Phones vs Feature Phones and Basic Phones.......................46
3.3.3 -Android Based Phones..46

3.3.3.1 -MIPS Based hardware and other embedded devices................48
3.3.3.2 -Ford Sync..48
3.3.3.3 -MIPS based devices and set top boxes.....................................49

3.3.4 -Multi-Tasking and Notifications..49
4 -Theory of Operation..51

4.1 -Base Station..51
4.2 -Wireless Sense and Control Modules ..52

4.2.1 -General ..52
4.2.2 -ZigBee Wireless Network ..53

4.3 -Remote Client ...56
5 -Feature and Performance Specifications ..57

5.1 -Base Station ...57
5.1.1 -Hardware ...57

5.1.1.1 -Base Board...57
5.1.1.2 -ZigBee Base Station ..57

5.1.2 -Software ..57
5.2 -Wireless Sense and Control Modules ..58

5.2.1 -Hardware ...58
5.2.1.1 -MCU ...58
5.2.1.2 -ZigBee Transceiver ..58
5.2.1.3 -Control and Sensor Related ..59
5.2.1.4 -Power Supply ...59
5.2.1.5 -Package ...60

5.2.2 -Software ..60
5.2.2.1 -Main Program ..60
5.2.2.2 -ZigBee Protocol Stack ...60

5.3 -Remote Client ...60
5.3.1 -Hardware ...60
5.3.2 -Software ..61

5.3.2.1 -aLife Service ..61
5.3.2.2 -aLife GUI ..61

6 -Design ..62
6.1 -Base Station ..62

6.1.1 -Hardware ...62

iv

6.1.1.1 -NXP LPC3250 Microcontroller62..63
6.1.1.2 -LPC3250 OEM Board ..65
6.1.1.3 -QVGA Base Board ...67

6.1.2 -Software ..69
6.1.2.1 -Board Support Package ...69
6.1.2.2 -Initial Design Prototype ..70
6.1.2.3 -Final Design..71
6.1.2.4 -Base Station Class ..75
6.1.2.5 -Device Class...76
6.1.2.6 -PowerDevice Class...77
6.1.2.7 -SecuirtyDevice Class ...77
6.1.2.8 -ControlDevice Class ..78

6.1.3 -Database ...78
6.2 -Wireless Sense and Control Modules ..80

6.2.1 -Hardware ...80
6.2.1.1 -MCU ..80
6.2.1.2 -Control and Sensor Related...85
6.2.1.3 -Power Supply..86
6.2.1.4 -Package ...86
6.2.1.5 -Schematics...87
6.2.1.6 -Bill Of Materials ..90
6.2.1.7 -ZigBee Protocol Stack ...91

6.3 -Remote Client Device ...92
6.3.1 -Hardware ...92

6.3.1.1 -HTC G1 Dream...92
6.3.2 -Software ..93

6.3.2.1 -User Interface ..93
6.3.2.2 -Android Based Hardware ...99
6.3.2.3 -Remote Client Operating Systems and Software100
6.3.2.4 -Client/Server Communications ..100

7 -Design Summary..107
7.1 -Wireless Sense and Control Modules...107
7.2 -Base Station: Hardware...114
7.3 -Base Station: Software...116

7.3.1 -Base Station Class...116
7.3.2 -Device Class...117
7.3.3 -PowerDevice Class..117
7.3.4 -SecuirtyDevice Class...118
7.3.5 -ControlDevice Class...118
7.3.6 -Database..119
7.3.7 -Remote Client: Software ...120
7.3.8 -Remote Client Operating Systems and Software............................120

8 -Prototyping ...121
8.1 -Parts Acquisition ...121

v

8.2 -Hardware Implementation...121
8.2.1 -Wireless Zigbee Base Station and Zigbee Module..........................121
8.2.2 -Base Station Hardware..122

8.3 -Software Implementation ..122
8.3.1 -Coding..122
8.3.2 -Unit Testing ..122
8.3.3 -Integration Testing ...123
8.3.4 -Operation...123

9 -Testing and Evaluation ..124
9.1 -Test Plan ...124

9.1.1 -Base Station: Hardware Tests..125
9.1.1.1 -Component...125
9.1.1.2 -Base Board ..129

9.1.2 -Software Tests..129
9.1.3 -Remote Client tests ...132
9.1.4 -ZigBee Modules...133

9.2 -Evaluation Criteria ..134
10 -Project Management...136

10.1 -Team Meetings..136
10.2 -Team Organization and Responsibilities...136
10.3 -Milestone chart ...137
10.4 -Budget and Financing ..139

11 -Final Summary ...142
12 -Appendices ..143

12.1 -Copyright permissions ..143

1 - Introduction

1.1 - Problem Statement

In our hectic lives there exists an need: Simplify our lives, please! The aLife
(Advanced Living Integration for Education) project will aim to help by taking
information from in and around your home, run it through a filter and give your
gray matter a break. The system will be smart enough to know when to give
feedback to the user and when not too.

Peoples lives are increasingly complicated, especially in managing their homes.
You have to remember the shopping list, when to take the kids to soccer practice,
whether you locked the front door, if the garage door is closed, when the dog
needs more water, to turn off the lights when you're not using them, turn the
coffee pot off, keep the AC at the correct temp, and a multitude of other things
that eventually lead to some degree of information overload and stress. While
there are devices that can increase our standard of living and give us more ways
to be lazy (clap on lights), what would be far more useful is a way to make
managing our lives more efficient, with respect to time, electrical energy, and

vi

mental energy. A "one stop shop" system of monitoring and control of all of the
devices (and even some non electronics) in your home that only presents
information to you when pertinent, allow you to set automatic settings for
electronics such as lights, and even monitoring power consumption of electronics
and disconnect them remotely, saving you money and stress when the electric
bill comes. It's like autopilot for your home so you can focus more on living.

For our project, we will develop a prototype system with the potential to do all
these things. It will consist of 3 major parts: An in home base station, wireless
appliance control modules, and a remote user interface device such as a cell
phone. The base station will act as a repository for all of the information about
the status of devices in your house. It will pass information back in forth between
the user interface and the modules that actually control your home appliances via
Ethernet, ZigBee, and USB. The remote modules are designed to be simple,
cost effective devices that monitor and control household appliances in a non
intrusive way. They are designed to be as flexible as possible so they can be
interfaced with a wide variety of common household items. They will each have
a ZigBee transceiver for communicating with the base station and basic I/O
hardware to perform monitoring and control functions. The user interfaces will be
a wall mounted touch screen LCD that is hard wired to the base station, as well
as applications that run on any any Android equipped cell phone to allow remote
control connection with the base station over the Internet. The user interfaces
will present the user with intuitive, concise menus that display information about
items in your home and allow the user to change the operation of items in their
home. Although there may be several items in your home that are connected,
information about them will be integrated and displayed in a central Android app
in order to keep the information organized. Some potential applications are:

• Monitor power consumption of appliances within the home and be able to
physically disconnect them if they are using too much power (TV, coffee
maker)

• Turn lights on and off, or set a lighting schedule if you're on vacation
• Monitor inside/outside temperatures and control heating/AC remotely
• Receive home security system status
• Use bar code scanner to add items to a common and synced shopping list
• Alert user if garage door is open after defined time
• Alert user if someone rings the doorbell
• Alert user if the pets food is running low for too long
• Lock or unlock pet door after pet enters the house after a defined time
• Alert user if entry doors are not locked after a defined time
• Alert user if the oven is on too long
• Turn on lights when client device comes into range
• Occupancy sensing to control energy savings
• Provide weather information from local sensors

vii

• Alert user if sprinklers are running while its raining
• Alert user if client device leaves the range of the server
• Alert user to calendar events
• RFID tracking

There are an abundance of potential applications for managing your home life,
and so in this project we will focus more on providing a flexible hardware and
software foundation that allows the user to control almost whatever they want.
We will pick some basic applications to demonstrate the system, but there is the
potential to do much more.

8

2 - Purpose
Why use Android, when there are a host of other embedded solutions on the
market today? Certainly there are other technologies on the market that would
cost less to implement while providing an adequate GUI for the user. Other
solutions are well established, simple to program and easy to implement projects
while providing a wide range of options. Any number of high level languages and
GUI design programs can be used with the various options on the market. So,
again, why use Android?

Number one, Android is an open source project, bringing with it the open source
community that is constantly updating and improving the OS. Open source has
the benefit of being vetted, tested and hardened by a wide range of contributors
around the world. Linux, an open source project, is a good example of a project
that has a proven track record of the benefits capable of being produced by a
wide range of people. Internet security is one that Linux has arguably benefited
from the most. While Microsoft and Apple are in a constant battle against Internet
bad guys, they are caught in a perpetual game of cat and mouse. Patches can
take weeks, sometimes months to fix security holes in their operating systems.
Each patch must go through a rigorous vetting process to ensure the patch
doesn't create new holes or cause other problems. This process is expensive
and time consuming. Linux, on the other hand, has been known to have
problems fixed within days of the discovery of a vulnerability. With so many
devices being attached to the Internet these days, Internet security must be
priority number one.

Besides providing quick security updates, the open source community is always
attempting to make a product better. For example, while many Android handset
owners must wait for their carriers to sent over-the-air updates to their phones to
receive upgrades, the open source community is constantly providing updates to
Android and making them available to all users. Phones that would have been
made obsolete by Android updates have been given new life thanks to the hard
work of hundreds of contributors. For example, the HTC G1, the Android phone
released, has a slow processor and a small amount memory compared to
Android phones on the market just a year later. As Google continued to develop
Android its hardware requirements out grew those of the G1. With the help of the
open source community, the latest versions of Android are available for
installation on the G1, and they run just fine. Using an open source OS in our
project helps ensure that lifespan of our project won't be cut short by the natural
evolution of the platform.

A project as expandable as ours requires flexibility to grow. After the initial
development new ideas might require new hardware, different module interfaces
or an updated Internet protocol. Android is an all-in-one solution. It has
everything from audio drivers to power management, GPS to WiFi and video
camera to barcode reader. No other solution on the market is so complete.

9

Operating system flexibility is important, as is the application running on it.
Android applications are programmed in Java. Java is flexible enough to run
across many platforms, independent of the operating system. While Android has
many technical significances that motivated our team to use it in our project,
Android is relatively new to the embedded platform scene. Part of our motivation
is in the development of Android with external hardware, such as the ZigBee
based sensor modules we'll be using.

10

3 - Research and Component Selection

3.1 - Base Station

3.1.1 - Embedded Linux Kernel

The board support package (BSP) running on the LPC3250 was built by
Embedded Artists based on NXP's Linux port for the LPC3250. Embedded
Artists built the BSP based on the Linux kernel version 2.6.27.8 using the Linux
Target Environment Builder (LTIB). It was designed to be as "lightweight" as
possible and is only intended to implement the Hardware Abstraction Layer
(HAL) for the system and run the Dalvik Virtual Machine (DVM) which Android
runs on. The boot sequence consists of the kickstart loader initiating the
sequence which then calls the Stage 1 boot loader (S1L), which after completing
then calls u-boot version 2009.03 to boot the Linux operating system. The Linux
operating system then starts the DVM (Illustration 1) and boots Android, which
then is the primary application running on Linux.

Illustration 1: Android OS Software Stack

The above Illustration gives a representation of what it would look like on boot
up. This becomes important later on when we have to incorporate the Linux
kernel to support the functioning of the board while the upper application layer,

11

Android, is used to support the remote and client functionality.

3.1.2 - Android GUI

The Embedded Artists LPC3250 development board runs the Android 1.5
(Cupcake) GUI on Linux through the DVM. We will interface with Android and
develop applications with the Android 1.5 Software Development Kit (SDK).

3.1.3 - Software Life-cycle Models

Our project demanded that we create two major software systems: the remote
client device software and the base station software. Creating these software
systems requires our team to do extensive planning, designing, and unit testing
to verity all our required specifications are meet. These tasks can be very time
consuming if not done in a systematic and efficient manner. For this reason our
team decided it would be best to follow a well established software life cycle
model for designing, implementing, and maintaining our code.

3.1.4 - Waterfall Model

The Waterfall model1 was one of the earliest software models to be introduced
(Royce 1970) and is still widely used today. The idea behind the model was to
break the software development process into sequential stages, as depicted
below in Illustration 2, where one developmental stage should be completed
before the next one ends. Associated with each stage was a set of milestones
and deliverables. These items were used to provide a model of how close a
software team was to completion of their project. The Waterfall model is
extremely simple and very helpful at providing guidance to software developers.
 These are the qualities that made this model a very attractive choice for our
team. The well defined structure of the model and due dates provided by the
milestones also made it a very natural fit for a senior design project. There are,
however, a few downsides to using the Waterfall model that neutralize some of
it's benefits. The most glaring weakness in the Waterfall model is it's inability to
deal with change during the development process. The Waterfall model was
derived from the hardware world and provided a manufacturing approach to
software engineering. This treated the creation of software like the assembling of
a car in an assembly line. This approach is only effective if the problem you are
trying to address is very well understood and a solution is easy to define. This is
not the case for our group. We need flexibility with our software model as we
may find it necessary to change our specifications during the development
process.

12

Illustration 2: The Waterfall Model

3.1.4.1 - The V Model

The V Model2 is a variation of the waterfall model that better demonstrates the
iterative process of software development. The model breaks down the
development process into three sections as depicted below in 13: the analysis
and design section (left side), the coding (middle), and the testing and
maintenance (right side). Each stage of the development process still has
clearly outlined objectives for completion yet your progression through the
phases may not be linear. Redesign of your projects requirements, system
design, or program design, are allowed based on the results of those stage's
associated phase of testing. So in essence the V Model demonstrates all the
good attributes from the Waterfall model without the issue of inflexibility. Also,
the V Model's testing phases place a focus on meeting all design specifications
or reworking them if necessary. This is very similar to the approach our team
took towards the design of our hardware design making the V Model a very
intuitive choice for our software development model.

13

Illustration 3: The V Model

3.1.4.2 - Spiral Model

The spiral model3 is an iterative software model that focuses on prototyping and
risk mitigation. This model is generally used on large scale, highly complicated
software projects. The idea behind the model is to break the software
development process into small, incremental stages where time is taken to
evaluate any possible hazards a stage may cause before moving on to the next
activity. Several prototypes of the product are made throughout the development
process and analysed to see if any changes need to be made to that item which
are then reworked in the following stage. This cyclic approach to software
creation is where the name Spiral stems from. This meet our teams criteria of
being a very well structured and proven software model. Our team also likes the
fact that the model was very focused on meeting all specifications, even if they
needed to be reworked several times throughout the development process. The
downside to the Spiral Model is the length of time and workload demanded to
finalize a software product. Due to the scale of our software project and timeline
to get our product completed it would not be very practical for our team to spend
as much time prototyping and reworking our design. The time taken in the Spiral
Model would work better for a product that was going to market where the extra

14

scrutiny involved in the prototyping stages would be a worthwhile investment as it
would generally lead to a product that is well received. This made the Spiral
Model an unattractive choice for our team.

3.1.4.3 - Agile Methods

Agile software4 development methods are quite different in nature than traditional
software models. Most traditional software models make an attempt to create a
relatively rigid development structure that progresses in a linear nature.
 Responsibilities are divided amongst the software team and collaboration
doesn't occur until the integration process. The completion of a project is usually
marked by a set of deliverables and there is a focus on project management.
This is not the case for Agile methodologies. Agile methods promote a speedy,
collaborative approach to software development where solutions are created by a
self organized cross-functional team. Agile methods believe their should be
flexibility in the software development process and that one can satisfy a
customer by "early and continuous delivery of valuable software" (Agile Alliance
2001). This approach to software development is very fitting for a senior design
project. It deals with the problem of collaborating with a dynamic software team
and focuses a lot of it's energy towards the speedy completion of a software
project. This lead our team to review two agile approaches, Extreme
Programming and SCRUM.

Extreme Programming5 tries to improve the quality of software by quickly
responding to the changing needs of their customers. This is done by quickly
launching their product into production and continually providing small "realease"
or "updates" that address any bugs or missing features. Programming can be
done in pairs where each individual is responsible for designing, reviewing,
coding, and testing their or their partners software. There is a flat management
structure and the programming team is discouraged from programming any
feature or service until it's actually needed. This methodology would work well
for our team. Working in groups without a formal management structure would
allow us to leverage each of our team members software strengths. As well,
focusing only on the features that will make it to our prototyped model will allow
our team to save time and work efficiently. We are, however, concerned will the
lack of structure that is provided by extreme programming and it's lack of focus
on meeting all required specifications. In order for our team to have a successful
senior design project it would be necessary for us to have adequate
documentation, clearly defined specifications, and a well tested, complete final
product. These downside really make extreme programming an unfeasible
option.

SCRUM6 has a lot of similarity to Extreme Programming. It's focus is once again
on speedy completion of a software product in a very flexible and dynamic work
environment. Project's are broken down into several "sprints", usually around 30
days, where a group of prioritized requirements are worked to completion. These

15

requirements are worked in parallel by multiple self-organized teams who stay
coordinated by attending brief daily meetings known as "scrums". Once again
there is a flat management structure and the focus is on the changing needs of
the customers. This approach meets our team's needs when it comes to
completing our project in a speedy, incremental fashion and makes it easy to
deal with unexpected changes during the development process. The approach
does,, however, faces many of the same downsides of Extreme Programming.
 One issue is that we would not be able to meet on a daily basis which may lead
to an issue in coordination. SCRUM, like Extreme Programming, doesn't place
enough focus on the building of software specifications and documenting the
development process. This make it an unattractive choice for a senior design
project.

After carefully evaluating all of the previously mentioned software models our
team decided to follow the V Model. The V Model is very well structured and
allows for redesign, unlike the Waterfall model. The V Model isn't as time
consuming as the Spiral Model and doesn't have any of the previously listed
downsides of the Agile Methods. We felt the V Model provided the best balance
of speed and structure making it the clear winner for our team.

3.1.5 - Communication Architecture

It was decided that there were two possible paradigms we could follow to
manage the communication between the Base Station Software and the Remote
Client Device(s), the Peer to Peer Model or the Client-Server Model. We needed
to make sure that the chosen model would not limit our ability to provide a
reliable, secure connection between the devices nor degrade any services
provided by our system. As well, we need to make sure the chosen model would
not limit our option of communication protocol or database technology.
 Whichever of the two models could most effectively meet these needs would be
our team's selection.

3.1.5.1 - Peer to Peer

A peer to peer7 architecture is a distributed network architecture where each
participating workstation has equivalent responsibilities and capabilities. All
participants in the network have the ability to consume or provide resources
without the need for centralized coordination instances. This would lighten the
additional demands on the systems for adding additional nodes to the network as
they would also add additional capacity to our system. This approach would
allow our system to distribute the workload between the Base Station Software
and the Remote Client Devices making our system more fault tolerant. It would
also increase the amount of total users capable of interacting with our system
simultaneously. Due to the decentralized nature of the peer to peer architecture
our system would be able to have a more robust notification deliver system as we
would no longer have a "one to many" scheme. This would allow a peer to notify
all other peers of their activities without going through an intermediate centralized

16

server. The downside to this approach is that it would add complexity to the
deliver notification system due to coordination issues. If a flooding, or flushing,
approach was taken for delivering notifications then there could be several
duplicate notifications provided to the user making our system less reliable. This
would lead to the need to have acknowledgement sent back and forth throughout
the distributed network adding additional load and complexity to the system.
 Also, it may not be necessary to have every peer capable of processing the
same request as the Base Station Software. If every node was capable of
processing their own request for service it would turn into one large distributed
computing system. In order for this implementation to be successful there are
issue that would need to be dealt with. These issues include creating an
algorithm for efficient world load distributions, synchronization of data and
avoiding of race conditions, mutual exclusion, and many other issues that would
add time and complexity to our design project. So, although the peer to peer
architecture would allow our system to be more adaptive to additional load, more
fault tolerant, and less reliant on a centralized server, it would also add
complexity with issues such as coordination, workload distribution and mutual
exclusion.

3.1.5.2 - Client-Server

The client-server8 model takes a different approach to distributed networking than
peer to peer networks. The client-server model is a distributed network
architecture where the tasks of the participation workstations are divided
between service providers, or servers, and service requesters, also called clients.
 All service request run through the centralized server which has the
responsibility for dealings with such issues as coordination, duplication,
synchronization, prioritizing, and mutual exclusion. This approach would allow us
to greatly reduce the complexity of the Remote Client Software as it would only
need to be capable of sending request to the Base Station and receiving
acknowledgements and notifications. Also, due to the centralized approach, only
one device is receiving all requests making it easier to know if you are receiving
any redundant request and dealing with them according. The downside to this is
that the failure rate of our system would become directly proportional to the
failure rate of the Base Station or Base Station Software making it the limiting
factor to our system's overall reliability. The client-server model does, however,
make it much simpler to identify which device in the network may be creating an
issues as it divides the roles and responsibilities of all participants into either
clients or servers. So, although the system may not be as robust when it comes
to avoiding faults, it would make it easy to identify faults and make corrections as
necessary. This is not the case for peer to peer networks. Since all nodes in the
network have the same ability to service request it may make it difficult to pin
point which device amongst the network created a failure making it that much
more difficult to correct the issue. Another possible advantage demonstrated by
the client-server model is its ease of administration when dealing with service

17

request. Having only one device deal with data storage and processing greatly
reduces the overall complexity of the system and usually allows for easier
security integration. Client-server technologies are also a very mature
technology that is well documented and easier to administer than peer to peer
networking. This is definitely an advantage as it would allow our team to spend
less time administering the network and dealing with other portions of our design
project. However, what the client-server models adds in simplicity it loses in
robustness. Due to the centralized approach of the client-server model
susceptibility to server overload becomes a factor. In the peer to peer model the
distributed network grew in capacity with the addition of participants where the
client-server model does not. These additional loads lead to an issue where an
overload of simultaneous request for service are given to the server. This can
lead to the server failing and the system being unable to complete service
request.

So the decision became apparent that our team would have to choose between
which was the lesser of the two evils. We had to decide between making our
communication system extremely complicated yet very fault tolerant or easier to
administer and implement and face the possible issue of work overload. We
decided to go with the client-server model. We chose this because we felt the
complexity of the peer to peer model was not worth the fault tolerance it was able
to provide. Our network was intended only to connect members of one
household making it unlikely that client-server model would have many issues
with service overload. As well, the client-server model made the creation of
software and dealing of coordination issue much simpler than the peer to peer
approach making it clear winner for our team.

3.1.6 - Communication Protocols

Now that our team has settled the matter of what communication architecture to
use, the next step was to choose what communication protocol to implement into
our design. All communication from the Base Station Software to/from the
Remote Client Devices and to/from the Database were going to be through the
internet. This left our team with two protocols to choose from, TCP over IP or
UDP over IP. Each protocol was available through the Android Platform so it
came down to which of the two displayed the most benefits to our project. Our
selection would be dependent on the protocols capability to provide secure and
reliable connections, high quality of service (QoS), reliable data transfers, and
ease of implementation.

3.1.6.1 - UDP

User Datagram Protocol9 (UDP) allows applications to send encapsulated IP
datagrams without requiring prior communication to set up special transmission
channels or data paths. UDP is a simple transmission protocol that focuses on

18

providing a best effort, connectionless services. UDP segments may be lost or
sent out of order and there is no handshake or acknowledgements between the
sender and receiver. This allows UDP to be a very fast protocol due to it's lack of
overhead and its avoidance of the redundancies involved in error
detection/correction. What you do sacrifice on is the quality of service provided
and reliability of your transfer. Having a fast protocol would definitely be
beneficial to our team but it would be unreasonable for our connections to lose
sensitive data during transmission. We would not want a service request to be
misinterpreted due to loss of data. We could resolve this issue by adding
mechanism to increase reliability between the sender and receiver. This would
require our team to create error detection and correction algorithms to resolve
any issue of lost or corrupt messages.. These mechanism could request
retransmission of the message without user intervention. These mechanisms
would add complexity and delay to the overall UDP scheme taking away from
some of it's key benefits. These mechanism are not required, however, and we
could take the risk of data loss during our transmissions. UDP is widely used for
client-server schemes that answer small queries from a large number of clients.
This approach focuses on prompt delivery of messages over accurate
transmissions. This would make it important for us to keep our messages very
small as it would decrease the chances of us overflowing the UDP receive
buffers which minimize packet loss.

3.1.6.2 - TCP

Transmission Control Protocol10 (TCP) allows applications to provide a reliable
end-to-end byte stream over an unreliable internetwork. TCP deals with many of
the issues UDP ignores such as in-order byte streaming, guaranteeing message
deliver, flow control, and connection oriented services. A TCP connection starts
with a handshake between the sending and receiving devices. During this
process the two sides agree upon flow control elements, data size, sequencing,
and any other factors that would affect the transfer of data. Once agreed upon
the connection is established between the two devices and kept until all data is
reliably delivered in order. This approach stresses accurate delivery of data over
timely delivery. This would definitely solve the issues our team had with possible
packet loss using UDP but may lead to delays in servicing Remote Client Device
requests. This delay will more than likely be negligible due to the relatively small
amounts of data being transfered between our devices. Also, since TCP handles
error detection and correction in the transport layer it would be unnecessary for
our team to add these mechanism in the application layer. This would allow our
team to save time allowing us to focus on other parts of our design. There is an
issue that does arise with TCP circuit like connection that's established between
two communicating devices. TCP connections were modeled after the phone
lines where two devices are connected directly together through a virtual circuit.
 All data is routed through the same path passing through the same intermediate
routers. If there is a failure that occurs at a router node during the connection

19

then the connection is destroy and the data transmitted is lost. UDP does not set
up a connection prior to data transfer relying on each datagram to find it's own
path to the receiving device. This lack of fault tolerance in TCP transmission
could be a concern if there is ever any routing issues that occur during message
transmissions. Below is Table 1, a comparison of TCP to UDP.

Item TCP UDP

Call Setup (Handshake) Yes No

Dedicated physical path Yes No

Each packet follows
same route

Yes No

Packets arrive in order Yes No

Is a switch crash fatal Yes No

Potentially wasted
bandwith

Yes No

Guranteed QoS Yes No

Large header size Yes No

Fault Tolerant No Yes

Easy to Implement Yes Yes
Table 1: TPC vs UDP

It was decided that we would use TCP connections as opposed to UDP
connections. The longer set up times needed with TCP were negligible when
compared to the quality of service benefits provided by the protocol. We needed
to make sure the communication between the Base Station Software and the
Remote Client Devices was reliable and that all request were received and
fulfilled correctly. We feel as if the TCP meets these needs effectively. TCP is
also supported by the Android Platform making it an easy protocol to implement
into our design. This made TCP a clear winner for our team.

3.1.7 - Database Management Systems

There are several options on the market today that can satisfy our team's need
for database management. Our intention was to find a suitable option that would
be compatible with Android, easy to use, and was low cost. This lead to the
review of the following software packages.

3.1.7.1 - IBM's DB2 Express-C

IBM DB2 Express-C11 is both a XML database and relational database server
management software developed by IBM. It is the free version of IBM's DB2
Enterprise Server Edition, a current leader in the database management market.

20

According to IBM.com "DB2 Express-C can be setup quickly, is easy-to-use, and
includes self-managing capabilities. It also embodies all of the core features of
the more scalable DB2 editions, including the revolutionary pureXML technology
for powering a new breed of Web 2.0 and SOA based solutions". It is available
for Linux (32/64 bit), Windows (32/64 bit), Solaris (64 bit Intel), and Mac OS X (64
bit Intel). These attributes made DB2 a strong choice for our server software.
 Not all members of our team use Windows operating system, some use Linux
and Mac OS X, both are supported by DB2. The software also meets our low
cost requirement and is distributed by a leader in the current market. The
software also allows your server to use up to 2 Cores on your computer (1 CPU),
up to 2 Giga Bytes of RAM, places no database size limits, no connection limits,
and no user limits.

3.1.7.2 - Microsoft SQL Server Express

Microsoft SQL Server Express12 is a relational database management system
developed by Microsoft. It is the free version of Microsoft's SQL Server that's
targeted at small scale web server applications. Microsoft's goal was to make
the software easy to use, including a robust graphical user interface, allowing for
fast deployments of databases. Microsoft uses the same database engine as
other, full versions of Microsoft SQL Server. It's only available for Windows
(32/64 bit) operating systems, allows your server to utilize 1 CPU, up to 1 Giga
Byte of RAM, and up to 10 gb of database storage. This would definitely meed
the needs of our design project. We don't expect our database to require a large
amount of storage and the easy to implement interface should assist our group
as we do not have much database design experience.

3.1.7.3 - Oracle Database Express Edition

Oracle Database 10g Express13 is the free version of their popular Oracle
Database 10g platform. Oracles goal was to create a entry-level, lightweight
database application that was easy to deploy and simple to administer. The
software allows you to take advantage of such features as monitoring database
activity and manage database users, storage memory and database objects. It
will operate on Linux and Windows operating systems, allows your server to
utilize 1 CPU, up to 1 Giga Byte of RAM, and up to 4 gb of database storage. It
also comes with a simple graphical user interface and is very easy to deploy on
your system. Once again these all meet the current needs of our design project.

3.1.7.4 - MySQL

MySQL14 is an open source relational database management system. It is the
world's most popular open source database and runs on more than 20 platforms
including Linux, Windows, Mac OS, Solaris, HP-UX, and IBM AIX. MySQL has
support for triggers, cursors, SSL, full-text indexing, and query caching. MySQL
does not ship with a graphical user interface for database administration, it does
however come with command-line tools. This downside makes MySQL and

21

unattractive choice. There is third party front-end software available that will
provide a graphical interface to assist with administration. This could resolve the
issue but is still a more complicated solution than utilizing one of the other prior
researched software packages.

3.1.7.5 - PostgreSQL

PostgreSQL15 is an open source object-relational database management system.
According to postgresql.org "it runs on all major operating systems, including
Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and
Windows. It is fully ACID compliant, has full support for foreign keys, joins, views,
triggers, and stored procedures (in multiple languages). It includes most
SQL:2008 data types, including INTEGER, NUMERIC, BOOLEAN, CHAR,
VARCHAR, DATE, INTERVAL, and TIMESTAMP. It also supports storage of
binary large objects, including pictures, sounds, or video. It has native
programming interfaces for C/C++, Java, .Net, Perl, Python, Ruby, Tcl, ODBC,
among others" and it does not impose a storage size limitation on your database.
Just like MySQL postgre comes with command-line tools with the option to
download additional software to provide a graphical front-end.

3.1.7.6 - SQLite

SQLite16 is an open source embedded relational database management system.
Unlike the other database management software reviewed SQLite is not a not a
standalone process, it is an in-process library that implements a self-contained,
serverless SQL database engine. This allows SQLite to avoid inter-process
communication making it faster than the more traditional models. SQLite also
stores the entire database, including multiple tables, triggers, views, and indices,
into one cross-platform file. This allows SQLite to be very lightweight which will
work very well for an embedded environment. SQLite is also supported natively
by the Android Platform which provided built in API's for managing the database.
This will allow our team to host the database locally in the Base Station
simplifying the overall design of our system. This definitely made SQLite a great
choice for our design project.

After evualuating all the choices available our team decided to use SQLite as our
database management system. Every package we reviewed met our needs for
being low cost and easy to use, but SQLite had the best native support available
from the Android platform. Also, SQLite will allow the Base Station to host the
database eliminating the need for additional hardware.

3.1.8 - Display

One of the key features of this project is affordability. We want to design
something that is both practical budget wise and performs competitively with
things already on the market. There are always pros and cons to any
consideration that is being decided upon for your final product, and the same
held true for this consideration: LCD vs AMOLED for our screen choice.

22

LCD is a very commonly used term, and an even more commonly used piece of
hardware. It can be found anywhere from televisions, computer monitors, clocks,
and the list goes on. For this project the main considerations for the screen was
efficiency and cost. The LCD is a very mature product with uses almost
anywhere you look. For this reason it was a good obvious choice when trying to
decide what screen to pick. The availability and reliability were both good factors
when looking at it. However, when looking at it from a performance view there
starts to be some downsides to getting one. The LCD itself can't be seen without
some type of back lighting or external light shining on it, so the touchscreen we
would be considering would have to have some kind of lighting already added
into the screen to allow it to be visible to the user. This makes for an increase in
the cost, and energy, of the produce without adding anything beneficial from it.

The AMOLED, which stands for Active-matrix organic LED. The OLED part is
referring to the type of LED that no longer requires back lighting in it's design and
implementation. The use individual LED for each of the pixels that you see on the
screen, and this allows for much more in depth colors and a much faster refresh
rate on images appearing on the screen. The technology itself is very good when
you look at it's lightweight design and low power consumption. The problem
comes when you start looking at the prices on some of these AMOLED 17

devices. Although it is true you could save money if you take into consideration
the power that you are saving by using one of the screens it doesn't nearly
outweigh the price for buying this thing, which could easily be equal or more than
the price of the rest of the project all together.

Once all the research was done on this particular piece, with pricing, efficiency,
reliability, and performance all in mind, we chose to go with the LCD TFT screen
in our final product. Even though we had to sacrifice some performance in order
to maintain cost, there were some definite advantages with choosing the LCD.
Not only cost, but AMOLED screens are somewhat prone to degradation
overtime, so maintenance would have to be more thorough if we chose to
implement that device.

3.2 - Wireless Sense and Control Modules

3.2.1 - US Electric Power Consumption

In only the past few decades human dependence on electrical energy has grown
exponentially. Homes that aren't even considered "smart" still have an
abundance of electrical appliances of all kinds plugged into them. In fact, our
homes have become a universal power and charging station for all of our
appliances, tools and toys, from home theater systems, to computers, to cell
phones, to coffee makers. As the number of electronic devices in the home has
grown, so has home electricity bills. Illustration 4 below shows this increase in
electrical power consumption from 1960 to 2007:

23

Illustration 4: US electrical consumption per capita 1960 - 2007 18

With the information about total energy consumption per capita now give, we can
break down the information and relate it to the elements of the house that
consumes the power. The following table, Table 2, relates figures taken from a
2008 survey of total power consumed in America and then gives the percentage
of what appliance in the home used that power in relation to total energy
consumed.

24

End-Use Quadrillion BTU Billion
Kilowatt-

hours

Share of Total

Space Cooling 0.77 227 16.50%

Lighting 0.72 212 15.40%

Water Heating 0.43 127 9.20%

Space Heating 0.42 123 8.90%

Refrigeration 0.38 110 8.00%

Televisions and Set-
Top Boxes

0.35 101 7.30%

Clothes Dryers 0.26 77 5.60%

Computers and
Related Equipment

0.17 49 3.60%

Cooking 0.11 31 2.20%

Dishwashers 0.09 27 2.00%

Freezers 0.08 23 1.70%

Clothes Washers 0.03 10 0.70%

Others 0.89 260 18.80%

Total Consumption 4.71 1379
Table 2: breaks down electrical power used in the US in 2008 by application19

According to the US Energy Information Administration, in 2008 the average US
home consumed 11,040 kWh, an average of 920 kWh per month20 at a rate of
$0.1136/kWh21, for a total cost of $1,254.44/year or $104.51/month. Not only is
this rate of consumption expensive, but it also has a huge environmental impact
due to the fact that most of the electricity in the US is generated by burning coal
or oil, or by nuclear reactors. Especially with the current economic, the US could
definitely benefit from a reduction in electrical power consumption. It is no
surprise that devices that reduce a households power consumption have gone
from luxury items for the rich (who can afford the electricity in the first place), to
practical tools for the middle and even lower class to use to reduce their cost of
living.

3.2.2 - Appliance Ghost Power Usage

Electric plug-in devices use plenty of energy as it is, but what most people don't
realize is that they can use power when supposedly turned off. This process is
called ghost power consumption. It happens in one of two ways22 - Capacitive

25

voltage and Inductive voltage. Capacitive voltage happens when you have 2 lines
running parallel with each other. If one is carrying an AC current then it will make
the voltage on the other line be nearly equal to the one with the current if there
isn't any interference from other wires in the vicinity. Even worse, if there are
multiple wires around there could be a voltage division effect, meaning your
device won't ever receive the proper amount of voltage that it should be from the
outlet. Inductive voltage comes from the magnetic field produced by current
running through wires. Both of these methods for sending voltage to wires that
shouldn't get them are not good and can be reflected in your power bills. That's
why power monitoring is so popular these days. If you have an old television that
is pulling ghost voltage and costing you money each month can now be tracked
and you will be alerted to that fact. There are also methods out there for
monitoring power and representing it as a graph so you can monitor how your
energy fluctuates monthly, daily, hourly, etc. This makes it a very powerful, and
practical tool to be used in any type of home monitoring system. Going into the
different ways that this power is monitored, the type like Kill A Watt uses, and that
we will use, is the inductive sensing route. That route not only lets you sense and
report the power directly, but it also allows you to break the circuit entirely, so you
will no longer have any power running to the device and it won't be drawing any
more ghost voltage. Some downsides are that now you have “two” power buttons
- one at the wall outlet and one on the device, and that tends to become a little
troublesome for the user. It also is a bit more invasive, having to physically plug
this device into the wall and then plug the monitored device into this one to get
an accurate reading. Although there are some difficulties to overcome with this
approach, this is definitely a hot topic in today's energy conscious world and
worth implementing in aLife.

3.2.3 - Existing Smart Home Devices

The number of electronics devices in the average household continues to go up,
to the best way to reduce household power consumption is by cutting back on
the power that those appliances use. There are a multitude of smart home
devices in all all different price ranges that allow you to reduce your home power
consumption, remote control appliances, or provide security. There are
companies out there such as Crestron that will wire everything you want in your
house up for you, and give you full control over it. And by everything I mean
everything: anything you want or could want to control can be wired up to do so.
A lot of the things you see them putting together you wouldn't even think of -
lighting schemes throughout your whole house, garage doors/front doors,
window shades, and televisions just to name a few. These systems provide the
user complete control over their own house. The way this is accomplished is
through the use of centralized stations that can be placed discretely in your
house and have all other devices relay information straight to them. The
downside to this system is that there is a lot of wiring between all these externally
controlled systems: an example is a light switch and the relay station that

26

controls them. A few upsides for doing all of this though is that you actually have
a company and trained professions come into your house to set it up for you.
Most of the time the installation shouldn't take longer than a few weeks, and
depending on the company23 there would be some type of guarantee or at the
very least a support option if something were to go wrong. As far as smart home
devices go, this way really makes your entire house a smart home since it's all
able to be controlled by you. Another good thing is that, again depending on the
company, there can be some personalization depending on your needs or others
that are living with you to some degree, and that can allow for a more
comfortable feel and improve overall satisfaction in the product. However, a
downside to this product is one of it's strongest selling points - the user has full
control. Not much of this system is automated, and if something is suppose to be
done the user has to do it explicitly. This can be a very good thing for people out
there who like to be in control of most things, but for others this can be very
troublesome because they would have to carry around some type of control
panel with them when they wander the house just to turn the lights off to get
ready for sleep.

The less extravagant approach is building your system part by part, possibly
making homemade devices yourself if you are electronics capable or buying
some already made ones. Going this route tends to lead to the more practical
items and monitors - energy consumption, appliance control, doors/windows, etc.
There are plenty of 3rd party vendors out there willing to sell you individual
components that you can hook together to form a fairly robust home network, for
example the types of devices you can find on the Black & Decker site that 24 offer
these features. One of the obvious downsides to this approach is the fact that
you have to do all the instillation yourself, and if your vision of a house project is
a unique one there might not be very much support for you as far as Internet
research goes. Although more difficult in general to set up and manage, these
systems offer a more cost effective solution than the whole house systems.
Unfortunately, there is also the downside of how to get the devices to alert you to
new messages or important information. From other research we have found that
some of the 3rd party items already sit on the ZigBee/Z wave or maybe even
both networks already, allowing them to be easily networked together and
controlled.

Today it seems that for every piece of hardware in your house there is a "smart
home" version of it, be it a door lock, thermostat, or light switch. Since electronic
components have become so cheap, it is practical to embed electronics into
almost anything, making "smart" home devices. Some systems are practical,
such as remote lighting and appliance power monitors, and others are not so
much. One of the main goals for the system is to incorporate as many popular
and practical smart home features as possible, but still keep the hardware simple
and as economical as possible so we will avoid including frivolous features.
Including features from multiple device types means that the device types we will
incorporate must be basically form factor agnostic, so devices like smart door

27

locks and smart thermostats won't be feature sets we will include.

After conducting some research on-line, the most common smart home device
types are:

• smart lighting
• security systems and access control
• appliance power monitoring and shutoff
• home theater and entertainment
• phone and in home communication systems
• climate control
• irrigation
• pet care

The following subsections provide overview of each of these system types.

3.2.3.1 - Smart Lighting

This is the most basic and most common component of a smart home system.
There are products made for post-construction homes which integrate on a plug
and play basis, and there are products that are intended to be installed at the
time of construction of the home. Since the aLife system is designed as a post-
construction system we will focus on lighting systems of this type. There are
smart lighting systems that support Insteon, ZigBee, Z-Wave, and X10
communication standards. Additionally, there are three basic levels of
functionality in a smart lighting system. Level one (shown in Illustration 5)
consists of a system that includes a number of wall mounted control units that the
lights plug into and a remote that controls the wall units to switch the lights on,
off, or dim. An example system is the SMARTHOME RemoteLinc - Insteon Lamp
Control Kit which costs $135 and features include multiple user dim presets,
control multiple lights separately or together with the same remote, and 150 feet
of control distance.25

Illustration 5: RemoteLinc Insteon Lamp Control
Kit 26

28

The intermediate level smart lighting system (shown in Illustration 6 below)
consists of a wall mounted units similar to those in a basic system, except they
have an infrared sensor and are controlled via a universal TV remote. An
example system is the SMARTHOME brand IRLinc Receiver - IR to
INSTEON Converter which costs $100 and features one IR controlled wall unit
and a mini remote. This particular system also has the added feature of a built in
X10 transceiver that allows control of other X10 based 27 lights throughout the
house.

Illustration 6: IRLinc Receiver-IR to Insteon Converter

The high end type system (shown in Illustration 7 below) consists of wall
mounted controller with an Ethernet port that connects to a router and allows
lighting control with a smart phone, computer, PDA, or any other Internet
connected consumer device. An example system is the SMARTHOME
SmartLinc - INSTEON Central Controller which costs $129 for the wall unit only28.
This system features stored light timers, device status feedback, and various
other minor features.

Illustration 7: SmartLinc - Insteon Central Controller 29

There are also wireless light intensity sensors that work in conjunction with smart
lighting control systems to maintain a specific level of lighting intensity, which is
especially useful when natural light is used along with electric lighting. One such
product is the NetVox Z301B ZigBee light sensor that sends on/off control signals
to smart light dimmers and supports the ZigBee smart home automation profile.

29

Smart lighting is probably the most popular smart home feature, so we will
include this functionality in our wireless sense and control modules. One of the
most appealing features of smart lighting is that it important not only because it is
convenient, but because it also will play an important part in reducing power
consumption throughout the home by reducing light levels when not necessary,
and can also be a major feature in a home security system by illuminating the
home when the residents are away on vacation or when approaching the home
at night. We may even add hardware provisions for connecting an external light
intensity sensor to further enhance the system. The on/off controller can also
extend to other devices and can be used with a power monitor to shut an
appliance off when not being used. One consequence of the decision to include
the smart lighting feature is that this will require the wireless sense and control
devices to be outlet mounted modules. This may prevent other functions to be
implemented with this device, however the smart lighting takes priority since it so
popular, has applications for other smart home systems, and because existing
lighting control systems are very expensive relative to cost of building a system.

Since we are intending on building multi function remote modules in the first
place, the added component cost of implementing this type of function will be
minimal and we will be able to achieve a much higher feature/cost ratio than what
you would get out of a current off the shelf smart lighting system. In essence, we
get a lot of bang for our buck with this feature.

3.2.3.2 - Security Systems and Access Control

Security is an important topic today, and that is evident with all of the security
systems avaiable. Most of these security systems involve you installing a wall
panel, some sensors around your house to monitor movement, windows/doors,
etc, and then relate to their network when something is wrong.

ADT is one of the most popular home security system companies. Their systems
range from $300 to $500 for installation plus around $40 a month for monitoring.
 Their most advanced home security system is the SAFEWATCH PRO RF which
features the following:

• 1 Safewatch Pro 3000 Wireless Control Panel:
• 1 Safewatch Pro 3000 Standard Touchpad:

◦ All ADT Safewatch® Pro 3000 security systems come with one
Standard Touchpad. You can add additional touchpads to place in
other areas of your property for additional convenience and to check
the status of your system from multiple areas in your home.

• 2 Wireless Door/Window Sensors
◦ These devices are recommended for all doors and windows at ground

level, windows near trees or shrubs, or doors and windows that are
dark or hidden from view.

• 1 PIR Motion Detector - Wireless:

30

◦ Can help detect movement in rooms, hallways and on stairs, and helps
reduce false alarms. Our sophisticated technology outperforms other
motion detectors.

• 1 Quick Key Remote:
◦ This handy accessory allows you to arm or disarm your system, open

your garage door, or even turn on the lights in your home - all from the
palm of your hand. Its unique, one-button operation eliminates the
need to remember codes and helps to reduce false alarms.

• 1 Indoor Sounder:
◦ ADT Indoor Sounders use loud beeps to notify you to emergency

conditions such as fire or intrusion. All ADT systems come with one
sounder, but you can add additional sounders.

• 1 Power Supply and 24 Hour Battery:
◦ Provides power to your system and an extra high-capacity battery in

case of power outage.
• 1 ADT Window Decal and Yard Sign:

◦ Warn potential intruders your home is protected by ADT.30

ADT and other security system companies don't actually sell you the hardware,
but instead rent it to you, and then charge you the installation fee and mandatory
monthly monitoring fee. The means that you don't actually own the hardware
and have to pay the installation fee again if you move.

There are also networks out there that allow you to be in control of your own
security network that you set up yourself. Illustration 8 below is an example of
Vera2, a Z-wave controlled hub that allows users to access their security systems
through wi-fi in their homes.

31

Illustration 8: Example of the Vera system GUI31

This is the interface for the Vera system , and as we can see there are many
features to the system. On this page we have access to a fan and a lamp for
direct control, as well as other options on the left side for accessing any number
of things. This particular device is only the hub for all other external devices in
your home, and it alone can run upwards of $250.0032. You can buy sensors to
add onto this device separately. Some of those, depending upon what you get
(cameras, sensors, etc) can be just as expensive per component.

For home security you don't always have to get these extravagant systems, but
individual pieces to fit any type of need that you might have. One example of that
is the Brinna PeepHole viewer, shown below in Illustration 8.

32

Illustration 9: LCD peep-hole device 33

This device can be placed at your door instead of your normal peephole and
produces the image of whoever is outside on the LCD screen. This particular
device runs at around $100.

For every component that makes up the ADT and similar security systems, there
are wireless "smart home" versions of those products available. In fact, by
integrating individual components you can create a custom security system that
is tailored to your needs and has more functions than the ADT system. Example
wireless ZigBee and Insteon based components are:

• Motion/occupancy sensor
• Remote controlled deadbolt
• Alarm sounder
• Window/door sensor
• Glass break sensor
• Smoke/carbon monoxide detector
• Flood sensor
• Smart security lighting system
• Keyfob system access remote
• Personal panic button

Security systems are arguably the most important systems in a smart home
because they are much more than a luxury, they can potentially save lives of
those in the household and protect their property. Systems like those
implemented by ADT and Brinks are more traditional and have been around for
several decades, however with the emergence of smart home devices and in
home RF standards, an average person with minimal electronic knowledge can

33

assemble an "a la carte" style security system that rivals or exceeds the
capabilities of a traditional system. We would like very much to include security
system features in our hardware, unfortunately this is not possible because
security system sensors and control units are very form factor specific. For
example PIRs require a specific IR sensor geometry, smart door locks must be in
the shape of a door lock, and window/door sensors require two separate parts. It
would not be possible to implement several of these sensors into one reasonably
sized package, and besides that, we have already decided on implementing
smart lighting features which requires a wall outlet mounted package. Even
though we will not be able to implement security system sensors in our modules,
we will use a wireless protocol that will allow the relatively cheap 3rd party
security system sensors to work on our wireless network in conjunction with our
modules. One benefit to the smart lighting feature is that lights can be used as a
part of a security system to illuminate the home before the user enters the house,
or by keeping lights on timer when the user is on vacation. Another way we can
use our modules to assist a security system is by including a relay on the
modules that can be used to bypass a garage door opener near the garage door
motor, giving the user the ability to open the garage door and turn on lights in the
garage remotely upon approaching their home at night, or close the garage door
remotely if the user left it open on accident while away from their home.

3.2.3.3 - Appliance Power Monitoring and Shutoff

Appliance control through power monitoring and shutoff is probably the most
expandable and customizable part of the smart home system. The control comes
from where the appliance plugs in to the wall. For the majority of implementations
companies use wall plugs that allow appliances to be plugged into them. This
allows for power drawn by the appliance to be measured directly, and offers a
simple solution for cutting power to the device.

The greatest strength of devices of this type is that they provide real savings on
electricity bills, so they appeal to frugal homeowners (especially in the current
weak condition of the economy), and those who like being "green" and reducing
their carbon footprint.

These devices tend to be either a per-outlet unit or an integrated entity of wall
components. They tend to not be very expensive, $20.00, but the higher priced
models can offer features like 3-pronged connections, noise filters, among other
features.34 These are also the most directly controllable device in a smart home
from outside your home. They are built on paradigm of sense and control, due to
the user receiving some type of alert about a unit pulling too much power, as
determined by the user and appliance it is connected to, and immediately
providing a solution to solve the problem. Although there are more examples of
devices other than wall plugs, since most things that you would want to sense
power from and have the option to turn off are plugged directly into an outlet,
they tend to dominate the market in use over alternative products.

34

An example of this type of system is the popular P3 Kill A Watt outlet plug in
power monitor and control device (shown in Illustration 10). It costs around $25
and features:

• Large LCD that displays power consumption statistics and metrics
• Displays power usage in volts, amps, watts, VA, Hz
• Accurate to 0.2%
• Cumulative kilowatt-hour monitor
• Appliance cost forecasting

Illustration 10: P3 Kill A Watt module

Appliance power monitors are probably the most practical devices in a smart
home system because they actually have the power to pay for themselves and
then some. They are especially popular today because of the movement to
reduce our individual power consumption and carbon footprint. Therefore, we
will make this one of the primary features of our modules. There is also the
convenience of the form factor for this type of device being very similar to that of
a smart lighting controller. We will actually leverage the smart lighting controller
on/off hardware to switch off other appliances when the system deems that they
are not in use but still are drawing an appreciable amount of ghost power.

3.2.3.4 - Home Theater and Entertainment

Just as there are universal remotes available to control your TV, DVD player,
DVR, and stereo, there are similar remotes that do all of that plus control smart
home devices. One such device is the Control4 System SR-250 remote control

35

(shown in Illustration 11) which not only controls your home theater system
components, but also compatible ZigBee smart home devices.

Illustration 11: Control4 System SR-250 Remote Control35

Home theaters and entertainment systems are probably the most popular types
of home electronics in general, however they are of questionable tangible value
in the home because they are basically a normal universal remote but with
additional controls for wireless home network standards. Most users will already
have a remote, and we will implement smart device remote control with a cell
phone instead. Furthermore, universal smart remotes for controlling these
systems are very form factor specific since they are best suited to being in
traditional remote control form. Since we have already decided that our modules
will be wall outlet mounted, we will not include this type of functionality in our
system.

3.2.3.5 - In-home Communication Systems

There are various types and levels of in home communications systems:

• Doorbell chimes
• Audio and video Intercoms for placement throughout the house as well as

at outside doors
• Even notification systems that integrate with other sensors and notify you

via text message or phone call when there is an alarm event in the home

The Smart Home I/O Linc Insteon doorbell and telephone alert system (shown in
Illustration 12) costs $90 and provides user notification for up to 2 doorbells and
one telephone line. This type of system is valuable because it can notify the user
when someone is at the door when the user is out of hearing range of the
doorbell or if you are in the backyard or garage and can't hear the phone. These
notifications can be sent to a home base station, auxiliary chimes/sounders
throughout the home, or to a cell phone.

36

Illustration 12: I/O Linc Insteon doorbell and telephone alert system

There are post home construction intercom devices that provide easy audio
communication throughout the house as well as at the front door, however
because of the heavy power demands of streaming audio they all draw their
power from wall outlets and rely on built in home wiring for communication and
do not interface with standard wireless standards. One of the major
requirements for this project is to connect all devices through common smart
home wireless standards, therefore we will not examine those types of systems
for this project.

A remote doorbell device could be useful in the home, however it also has the
problem of requiring a form factor which is incompatible with the rest of the
features we will build into our system, therefore we will not include this
functionality in our design. However, our in home wireless network will use a
common smart home standard, so 3rd party devices of this type can be used with
our aLife system.

3.2.3.6 - Climate Control

One of the key reasons why people like home automation is that is gives them a
sense of control. One of the most valuable things to control are things that are
costing you money, in this case in your house. Research into the area of power
consumption will inform you that a great majority of a home owner's power bill
comes from the home AC unit. This provides for a great need to control the
thermostat to make sure that it isn't wasting energy, and costing the user money.

37

The range of control that you can have over a thermostat can vary from a
programmable one to a remote accessible model. Programmable thermostats
typically offer a temperature range that it will become operational, and some
even offer different profile modes for days of the week. This offers a proactive
choice for the user to have to help regulate the house. Unfortunately this doesn't
help account for anything that might be happening currently, and also makes it
very hard to track progress in saving money and energy on any type of continual
basis since your only real source of information comes with the power bill at the
beginning/end of each month

The type of thermostats that allow for direct control outside of the home are a bit
more complicated and pricey. They tend to offer access to the popular home
networking systems on the market today: Z-wave, ZigBee, Insteon and X10., and
offer these items and part of a "whole home" type integration scheme. The
amount of information sent back from these types can range from displaying the
current temperature in your home to allowing you to change the settings from the
Internet, and anywhere in between. They offer more meaningful data since you
are able to check how long the unit has been running and allow for a more
dynamic and informed setting of your home needs.

A good example of a "smart" thermostat is the VENSTAR INSTEON Remote
Control Thermostat which costs $200 and features:

• Remote control via any standard INSTEON wireless controller
• programmable temperature presets
• energy saving mode
• Reports changes in temperature, temperature set points, mode, and fan

mode
• Supports +1, -1 degree on incremental bright/dim commands

Smart climate control systems are another valuable type of system with the
potential for paying for itself by reducing the amount of energy used by the home.
 It would compliment an array of appliance power monitors and smart lighting
controllers, however it requires a form factor which is incompatible with our
system goals. Thermostats must interface directly with heating/AC units, usually
through pre-installed wiring at an eye level area on a major wall, and not down
near the floor like where you find power outlets. That being said, it may be
possible to adapt the base station to install in a standard thermostat location and
include the necessary hardware for the module to operate as a smart thermostat.
 We may decide to go that route later in the project, but we will opt to not pursue
this at the initial design phase.

3.2.3.7 - Irrigation

Irrigation as a feature set of a smart home system isn't a complicated thing to
accomplish. Other than special days of the week that you can water on and

38

current weather conditions, most of that operation can be done remotely and
automatically without any direct user input. There are many different types of
irrigation systems, and a good example of what this type of system requires is
seen in the INSTEON 8-Zone Sprinkler Controller, shown below in Illustration 13.

Illustration 13: Insteon 8-Zone Sprinkler Controller37

The above figure shows the layout of what this particular component does. It has
a wall adapter that is plugs in to, and several configurable pins beneath it. Once
you have set your sprinkler heads throughout the yard you run the wires back to
this station, either as a solitary zone or multiple zones depending upon the user
requirements, and then can activate them as seen fit. This control unit either
receives commands from you computer or some stand alone device that you
have downloaded the software for.

Irrigation is relevant feature of a smart home and can help reduce waste water
usage which is especially important in dry states as well as help maintain
landscaping, but it is more of a secondary type of system. It is not practical to
build in a complete irrigation system controller into our modules, however many
irrigation systems have and external control loop, so we will be able to control
those types of systems with the on board software controlled relay we will build
into the remote modules.

3.2.3.8 - Pet Care

Having a highly integrated smart home that allows you to control almost
everything remotely is no good if you have still have to be home frequently to
feed your pet or pay someone to watch your pet. PETCO sells automatic pet
water bowls for between $40 and $70, and automatic 38food dispensers such as

39

the PetMate Le Bistro Portion Control Automatic Feeder from $35 to $150
depending on the size of the system. The water fountains feature constant water
circulation and carbon filtration. The automatic feeders feature variable portion
size and programmable feeding times. These systems can even be combined
with a smart home appliance remote controller such as the SMARTHOME
INSTEON ApplianceLinc (shown in 39) which costs $35 and allows the user to
enable/disable the feeders or change the feeding times remotely.

Illustration 14: Insteon
ApplianceLinc40

As we have seen the smart home devices start as high as whole houses and go
as small as wall outlets and light switches. This is what makes choosing aLife
such a rewarding and challenging project. We are building into a field that has
just recently started to become popular and affordable to most people, but we are
building between the two established markets. We offer all of the same pre-
existing smart home devices that any of these other companies offer while
keeping it at a small enough level implementation wise and cost wise to stay
competitive with the component by component people.

Automated pet care systems are in interesting product type that doesn't normally
come to mind when you think of a smart home system. Unless you have a pet
and are gone from your home most of the time, this type of system is secondary
in priority and usefulness. Therefore, we will not include functionality for active
pet care devices in our system. It is possible to do some kind of control with the
appliance power on/off features of our modules and the addition of a dedicated
irrigation app, but for now we will not implement that feature.

3.2.4 - Communication Standards

One of the most important goals of this project is to make an installation of the

40

aLife system non destructive to the home infrastructure and generally non
invasive and easy to install. Wireless communications meet this goal the best,
however there are a number of existing wireless standards that are optimized for
smart home applications. Below is a summary of each standard with their
respective strengths and weaknesses. Following the standard summaries, we
will conclude with the selection of a particular standard that best meets the goals
of our project.

3.2.4.1 - ZigBee

ZigBee provides a suite of high level communication protocols using small, low-
power digital radios based on the IEEE 802.15.4-2003 standard41. The standard
was developed specifically for Wireless Home Area Networks (WHANs) for use in
smart home devices such as thermostats, light switches, lamps, power monitors,
etc. The networks operate in the ISM band, typically around 2.4GHz at data
rates up to 250kb/s and at a transmission ranges from 10m to 75m depending on
the environment. The ZigBee specification is intended for relatively low data
rate, secure mesh networks. It was designed to be simpler and less expensive
than other WHANs, and also to be very low power so that small battery powered
devices can use the standard and still achieve long battery life. The ZigBee
standard is managed by the ZigBee Alliance, an association of companies that
have developed standards promote interoperability between ZigBee devices.
 The Radio Frequency for Consumer Electronics consortium worked with the
ZigBee Alliance to develop the ZigBee RF4CE standard which provides a
universal communications protocol for home audio, visual, and control products.
 That way different products from different manufacturers that adhere to the
RF4CE standard can integrate their devices into one unified mesh network. The
RF4CE standard includes various device profiles, two of the most important of
which are the Home Automation profile and the Smart Energy profile. The Home
Automation profile specifies a protocol for managing displays, thermostats,
lighting occupancy sensors, security systems, and other similar devices. The
Smart Energy profile specifies a communication protocol for monitoring and
controlling devices such as smart lighting systems and climate controls.

A ZigBee network is essentially an ad-hoc wireless mesh network. There are
three basic types of devices in a ZigBee network: ZigBee coordinator (ZC),
ZigBee Router (ZR) and ZigBee End Device (ZED). Every ZigBee network one
and only one ZC, as it's the device that establishes the ZigBee mesh network. It
is also used as a network bridge to other networks. A ZR can serve an
application function was well as serve as an intermediate router to pass data
between other devices. A ZED functions as an application device only and will
not relay data between other devices, therefore it is requires the least amount of
memory and is the cheapest type of device to manufacture. If the network is
beacon enabled, ZED can remain asleep most of the time and only wake up
when polled by the ZC. Networks can also either be beacon enabled or non
beacon enabled. In non beacon enabled networks, ZR devices are on all the

41

time, listening to all activity on the network, while ZEDs may be asleep. While
this enables faster response times by devices, they also consume more power.
 In beacon enabled networks, ZR devices periodically send out beacons to
confirm to the other nodes that it is present in the network, however ZR and ZED
devices can sleep in between beacons. This reduces the amount of power
consumed by the devices, however it may slightly increase the response time of
nodes to polls by the ZC since they must first wake up. In both modes, the
protocol is optimized to minimize transceiver activity and keep power
consumption to a minimum, and wake up latency is around 15ms which is much
less than other standards such as Bluetooth.

There are a number of positive aspects to the ZigBee standard. First of all, it
was designed from the ground up for smart home applications. The RF4CE
standard and various device profiles are very useful in that it ensures
compatibility between different products from different manufacturers for different
application types, making development of an integrated system easy. The
standard is open source, and also uses portions of the EM spectrum that is free
to use for private applications, and getting rights to use the technology for
commercial uses is relatively inexpensive. Perhaps one of the most important
features is that the standard was designed to be low power, which is already and
important factor in device designs, and will be even more so in the future. There
are currently a number of ZigBee based smart home devices available for
various applications such as door locks, thermostats, and window and door
sensors. There are also a number of inexpensive MCUs available with built in
ZigBee transceivers and free protocol stacks.

The standard is not perfect, however. The biggest limitation is that there are not
nearly as many smart home devices available for ZigBee as there are for Insteon
and X10. ZigBee also operates in the same portion of spectrum as WiFi, so
sometimes there are interference issues between those systems. And although
the spectrum licensing is free for private applications, companies developing
devices for commercial applications must pay licensing fees.

3.2.4.2 - Z-Wave

Z-wave is another type of wireless communication standard that works much like
a ZigBee or Wifi connection does. It operates in the 900 MHz range, and asserts
that this allows for better data communication. The ZigBee and Wifi networks
both operate on the 2.4 GHz42 ranges, and sometimes there could be a conflict of
data transmission if both are running at the same time in the same area. Z wave
is also more structured to an at home network than ZigBee. Some of the
downsides are that it's a newer technology and not many partners in the Z-wave
alliance43 are making this type of technology, so it's harder to locate 3rd party
vendors or items that allow for "plug-and-play" type functionality that we want to
demonstrate with our project. Other considerations such as power and
performance seem to be a bit better with the Z wave. Companies like Black &

42

Decker, specifically Kwikset as a member of B&D, have joined both the ZigBee
and Z wave alliances, allowing any module that operates on that type of network
to be able to interact with a 3rd party device.44 This makes it very generic and
easy implementable, which is a key selling point for this type of a project.

3.2.4.3 - X10

X10 is the most popular smart home device communication standard and has
been around since the late 1970s. X10 is not a truly wireless standard, instead it
relies on transmitting a modulated digital signal over existing home power wiring.
X10 devices are usually plug into the wall where a lamp or other appliance is
installed. Typically, a 120kHz carrier signal is used and one bit is transmitted at
the zero crossing of the 60Hz power signal. The digital signal consists of an
address field and a command field that is sent from a controller device to a
controllable device. Commands can be as simple as "turn on" or "turn off", or the
maser can poll the slave device for sensor data such as temperature sensor
readings.

The strengths of X10 are that it is the most common smart home device
communication standard and there are an abundance of X10 based devices
available on the market that can do just about anything you can think of in the
home. It also uses pretty simple, cheap hardware so it will keep the overall cost
of devices down. It also does not compete with any other in home
communication standards like ZigBee does with WiFi, for instance.

There are also a number of important drawbacks and limitations to the X10
standard. Since X10 communication signals propagate over in home power
wires, it is at the mercy of the topology of the in home wiring and devices must be
placed at wall outlets. Often times, there are transformers that bridge different
portions of the household wiring network which will greatly attenuate or block all
together the X10 signal. Residual Current Devices designed to prevent electrical
shocks also attenuate X10 signals that pass through them. Also, certain types
of power supplies used in modern electronic equipment (such as computers,
television sets, and satellite receivers) have built in capacitors that provide a low
impedance path from the line to neutral, effectively diverting the high frequency
X10 signal away from the hot line. Since X10 only transmits 120 bits per second,
it is also a very slow protocol, and there is also no contention handling in the
standard, so if two devices try to talk at the same time there will be a collision
and data will be lost.

3.2.4.4 - INSTEON

Insteon is a common standard for connecting smart home devices. It is similar to
the X10 standard and was intended to address the inherent limitations of X10 but
also be backwards compatible with X10 devices. It is a two medium
communications standard that uses a home's built in power wiring to
communicate with other devices in a manner similar to X10, but also uses a RF

43

transceiver to communicate with other devices wirelessly. In an Insteon network,
all devices are peers so they can transmit, receive, and repeat any message on
the network. Some improvements over X10 is that all Insteon devices act as
repeaters so the entire network gets a transmitted message, and an
acknowledgement based protocol is used. If a device does not receive an
acknowledgement after it transmits a message, it retransmits until it succeeds.
The wired based protocol also uses phase shift keying and synchronized
message repeats. The 60Hz power signal is used to coordinate message
repetition so that even with collisions, the devices are able to resolve the original
messages.

Insteon based smart home devices are becoming ubiquitous and seem to be
replacing the X10 standard. The hardware required for an Insteon transceiver is
more complicated than an X10 transceiver, however it is still cheap enough to
allow devices to be made inexpensively. Insteon also achieves higher data rates
than X10 and more reliable communications. The RF signals can also penetrate
walls in a home and allow devices to be placed away from power outlets.

Insteon is a major improvement over X10 and is a suitable standard for modern
devices, however it does have limitations. One important limitation is that most
Insteon devices either operate in the wired mode or wireless mode but rarely
both. Also, the wired based protocol is susceptible to high frequency interference
on the power lines, and no troubleshooting tools are available to setting up
Insteon networks as there are with X10 so corrections must be done trial and
error.

3.2.4.5 - Bluetooth

Bluetooth is a very popular networking system these days. Almost all people with
phones have a Bluetooth type of card installed in them, and there are many
devices already out there that implement them, like the hands free headsets for
cellphones that seem to be growing in popularity. As a network medium,
Bluetooth has the connotation attached with it of being very reliable and secure.
This is due to the built in 64 and 128 bit encryption systems established in the
protocol. This makes it ideal for a security type of home networking system, and
would add some type assurance to our product. However, there is a decently
long list of downsides to using Bluetooth.45 Bluetooth as a product was not meant
to be used at distance: it was meant to eliminate the need for two nearby
technologies to have to be cabled together. Also, since they both operate at the
2.4 GHz frequency, there is some similarity about data transmission, but that's
about where the similarity ends. Bluetooth can only transmit at a maximum speed
of 1 Megabit per second, which is nowhere near fast enough especially if you
have a network extended throughout your entire house. The protocol stack is
also 250Kbytes, which is roughly 10 times larger than that of the ZigBee network.
Also, the most killer aspect of this network is the connection rate. ZigBee boasts
a connection speed of 30 milliseconds, whereas Bluetooth can take upwards of

44

10 seconds to recognize a new device.

3.2.4.6 - WiFi

Wi-Fi is probably the most common and widely used wireless standard by far. It
has revolutionized the way that we communicate and has been a front runner in
the wireless communications field. It uses the IEEE 802.11 specifications, and
sets up a point to hub connection for accessing the network. The way aLife would
work if we implemented it using this method would be to have the base station as
a router and have all the nodes connect to it much like you connect your
computers or laptops to a wireless network at your home. Some of the
downsides46 of that are the same we have all experienced - slow connection
speed and no real security. The data rates are a bit slower than ZigBee - 11 and
54 Mbits/sec are the two going rates - and Wifi has no built in security to speak
of. The connection itself can be troublesome also, as it can sometimes require up
to 3-5 seconds to locate the hub and connect to the Internet. Lastly with the
constant connection being established to the "router", there is a very large power
consumption as compared to the rest of the networks that we discussed so far in
this section. One of the best things going for Wifi however is it's network size,
which is nearly the same as the ZigBee one. It's also a widely used a known
communication medium and would make for a very easy configuration and
implementation of that device.

3.2.4.7 - Conclusions on Wireless Standards

The main requirements of the communication network by the aLife system are
that the the network be nondestructive to the home, achieve reliable
communications, relatively high overall network bandwidth compared to the
bandwidth requirements of an individual device, have cheap transceiver
hardware, facilitate low power system operation, and have sufficient information
freely available for us to easily implement a robust system.

X10 is a very popular industry standard that would be cheap to implement,
however it is antiquated and does not provide reliable enough communications,
we did not select that standard. Z-Wave in theory is a good, modern standard
with appropriate performance for our project, however it is closed source which
would prevent us from being able to get enough information about the protocol to
implement a true Z-Wave network so it will not work for us. Bluetooth is an
inexpensive technology that has been widely developed, however it does not
have the transmission range or network scalability that we require for our
application, so it is out. WiFi networks are ubiquitous, can support very high data
rates and good transmission ranges, and have free open source protocol stacks,
however it requires expensive hardware and uses a lot of power, so it will not
work for us. Insteon is a very appealing standard because it was designed for
our application. It is relatively cheap to implement, has good transmission
ranges and data rates, and has the added bonus of being compatible with X10
devices. There are also many devices available for Insteon which would allow us

45

to construct a cheap, robust system. However the main drawback to Insteon is
that it has limited low power capabilities, and development tools and protocol
stack availability is limited. ZigBee has all of the benefits of Insteon, plus more.
 It has low power operation features, reliable communications, and the protocol is
more robust in terms of controlling devices at a system wide profile level. There
are also a number of cheap, powerful MCUs available with ZigBee transceivers
built in as well as free powerful protocol stacks. The only real drawback to
ZigBee is that it is not as widely used in smart home devices as X10 and Insteon
based products, however it has a better foundation and more potential than the
other standards. If anything, it would be a plus to use ZigBee because we can
further the proliferation of a superior technology. It is for all these reasons that
we select ZigBee as the wireless communications standard for our wireless
sense and control modules.

3.2.5 - MCU

One of the goals for the wireless sense and control modules is to keep them as
small and cheap as possible, while maintaining a flexible and diverse feature
set. The modules don't require much processing power, so we selected an 8 bit
MCU. In order to reduce the number of components on the boards and keep the
design simple and cheap, we selected the Freescale MC13213 because also has
a ZigBee transceiver built in, we are familiar with Freescales's free CodeWarrior
IDE. Fortunately, we were also able to get 8 parts for free on sample.

3.2.6 - ZigBee Transceiver

The ZigBee transceiver in the MC13213 is a fully IEEE 802.15.4 standard-
compliant MAC called the Simple Media Access Controller (SMAC) and is
intended for simple MCUs. It has a typical RAM footprint of 3kB. As the name
implies, it constitutes the MAC layer in the ZigBee stack. Freescale provides a
free ZigBee protocol stack called the BeeStack which is designed to work with
this transceiver and MCU. The transceiver requires an external oscillator,
antenna, and various passive devices in order to implement the PHY layer and
enable communication.

3.3 - Remote Client Hardware

3.3.1 - Apple iPhone/iPod Touch

The Apple iPhone/iPod Touch have the appropriate hardware to run the aLife
remote client software. Since the iPhone and the iPod Touch can run the same
applications, the hardware will be referred to as just the iPhone. The iPhone
hardware configurations aren't as diverse as devices running Android. The
minimum operating system for receiving push notifications on the iPhone is
version 3.0. All iPhones will run all versions of the iPhone operating system so
there aren't any iPhone hardware requirements to specify.

The iPod Touch doesn't have a cellular modem and thus isn't required to stay

46

awake at all times to receive notifications over the Internet. According the Apple
support article HT35676, when the iPod touch screen is on and the device has a
Wi-Fi connection then push notifications can be received at any time. But, if the
iPod touch screen is asleep, then it will only check for notifications every 15
minutes. This limits the effectiveness of the iPod Touch to alert users to critical
notifications.

3.3.2 - Smart Phones vs Feature Phones and Basic Phones

Smart phones are typically defined as phones that run a common operating
system on different variations of hardware. iOS, Android, Windows Mobile and
Symbian are examples of operating systems that would run on a multitude of
different phones. They are expected to be able to run third party software.

Feature phones typically have a medium sized screen and a limited, unspecified,
operating system that is customized for the phone. The phone will most likely
have some built in applications, like email or Facebook, but may or may not run
third party applications. Basic phones with their smaller screens may or may not
run third party applications. If the feature phone or basic phone does run third
party applications, they are most likely written in Java or BREW and applications
do not run in the background. Since the aLife system requires real time
communication with the aLife server, a feature or basic phone presents a
problem.

One way to over come the real time shortcoming is to implement a system that
uses SMS. The aLife server could send the user an SMS with information about
the event. For example, and example SMS could be, "Hello, its after 10:00pm
and your garage door is open." Upon receipt, the user could then launch the
aLife remote client application and take action as necessary. This would allow a
user with a less capable phone to still receive aLife notifications and take action
as needed.

Since all phones send and receive SMS messages, then even the most basic
phone could still be used to communicate with the aLife system using strictly the
SMS service. For example, the aLife server could send an SMS such as, "Hello,
its after 10:00pm and your garage door is open. Reply with "close" to close it."
Another example: "Hello, the house temperature is 90 degrees and the system is
off. Reply "Cool 80" to turn on the system and set to 80 degrees." This would
allow all cellphones to communicate with the aLife system.

3.3.3 - Android Based Phones

One of our project members owns a HTC G1 Dream, one of the original Android
handsets available on the market. It will be the main device used for testing the
aLife remote client user interface. Currently, Google officially offers software
upgrades up to Android version 1.6 it its stock configuration. Thanks to the open
source nature of Android and the incredibly active Android open source
community, the phone has been able to be upgraded to Android 2.1 The phone

47

specifications are as follows.

• 528Mhz Qualcomm 7201 processor
• 96MB Internal RAM
• 128MB Internal ROM
• OS: CyanogenMod 5.0.8-DS; Android 2.1

According to Andy Rubin of Google, the minimal requirements for all current
versions (up to 2.2 as of this writing) of Android are 32 megabytes of RAM, 32
megabytes of flash, and a 200 megahertz online processor.47

All major carriers in the United States are offering Android handsets. Currently,
most phones that are available to purchase have hardware capable of running
Android 2.1 (Eclair), while many are coming preloaded with Android 2.2 (Froyo).
Android 2.1 brought about a significant user interface speed increase along with
application speed performance boosts. The aLife user interface requires a fluid
interface and quick response to keep the user's experience enjoyable.

The Android operating system is also available on Mobile Internet Devices (MID),
sometimes termed tablets. These small devices normally are used as personal
information devices, used for accessing content on the Internet and taking
advantage of location based services. MID's are generally larger than consumer
cellphones and aren't considered as portable as a cellphone would be. MID's are
usually devices with screen sizes larger than 5" measured diagonally. They
usually contain WiFi radios for Internet access with some offering 3G modems
built in. MID's that run the Android operating system 2.1 or greater will be able to
run the aLife remote client software like any other capable Android cellphone.
The connectivity of the device will determine its usability in concert with the aLife
central control unit. Since the aLife remote client software requires a Internet
connection for all communications between the aLife central control unit, MID's
that are limited to Wi-Fi connectivity will be limited to area's with WiFi coverage
and must maintain the Wi-Fi connection. The lack of a cellular modem does not
mean its not a device that shouldn't be considered for the aLife remote client
software. MID's can be purchased for sub-$200 prices. This makes it an
attractive option for a device that is dedicated to a house or even a room.

An example of an MID is the Dell Streak (48). It has a 5" 800 x 480 capacitive
touchscreen display, 1Ghz Qualcomm QSD8250 Snapdragon ARM processor,
512MB RAM, 512MB ROM, Wi-Fi and 3G GSM connectivity running Android
2.2.48The hardware specifications meet the minimum requirements for the aLife
remote client software and would make it an excellent candidate for aLife use
around the home or office. Its cellular modem ensures a constant connection to
the Internet to receive aLife notifications and check on environmental and
security conditions. Since the aLife remote client software is a service that runs in
the background and Android supports multi-tasking, the Dell Streak can be used
for viewing media content or surfing the web while still having the ability to

48

receive real time updates the the aLife central control unit.

Illustration 15: The Dell Streak (Courtesy of Dell Inc.) 49

3.3.3.1 - MIPS Based hardware and other embedded devices

While the aLife system is designed for use primarily with smart phones, the
remote client software has the capability to run on many software platforms
besides those you would find in popular cellphones or MID's. Dozens of
hardware and software platforms exist that have features that are attractive for
use in embedded systems. These platforms can move the aLife remote client
software out of the hand held device sphere, and into the rest of our
environment. Cars with embedded platforms, appliances with built in touch
screens and stationary touchscreen devices that install in the wall can all be used
to interface with the aLife system. If the platform has a screen and a user
interface, then it has the potential to also be a aLife remote client device.

3.3.3.2 - Ford Sync

The Ford Sync is a in-car communications and entertainment system installed in
some new models of Ford cars. The system is based on an ARM 11 processor
and runs the Microsoft Auto platform.50 Different user interfaces are available,
including an interface that is primarily text-to-speech based with a 2 line dot
matrix display for visual display. In 2011 Ford will debut a technology that allows
applications on a smart phone to interact directly with the Ford Sync system,
allowing the smart phone to display text on Ford Sync display, convert text to
speech and receive voice commands to control the smart phone application. 51
This will allow the aLife user a hand free interface to the aLife remote client
software while the smart phone is connected to the Ford Sync.

49

3.3.3.3 - MIPS based devices and set top boxes

The MIPS (Microprocessor without Interlocked Pipeline Stages) is a reduced
instruction set computer instruction set architecture.52 The MIPS architecture can
be found in many embedded devices like cable boxes, satellite boxes, flat screen
TV's and mobile devices. Android itself is currently being ported to the MIPS
architecture.53 These architectures are all viable candidates to the aLife remote
client software. Future versions of the aLife system could be based on MIPS
hardware. As long as the hardware can run Android, then it can run the aLife
software.

3.3.4 - Multi-Tasking and Notifications

Notifications are a critical component of the aLife system. Since the system is
designed to run silently until a notification is sent to a user it is necessary for the
receiving device to be able to receive those notifications at all times. If an
important notification such as a security alert or a doorbell event are delayed by
even 5 minutes then the system loses some of its effectiveness. Notifications on
the iPhone are handled differently than on phones that run a multi-tasking
operating system. The iPhone uses something called the Apple Push Notification
Service. This is a service that is owned and operated by Apple and uses a WiFi
or cellular data network connection to send push notifications to the iPhone
operating system without the receiving application running in the background.
The only requirement is that the application is run one time on the iPhone to
setup the push notification identifiers in the iPhone. Once the push notifications
have been setup in the iPhone then as long as the phone has an Internet
connection then notifications can be received in the background.

Receipt of a notification can be indicated on the iPhone in three different ways:

• Sounds: Plays an audible alert
• Alerts: Displays an alert on the screen
• Badges: Displays an image/number on the application icon on the main

menu

To weigh the pros and cons of each type of notification we must compare them to
the severity of the notification and the current state of the iPhone. If the user is
browsing the web on the iPhone and the aLife system send a notification
indicating that the house security system has been tripped and the aLife remote
client software is set to display a badge on the aLife icon, then the user won't
know about the security notification until the main menu on the iPhone is
accessed and the page with the aLife icon is displayed. Similarly, if the aLife
remote client software is programmed to play an audible alert but the user is
playing an sound intensive game on the iPhone, the alert may go unnoticed, or
ignored until the user decides to check what the notification was. In the event of a
notification requiring the immediate attention of the user this is undesired.

50

Notifications with high levels of importance should display a pop-up alert and play
a sound to alert the user whether they're playing a game, browsing the web or
carrying the phone in their pocket.

Notifications from the aLife system that don't require immediate attention could
use less subtle notifications on the iPhone, but some dissection of notifications
are still necessary. For example, if the notification is that the air conditioning has
been running for an hour but the temperature in the house is continuing to rise,
then we must decide how important this information is. The data suggests that
there is either a problem with the air conditioning or that enough outside air is
getting inside so that the air conditioning can't keep up. Does this warrant a pop
up that interrupts the iPhone user or would an audible alert for the user to check
at their convenience be sufficient? How about a door bell notification? This type
of alert doesn't carry the same significance of a security alarm, but it does hint of
the need for immediate attention.

51

4 - Theory of Operation

4.1 - Base Station

The Base Station Software is intended to be an "always on" process that works
with little to no user intervention. The system is responsible for responding to
service requests sent from a remote client devices in a reliable and time efficient
manner. The software will also have the responsibility of periodically polling
certain controlled devices and sending their information to it's specified table in
our database. The software must also provide the user a basic security
mechanism, basic log in and log out functionality, which will allow access into our
system. The only feature that will be enabled to the user through the base
station software will be the ability to add a device to the ZigBee network. Any
additional services provided to the user will be done by the remote client device.
The Base Station must also be able to accept full duplex TCP socket connection
requests from one, or up to five users, with a high degree of reliability. After
connecting with a remote client device the system must be able to handle any
service request sent from the said device on a first come, first serve basis. Any
duplicate request, simultaneous request, or unsuccessful requests must be
handled accordingly and a notification must be sent to said remote devices if the
issue was not resolved. The Base Station software is also responsible for
sending notifications to one, or all, remote client devices. These notifications are
based on a user's specific notification settings.

The Base Station is designed to be a wall mounted unit that is always active and
able to respond to requests from both the remote client and the ZigBee network.
It will also have a built in GUI that will allow the user some access for changing
and adding devices to the ZigBee network from the Base Station. In processing
requests from the ZigBee network side of the system, it will provide a way to
determine upon receiving a signal from what device it came from and to alert the
user of this by sending a notification to the remote device with this information.
From the remote device it will be able to receive commands on the software side
of the Base Station and then to transfer those commands into instructions for the
specified ZigBee network device to decode and follow. The hardware will allow
for multiple connections to be made for remote devices and for multiple sensors
to be set up on the ZigBee Network. It will also have the means of
communicating through the Internet and updating the database about
notifications being received, transmitted, or handled according to what the
notification was sent about.

Communications between the LPC3250 Android base station and the remote
ZigBee devices will be channeled through a ZigBee base station which will act
as the ZigBee controller for the entire wireless network. The ZigBee base station
will be a separate board from the LPC3250 base board and will be the same
PCB as the wireless modules, but with only the MCU and ZigBee related
hardware populated. This board is only intended to provide ZigBee network

52

coordinator functions. The ZigBee coordinator board and the Android base board
will have soldered connections for serial communications and power for the
ZigBee board. The wireless base station will essentially act as a
multiplexor/demultiplexor for communications between Android base and the
remote wireless devices. When the Android base station needs to send data to
the wireless modules, it will send the data in standard ZigBee protocol to the
ZigBee base station through the serial connection, and the ZigBee base will then
forward the data over the wireless network to the intended module. When the
ZigBee base station receives data from a target wireless module that is intended
for the Android base station, it will simply forward the raw received data to the
Android base station via the serial connection.

4.2 - Wireless Sense and Control Modules

4.2.1 - General

The wireless ZigBee network centered at the base station serves as the
communications infrastructure for the in home portion of the system. There are
three primary types of devices that can be incorporated into the aLife ZigBee
network:

• aLife native wireless sense and control units (here-on referred to as
wireless sense and control modules) that operate with built in hardware
only

• aLife wireless sense and control modules that are interfaced with
peripheral hardware

• 3rd party, off the shelf ZigBee compliant smart home devices

The purpose for all of the modules are to serve as a sensor and/or control device
for the main system. They are the entry point for all home status information,
and the end points for control commands. For instance, these devices will
monitor the actual current being consumed by an appliance, physically connect
or disconnect an appliance, or have a wired connection to a sensor. The native
aLife modules and 3rd party modules will operate with the same wireless
protocol, so the interface with the base station is identical. Example 3rd party
devices are ZigBee thermostats, window and door sensors, and electronic door
locks. This allows a high degree of flexibility and expandability in the overall
system, allowing the user to select any compliant ZigBee device and add it to the
system for their specific application.

The wireless sense and control modules are designed to have simple, but flexible
hardware that can allow the modules to be used in numerous applications while
keeping the cost the modules low. The modules will all have the identical on
board hardware, and when they are added to the aLife system the user will
configure them for a specific application through the base station interface. The
modules can do the following functions when operating with built in hardware
only:

53

• Home appliance power consumption monitoring and electrical disconnect
• Smart lighting control that allows remote on/off/dim control
• Temperature sensing at the location of the module

The modules also have I/O ports that enables interfacing with other peripheral
hardware in order to perform the following functions:

• Garage door position monitoring and control
• Remote home appliance power consumption sensing with an external

current sense loop
• Remote temperature sensing with an external temperature sensor.
• In addition, there are extra digital and analog I/O types for future

applications

In operation, the wireless modules would essentially act as slave devices to the
master base station. If configured as a sensor, the module would continuously
monitor the sensor data and report the data back to the base station when polled
(ex for power monitoring), or if there's an interrupt even that requires immediate
notification to the base station (ex window or door open sensor). If configured as
a control (output) device, they would wait for instructions from the base station
and maintain a constant output state until the base station commands them to do
otherwise.

4.2.2 - ZigBee Wireless Network

Both the remote wireless sense and control modules and the ZigBee base station
will use the Freescale BeeStack Consumer RF4CE ZigBee protocol stack in
conjunction with the MC13213 built in ZigBee MAC, PHY, and transceiver (stack
shown in Error: Reference source not found).

Illustration 16: Freescale MC13213 ZigBee communications
stack

54

"The BeeStack Consumer layer implements an interface between
the application and the IEEE.802.15.4 MAC layer. The BeeStack
Consumer layer conceptually includes a management entity that
provides the service interfaces through which layer management
functions may be invoked. This management entity is also
responsible for maintaining a database of managed objects
pertaining to the BeeStack Consumer layer. The BeeStack
Consumer layer provides a number of services, accessed through
the BeeStack Consumer API. The BeeStack Consumer services
have the following characteristics:

• Are started using BeeStack Consumer API function calls
• Communicate to application the execution status using confirm messages
• Inform the application layer about asynchronous network information

arrival using indication messages 54

The following image, 39, representation the functionality of the
BeeStack for the consumer.

Illustration 17: BeeStack Consumer layer interfaces 55

The BeeStack Consumer protocol defines two types of devices to
implement a wireless Personal Area Network (PAN): controller
nodes and target nodes. This is different than the ZigBee
coordinator/router/end device setup described in the research
portion of this paper. In this protocol, there can be multiple controller
and target nodes. The functions of the two node type are:

Controller node - This device contains a subset of the BeeStack
Consumer features. The controller node type is used in remote
control applications. This node does not start a PAN. During the
pairing process, it receives a Pan Id and Short Address from the
target node it has paired with. These values are used in future
communications with the paired target node.56

Target node - This device contains a subset of the BeeStack

55

Consumer features. The target node type is used in Consumer
Electronics device applications (e.g. TV’s, DVD’s, etc.). It is
intended to be used in backbone powered devices. Starting a target
node always starts a new PAN.57

A target node has full PAN coordinator capabilities and can start a
network in its own right. Both types of node can join networks
started by target nodes by pairing with that target. Multiple RC
PANs form an RC network and nodes in the network can
communicate between RC PANs. To communicate with a target
node, a controller node first switches to the channel and assumes
the PAN identifier of the destination RC PAN. It then uses the
network address, allocated through the pairing procedure, to
identify itself on the RC PAN and thus communicate with the
desired target node."58

An example network is shown in 55 between a TV, DVD player, and CD player
and their respective remote controls. The aLife ZigBee network will work in a
similar fashion where the remote sensor and control devices will act as target
nodes and the ZigBee base station will act as the lone controller node.

Illustration 18: Example BeeStack Consumer Mesh Network

59

56

4.3 - Remote Client

The remote client will be the main interface to most functions of the aLife system.
The remote client software will be passive, running as a service in the
background on the client device. The service will maintain a connection with the
aLife base station and update its own IP address in the base station database, so
the database can push notifications to the client. The client will display
notifications and give the user the option to respond or ignore the event that
caused the notification.

The remote client software will also provide the ability for users to view the status
of their devices. Client software will also be the interface for adding devices to
the aLife system. In the menu the user will be given the option to put the aLife
system into discovery mode, much like Bluetooth, and add a ZigBee device to
the system. The client software will detect the type of device being added to the
system and will present the user with options to configure the device.

57

5 - Feature and Performance Specifications

5.1 - Base Station

5.1.1 - Hardware

5.1.1.1 - Base Board

For this project to work, we needed to design a hardware platform that would
allow us to implement all the features of aLife.

The following describes the list that we needed to incorporate to ensure that the
functionality of the Base Station fulfilled all the roles we needed it to do.

Functionality:

• Needs to be powered off a wall outlet or a USB connection
• Have enough memory to allow for the Android operating system to be run

smoothly
• Must have a LCD screen controller built in and allow for touch screen input

to the system
• Must allow for some type of internet connection built in
• Have some type of restart
• Have some type of speaker system built in
• Connections

◦ Allow for USB connections
◦ Allow for a RS232 connection to be made
◦ Allow for a USB-to-serial connection

5.1.1.2 - ZigBee Base Station

The ZigBee base station will be same PCB as the remote sensor and control
modules and will be hardwired to the Embedded Artists LC3250 board, see the
feature and performance specifications for those modules below.

5.1.2 - Software

The specifications for the base station software were decided upon after
extensive requirement analysis. Taking into consideration time constraints and
scalability, our team deemed the following list of specifications necessary.

Functional:

• Base Station must be able to receive status information from ZigBee
devices

• All users must be categorized as either generic user or administrative user
• All users will have the ability to unregister their login credentials
• Only administrative user can unregister other users login credentials

58

• Base station must be able to add or remove a device from the ZigBee
network

• Base station must be able to accept up to 5 TCP connections from remote
client devices

• Request for service will be dealt with on a first come first serve basis
• Multiple request to service the same notification must only be serviced

once
• Users must be notified of any unsuccessful service requests
• Base station must poll all devices and update any relevant status

information at least every 5 minutes.

Security:
• A login and password must be created for all users
• Base Station must allow a user to create a new login
• A user can have up to 5 unsuccessful attempts to login prior to being

locked out for up to 5 minutes.
• Only registered remote client devices may have service request fulfilled by

the base station

Notifications:

• All notifications must have a unique notification ID
• All notifications set up by a user must be delivered by the base station
• Users shall only receive notifications that they are registered to receive

Database:

• Base station must be able to make a connection to SQLite database
• Base station must be able to add/remove/update a row in any of the

database's tables

5.2 - Wireless Sense and Control Modules

5.2.1 - Hardware

5.2.1.1 - MCU

• BDM interface header for debugging
• UART header and through hole solder points for debugging and testing
• Bus clock operation at least 16MHz

5.2.1.2 - ZigBee Transceiver

• Transmission range of at least 30m
• Able to transmit >= 200kb/s at 30m

59

• Antenna area <= 2 square inches of PCB space

5.2.1.3 - Control and Sensor Related

Each ADC input will be paired with a digital input and will share a terminal.
 Likewise, each analog output will be paired with a digital output and will share a
terminal. All inputs and outputs will have transient voltage suppressors for surge
protection.

• Various MCU I/O and power supply ports:
◦ (2) analog to digital inputs, 3.3VDC max
◦ (2) analog line level output (via integrated PWM), 3.3VDC, 50mA max
◦ (2) digital line level outputs, 3.3VDC, 50mA max
◦ (2) digital line level inputs, 3.3VDC max
◦ (1) software controlled relay switched send/receive loop

• (1) 3.3VDC rail, 300mA max (PTC limited)
• (1) ground
• 120VAC pass through
• One standard 3 prong 120VAC male plug on the back of the unit for

module power and pass through to the front of the module
• One standard 3 prong 120VAC female socket on the front of the unit that

is powered by the male prong in the back for appliance power control and
sensing

• 120VAC pass through current sensing
• Series current sense resistor through one AC line
• Current sensing is accurate to +/-5% of actual current consumption
• Maximum load of 1000W supported
• 120VAC pass through lighting control or appliance power cutoff/limiting
• On/Off/Dim control, with software controlled dimming in <= 3% increments
• Temperature sensor
• >=11 bits of measurement accuracy
• Measured temperature is accurate to <=+/- 2 degrees Celsius of actual

temperature
• Temperature operating range of -40 degrees C to +125 degrees Celsius

5.2.1.4 - Power Supply

Power for the modules will be derived from a standard 120VAC wall outlet which
will feed a full wave bridge rectifier and then a 3.3VDC high efficiency switching
power supply. The power supply performance requirements are:

• 3.4VDC>Vout>3.2VDC
• Ripple voltage: <50mV
• Minimum current supply capability: 500mA

60

• Power supply efficiency >85%
• System wide power requirements:
• <50mA total IC current draw (not including relays and external

components)
• <100mA total system current draw (not including external components)

5.2.1.5 - Package

The modules are designed to be wall outlet mounted and all hardware contained
within a relatively small package that does not obstruct the second wall outlet.
 The specific dimensions of the chassis is not known at this time because it
depends on the size of the PCB, however the general requirements are as
follows:

• 1 male 3 prong 120VAC plug on the back of the chassis
• 1 female 3 prong 120VAC plug on the front of the chassis
• An 8 position screw terminal block for sensor and control I/O on one side

of the chassis
• Chassis dimensions not to exceed:
• length of PCB plus 1 inch (parallel plane to wall)
• width of PCB plus 1 inch (parallel plane to wall
• 2 inches deep (perpendicular plane to wall)

5.2.2 - Software

5.2.2.1 - Main Program

• The firmware will be programmed in C using Freescales' free CodeWarrior
IDE

• Total program size (including BeeStack Consumer ZigBee protocol stack)
<= 60kB

• Total RAM usage (including BeeStack Consumer ZigBee protocol stack)
<= 4kB

5.2.2.2 - ZigBee Protocol Stack

• Run Freescale BeeStack Consumer (RF4CE) protocol stack
• Follow standard ZigBee device profiles (ex Home Automation, Smart

Energy) for command protocol

5.3 - Remote Client

5.3.1 - Hardware

• Hardware capable of running Android 2.1 or later
• Must be capable of maintaining a constant internet connection at all times

61

5.3.2 - Software

5.3.2.1 - aLife Service

• Automatically starts when the client device is turned on
• Maintains local IP address information in base station database
• Maintains open an socket for base to client notifications

5.3.2.2 - aLife GUI

• Option to disable all communications with the server
• Option to mute all notifications
• Presents notifications in the Android notification window
• Allows user to ignore or respond to events
• Gives the user a list of devices on the system
• Allows the user to see a device history and status
• Allows user to control devices

62

6 - Design
For the hardware requirements of this project, we needed to make sure that we
met the basic system requirements for running android on the base station
before we started with any other considerations. 60 61

6.1 - Base Station

6.1.1 - Hardware

The hardware design in this paper begins from the microcontroller of the Base
station and will continue to add components until it has reached the complete
functionality of the Base station module. Table 3 gives hardware specifics for the
microcontroller.

63

6.1.1.1 - NXP LPC3250 Microcontroller62

Processor ARM926EJ-S core with speed up to 266 MHz

Flash None

RAM 256 KB

Instruction
cache

32 KB

Data
cache

32 KB

Timers • One 32-bit general purpose high-speed timer
• Six enhanced timers/counters
• One 32-bit millisecond timer driven from RTC clock

PWM 2 single output PWMs and 1 motor control PWM

ADC 10-bit, 400 kHz multiplexing from 3 pins

Serial
interfaces

7xUART, 2xI2C, 2xSPI, 2xSSP, 2xI2S

USB • Fast-Speed USB 2.0 interface
• Device, host (OHCI compliant), or On-The-Go (OTG)

Ethernet 10/100 Ethernet MAC with dedicated DMA controller

SD/MMC Secure Digital (SD) memory card interface

Other • Vector Floating Point Unit
• Two NAND Flash controllers. Single-level and multi-level
• External memory controller for DDR and SDR SDRAM and
static devices
• 24-bit Color LCD controller
• Touch screen controller
• Keypad interface
• 0.9 V low power mode

Table 3: Hardware specifications for the microcontroller

With the specs above defined, we can then move on to a logical description
about how the device will operate. Illustration 19 gives a block diagram layout of
the microcontroller and explains the functionality of the hardware piece.

64

Illustration 19: Functional description of the NXP LPC3250

64

With the microcontroller defined, we can then move on to integrating that with the
rest of the board. The next hardware section includes the microcontroller placed
into the LPC3250 OEM Board. Table 4 outlines the specifics about this device.

65

6.1.1.2 - LPC3250 OEM Board

Processor NXP's ARM926EJ-S LPC3250 microcontroller in BGA package

External
Flash

128 MB NAND FLASH (1Gbit)
4 MB SPI-NOR FLASH (32Mbit)

Data Memory 64 MB DDR SDRAM + 256 KB internal
16-bit data bus to DDR SDRAM

Ethernet 100/10M Ethernet interface based on National DP83848
Ethernet PHY

Clock
Crystals

13.000 MHz crystal for CPU

Dimensions 66 x 48 mm

Power 3.15V-3.3V powering

Connectors 200 pos expansion connector (as defined in SODIMM
standard), 0.6mm pitch

Other • 256 Kbit I2C E2PROM for storing non-volatile parameters
• 5 LEDs
• Buffered 16-bit databus

Table 4: Functional description of the LPC3250 OEM Board

Since the LPC3250 OEM Board mainly adds a way to interface the
microcontroller to the Base Station and maintains the same general functionality
as the microcontroller itself, there is no need to make a block diagram for it.
Illustration 20 is what the LPC3250 OEM Board will look like with the
microcontroller attached.

66

Illustration 20: Picture of the LPC 3250 OEM
Board

65 66

With the LPC3250 OEM Board in place, we can now integrate into the final part
of the hardware component. The QVGA Base Board will act as the main
interfacing board for the microprocessor and the interface between the user and
the ZigBee network. Table 5 gives a description of the Base Boards hardware.

67

6.1.1.3 - QVGA Base Board

Display • 3.2 inch QVGA TFT color LCD with touch screen panel

Connectors • 200 pos SODIMM connector for OEM Board
• Expansion connector with all LCD controller signals, for
custom displays
• Expansion connector with all cpu signals
• Ethernet connector (RJ45)
• MMC/SD interface & connector
• JTAG connector
• Pads for ETM connector

Interfaces • USB OTG interface & connector
• USB host interface & connector
• RS232 interface
• IrDA tranceiver interface

Power • Power supply, either via USB or external 9-15V DC
• 0.3F capacitor backup for RTC and LED on ALARM output

Expansion • Expansion connector with all LCD controller signals, for
custom displays
• Expansion connector with all cpu signals

Other • 5-key joystick
• 3 axis accelerometer
• Push-button key and LED on P2.10
• 4 push-button keys via I2C
• 8 LEDs (via I2C)
• 1 Analog inputs
• USB-to-serial bridge on UART #0, and ISP functionality
• Reset push-button and LED
• Speaker output (DAC)
• 240x150 mm in size

Table 5: Hardware specifications for the Base Board

With the hardware fully assembled, we have now finished the hardware design
portion of this project. Illustration 21 is of the QVGA Base Board with both the
LPC3250 OEM Board in place.

68

Illustration 21: Embedded Artists LPC3250 Base
Board

 67

The hardware described above will function in a particular manner to achieve the
overall goal of this project, which is to prove a smart home type wall unit that will
interface with the rest of the other components of the project. The following
picture illustrates the general idea about what the purpose of the base station is
and what type of functionality it will generate.

The Base Station should meet all of those particular criteria listed below in
Illustration 22. Some of the naming conventions we used for labels in the picture
are:

69

Illustration 22: Functional Specifications of the Base Station

The figure above describes the functionality we plan to implement with the Base
Station device in the aLife project.

6.1.2 - Software

The following section discuss the design elements for the base station software.

6.1.2.1 - Board Support Package

The Embedded Artists NXP LPC3250 demo board will be the host client for the
base station software. This would require the demo board to have a working
version of Android 1.5 platform. In order to meet these needs the demo board
must be equipped with the correct support package. The items needed in the
support package are listed below.

The support package will include:

• Android: version 1.5 (Cupcake), ported by Embedded Artists
• Linux kernel: version 2.6.27.8, ported to the LPC3250 by NXP
• Bootloaders:

◦ Kickstart
◦ S1L: October 4, 2009 or later build
◦ u-boot: version 2009.03

• Root file system: JFFS2

70

These items will be installed on the demo board prior to installing any versions of
the base station software.

6.1.2.2 - Initial Design Prototype

Our team started on the initial design of our base station software very early in
our development process. Below is Illustration 23, our initial prototyped design.

Illustration 23: Initial Base Station Software Design

The idea behind the model was to make the base station software as similar as
possible to the remote client software. The base station software was to have a
graphical user interface that could add or remove a device, set up notifications,
review notification history, and monitor one of our controlled devices. After
discovering the limited hardware resources we would have with the embedded
artist demo board and the choice to use a client-server communication model, we
found that the base station would only need basic functionality as it's
responsibility lied in continuously polling the ZigBee devices and fulfilling remote
client device requests for service. This led our team to trim down on the features
provided by the base station and provide a more accurate design model.

71

6.1.2.3 - Final Design

At this point in the development process our team had completed the Base
Station Software's functional and design requirements and, following our
software model, began to work on the base stations software's system design.
 We did not want to overload the base station with unnecessary functionality, so
we started the final design process by creating an event table and use case
diagram outlining the outcomes to all external and internal stimulus to our
system. They are displayed in Table 6 and Illustration 24 respectively.

Event Name External Stimuli External Response Internal Data and State

Log In / Log Out

The user logs into
the system using
their log in
credentials

User is directed to home
screen on successful
log in; else directed
back to log in screen

The system queries our
database for log in
credentials and returns
access information.

Add a Device
The user touches the
"Add Device" button
on LCD Display

The system prompts the
user for new device
information

System wait for user
submission. Device
added to database and
ZigBee network

Poll ZigBee Power
Sensors

No external stimulus;
Periodic task

No external response;
Information handled
within system

System sends request
to ZigBee Base station
through serial
communication; Results
are interpreted and
submitted to database

Request for Socket
Connection

Request for
connection from a
remote client device

Successful connection
acknowledgement sent
to device; else
connection timeout

A duplex TCP
connection is
established between the
Base Station and
Remote Client Device

Remote Client
Service Request

Request for service
from a remote client
device

User is prompted with a
request fulfilled
acknowledgment; else
error message
prompted

Service command is
sent to ZigBee Base
station; Base station
receives
acknowledgement and
submits to user;
Notification table
updated in database

Table 6: Base Station Event Table

72

Illustration 24: Base Station Software Use Case Diagram

The use case diagram and event table reinforce our theme of simple, functional
features. The base station software will allow a user the ability to log in and out
of the system and add/remove a device from the ZigBee network. All other
functions of the base station software will be not be visible to the user. These
additional features include the ability to poll any connected ZigBee device for
status information, the ability to accept a TCP connection, and the ability to fulfill
a remote client request for service.

After understanding the design of our software's functional features, the next step
in our design process was to understand how our software system should
respond to interactions between users, either directly or via remote client
devices. Below is four sequence diagrams demonstrating critical interactions our
system must be able to handle. The first is a new user registration, the second is
adding a new device, the third is a remote client service request, and the fourth is

73

multiple users responding to a notification request. They are listed as Illustration
25, Illustration 26, Illustration 27 and Illustration 28 respectively.

Illustration 25: New User Registration

74

Illustration 26: Add a New Device

Illustration 27: Fulfill Service Request

75

Illustration 28: Multiple Reply to Notification

The sequence diagrams gave our group insight on how the base station software
interacts with remote users and the database. We found that most scenarios
called for socket connections to be established and the base station to be
queried. This demonstrated a need for a handler for both the database and
socket connections to allow easy communication between those devices. We
also found the need for a generic devices class which extends more specific
devices. These will be used to create device object and hold status information
concerning any active device. We would also need a main class that will create
our GUI and fulfill any autonomous services that are required of the base station.

6.1.2.4 - Base Station Class

The base station class will be the responsible for creating the GUI, interacting
with Users, and fulfilling any autonomous services request required of the base
station. The handlers for the database and socket connections available directly
through the Android API which will not require our team to create any auxiliary
classes. The class fields and methods are explained below.

Fields:

• PowerNotif (Bolean): Field tells whether a powered device notification is
set up

• SecurityNotif (Bolean): Field tells whether a security device notification is
set up

76

• ControlNotif (Bolean): Field tells whether a control device notification is
set up

• ActiveDevices(Device []): Array of active devices in the network
• RequestedService (String): Integer representation of a request

Methods:

• BaseStation ():Constructor to create the GUI interface for our system.
• getActiveDevices(): Takes in no parameters. Returns all active devices in

database.
• addDevice(Device X): Adds specified device to network and database.

 No return.
• removeDevice(Device X): Removed specified device from network and

database. No return.
• setNotifications(): Takes no parameters. Sets all initial notifications

booleans. These will dictate which notifications will be checked for
continuously throughout the program.

• pollDevices(ActiveDevices): Takes in all active devices and updates their
information in the database tables. Returns nothing.

• socketParser (ByteStream): Takes in a socket byte stream and returns
the requested service in string format.

• requestService (Device X, RequestService): This method will take in a
device and service request and will fulfill the said service. Returns
nothing.

6.1.2.5 - Device Class

The devices class is the abstract parent class of all specific controlled devices. It
will be extended by a PowerDevice class, SecuirtyDevice class, and
ControlDevice class.

Fields:

• ID (Int) : Device's ID
• Name (String): Name provided by user for device
• Status (Boolean): Provides status of device, on or off

Methods:

• getID(): Takes in no parameters. Returns an Int, the value of the devices
ID.

• setID(Int ID): Takes in an Int and updates ID field. Does not return
anything.

• getName(): Takes in no parameters. Returns a String, the value of the
devices Name.

77

• setName(String name): Take in a String and update Name field. Does not
return anything.

• getStatus(): Takes in no parameters. Returns Status of device
• setStatus(Boolean Status): Takes in a boolean and updates Status of

device. Does not return anything.

6.1.2.6 - PowerDevice Class

The PowerDevice Class will be a factory class for power monitoring device
objects.

Fields:

• TotalWatts (Int): Provides total watts used by device
• SetWatts (Int): Provides user defined limit for watt usage
• CurrentTemp (Int): Provides current temperature information
• SetTemp (Int): Provides user defined limit for temperature
• PollTime (Int): Time the information was polled
• SetTime (Int): Set time for notification purposes
• Timeframe (Int): Timeframe for power information i.e. 7 days or 30 days

Methods:

• PowerDevice(): Constructor to create object. Will have generic and
specific constructors.

• turnOn(): Takes in no parameters. Sends message to ZigBee device to
turn on

• turnOff(): Takes in no parameters. Sends message to ZigBee device to
turn on

• getTemp(): Takes no parameters. Polls ZigBee device for temperature.
• setTemp(Int Temp): Sets ZigBee device with provided temperature. Does

not return anything.
• getWatt(): Takes no parameters. Polls ZigBee device for wattage.
• getTimeframe(): Takes in no parameters. Returns the timeframe field.
• setTimeframe(Int Timeframe): Sets the timeframe field. Does not return

anything.

6.1.2.7 - SecuirtyDevice Class

The Security Device Class will be a factory class for security monitoring device
objects.

Fields:

• SetTime (Int): Provides set time for any notifications

78

Methods:

• SecurityDevice(): Constructor to create object. Will have generic and
specific constructors.

• turnOn(): Takes in no parameters. Sends message to ZigBee device to
turn on

• turnOff(): Takes in no parameters. Sends message to ZigBee device to
turn on

• isOpen(): Takes in no parameters. Returns true if ZigBee device is open.
• IsLocked(): Takes in no parameters. Returns true if ZigBee device is

locked.
•

6.1.2.8 - ControlDevice Class

The ControlDevice Class will be a factory class for controlled device objects.

Methods:
• ControlDevice(): Constructor to create object. Will have generic and

specific constructors.
• turnOn(): Takes in no parameters. Sends message to ZigBee device to

turn on
• turnOff(): Takes in no parameters. Sends message to ZigBee device to

turn on

6.1.3 - Database

The SQLite database will be utilized to store information about current users,
devices, power history, notification history, and notification set ups. Each of
these elements will be have their own table in our database with their own
specified fields. Listed below is our database structure.

Users:

• ID (Int)
• Password (String)
• Name (String)
• Permission (Boolean)
• IP Address (String)
• Fail Attempts (Int)
• Failed Time (Int)
• Success Time (Int)

Devices:

• ID (Int)

79

• Device Type
• Name (String)
• Address (String)
• Field1 (Various Types)
• Field2 (Various Types)
• Field3 (Various Types)
• Field4 (Various Types)
• Field5 (Various Types)
• Field6 (Various Types)
• Field7 (Various Types)
• Field8 (Various Types)
• Field9 (Various Types)
• Field10 (Various Types)
• History1 (Various Types)
• History2 (Various Types)
• History3 (Various Types)
• History4 (Various Types)

Power History:

• Device ID (Int)
• Power Usage (Int)
• Time of Day (Int)

Notification History:

• Notification Type (Int)
• Notification Level (Int)
• Notification ID (Int)
• User ID (Int)
• Device ID (Int)

Notification Set Up:

• ID (Int)
• Description (String)
• Users (String)
• Set Time (Int)
• Set Temp (Int)
• Set Energy (Int)

80

6.2 - Wireless Sense and Control Modules

6.2.1 - Hardware

6.2.1.1 - MCU

• Low voltage MCU with 40 MHz low power HCS08 CPU core
• 60K flash memory with block protection and security and 4K RAM
• Low power modes (Wait plus Stop2 and Stop3 modes)
• Dedicated serial peripheral interface (SPI) connected internally to

802.15.4 modem
• One external 4-channel (5-channel internal) 16-bit timer/pulse width

modulator (TPM) module and one external 1-channel (3-channel internal)
16-bit timer/pulse width modulator module, each with selectable input
capture, output capture, and PWM capability.

• 8-bit port keyboard interrupt (KBI)
• 8-channel 8-10-bit ADC
• Two independent serial communication interfaces (SCI)
• Multiple clock source options
• Internal clock generator (ICG) with 243 kHz oscillator that has +/-0.2%

trimming resolution and +/-0.5% deviation across voltage.
• Startup oscillator of approximately 8 MHz
• External crystal or resonator
• External source from modem clock for very high accuracy source or

system low-cost option
• Inter-integrated circuit (IIC) interface.
• In-circuit debug and flash programming available via on-chip background

debug module (BDM)
• Two comparator and 9 trigger modes
• Eight deep FIFO for storing change-of-flow addresses and event-only data
• MC13211/212/213 Technical Data, Rev. 1.8
• Tag and force breakpoints
• In-circuit debugging with single breakpoint
• System protection features
• Programmable low voltage interrupt (LVI)
• Optional watchdog timer (COP)
• Illegal opcode detection
• Up to 32 MCU GPIO with programmable pull-ups 68

81

Illustration 29 gives a Block Diagram of the functionality of the MC13213 MCU
device.

Illustration 29: Figure X - MC13213 block diagram

With the functionality defined, we can now go into the physical aspects of the
MC13213 MCU device. Illustration 30 gives the pin layouts for the MC13213
MCU.

82

Illustration 30: MC13213 Pinout 69

With the physical and functional descriptions of the MCU covered, we can then
go on to describe the other component in the wireless sense and control module,
the ZigBee transceiver.

ZigBee Transceiver

• Fully compliant 802.15.4 Standard transceiver supports 250 kbps O-QPSK
data in 5.0 MHz channels and full spread-spectrum encode and decode

• Operates on one of 16 selectable channels in the 2.4 GHz ISM band
• -1 dBm to 0 dBm nominal output power, programmable from -27 dBm to

+3 dBm typical
• Receive sensitivity of <-92 dBm (typical) at 1% PER, 20-byte packet,

much better than the 802.15.4 Standard of -85 dBm
• Integrated transmit/receive switch
• Dual PA ouput pairs which can be programmed for full differential single-

port or dual-port operation that supports an external LNA and/or PA.
• Three low power modes for increased battery life

83

• Programmable frequency clock output for use by MCU
• Onboard trim capability for 16 MHz crystal reference oscillator eliminates

need for external variable capacitors and allows for automated production
frequency calibration

• Four internal timer comparators available to supplement MCU timer
resources

• Supports both packet data mode and streaming data mode
• Seven GPIO to supplement MCU GPIO

Illustration 31 gives the Block diagram functionality for the MC13213 ZigBee
transceiver.

84

Illustration 31: MC13213 ZigBee transceiver block diagram70

With that functionality defined, we can now define the functionality of the device.
Illustration 32 describes the functionality of the aLife wireless module.

85

Illustration 32: Functional Diagram for a Wireless
Module

The figure above describes all of the hardware and functionality components that
will be implemented in the ZigBee wireless module.

6.2.1.2 - Control and Sensor Related

Lighting control circuit

• Basic diac/triac phase based dimmer circuit.
• MCU I2C interface with 100k Ohm 100 step digital potentiometer for dim

control
• Disconnection is done via MCU controlled 10A , 240VAC relay

120VAC Current sensor IC

• 10A max handling
• <1.3mOhm series resistance, <2nH inductance
• +/- 5% accuracy
• 0-2VDC result output, interfaced with MCU A/D input

86

Temperature sensor

• Readings via built in sensor or external sensor interface
• +/- 2 °C accuracy
• Temperature range of -40 °C to +125 °C
• 11-bit, 0.125 °C resolution
• I2C interface with MCU

Digital and Analog I/O

• 2 MCU digital PWM outputs, integrated through op amp LPF. Duty cycle
of PWM determines voltage level (0% or 100% generate digital output),
period of PWM and LPF crossover frequency determines maximum digital
data rate

• 2 External inputs: connect to digital input and ADC input in parallel so
same input port can accept analog or digital signals

• 1 relay switched input/output loop, controlled by MCU. Relay is 10A max,
240VAC max.

6.2.1.3 - Power Supply

The wireless sense and control modules draw their power from a 120VAC outlet.
The power subsystems are:

• 120VAC to 9VAC transformer
• 9VAC full wave bridge rectified to create 7VDC rail (used by relays and

3.3VDC switcher)
• 7VDC input into 300mA 550kHz switching power supply, output set to

3.3VDC (powers all components except relays)

6.2.1.4 - Package

The dimensions for the the modules packaging have not been determined since
the dimensions of the PCB is not yet known. In general, it will be a plastic
rectangular project, similar to those commonly found at RadioShack.

87

6.2.1.5 - Schematics

Illustration 33: MCU, Temperature Sensor and Terminal Block Schematics

88

Illustration 34: Light Dimmer Schematic

89

Illustration 35: ZigBee Transceiver Schematic

90

6.2.1.6 - Bill Of Materials

91

6.2.1.7 - ZigBee Protocol Stack

Freescale provides a free ZigBee RF4CE protocol stack specifically designed for
the MC1323 MCU called the BeeStack Consumer. The BeeStack has the
following features:71

• Based on the IEEE 802.15.4 Standard
• Supports ZigBee 2006 Specification
• Supports star, mesh and tree networks
• Advanced Encryption Standard (AES) 128-bit security
• Supports the ZigBee Home Automation Profile
• Supports the ZigBee Smart Energy Profile
• Supports application profiles that define standardized command sets for

multi-vendor interoperability
• Supports vendor specific extensions to standard application profiles for

vendor specific customizing
• Supports AES-128 bit encryption
• Provides a mechanism for secured key generation
• Specifies various power saving modes
• Provides a simple mechanism to pair devices (such as a remote to a TV)

Ensures only authorized devices are able to communicate (a user’s
remote will not turn their neighbor's TV on or off)

92

6.3 - Remote Client Device

6.3.1 - Hardware

6.3.1.1 - HTC G1 Dream

Table 7 gives the specifications for the HTC G1 Dream phone.

Processor Qualcomm® MSM7201A™, 528 MHz

Platform Android™

Memory ROM: 256 MB
RAM: 92 MB

Display 3.2-inch TFT-LCD flat touch-sensitive screen with 320 x 480 (HVGA) resolution

Network HSPA/WCDMA:
2100 MHz
Up to 7.2 Mbps down-link (HSDPA) and 2 Mbps up-link (HSUPA) speeds Quad-band
GSM/GPRS/EDGE:
850/900/1800/1900 MHz
(Band frequency, HSUPA availability, and data speed are operator dependent.)

Device Control Trackball with Enter button

Keyboard Slide-out 5-row QWERTY keyboard

GPS GPS navigation capability with Google Maps™

Connectivity Bluetooth® 2.0 with Enhanced Data Rate
Wi-Fi®: IEEE 802.11b/g
HTC ExtUSB™ (11-pin mini-USB 2.0 and audio jack in one)

Camera 3.2 megapixel color camera with auto focus

Audio Built-in microphone and speaker
Ring tone formats:
AAC, AAC+, AMR-NB, MIDI, MP3, WMA, WMV
40 polyphonic and standard MIDI format 0 and 1 (SMF)/SP MIDI

Expansion
Slot

microSD™ memory card (SD 2.0 compatible)

AC Adapter Voltage range/frequency: 100 ~ 240V AC, 50/60 Hz
DC output: 5V and 1A

Special
Features

Digital Compass, Motion Sensor

Table 7: HTC G1 Specification Table72

93

6.3.2 - Software

6.3.2.1 - User Interface

The aLife remote client software will be designed to give the user an intuitive,
responsive and fluid interface to the aLife system. The interface design will mix
text, icons, scrollable lists and gestures for the user to interact with. The user
interface look similar across platforms. The iPhone remote client software should
have the same look and feel of an Android version of the remote client software.
Since the scope of this project is focusing on Android, the following user interface
specifications will focus on Android. Remote client software build on other
platforms in the future will use the Android application as a design standard.

The Android operating system has a built in user interface element called the
menu bar. The menu bar is a header that contains icons that display system
information like WiFi signal strength, cell tower signal strength, battery level, time
and alarms. System icons in the menu bar are right justified (see Illustration 36).

Illustration 36: Android Home
Page

Applications may also place icons in the menu bar which will be left justified
(Illustration 37). Application icons can be used to represent things like new
emails, sync progress, new instant messages, appointments, or an aLife
notification. When the aLife remote client software receives a notification from the
aLife central control unit it will be displayed in the upper left corner of the Android
user interface, no matter what application is in the foreground. In these example
screen shots you can see the menu bar with no notification icons in the upper left

94

of the screen. In another there is a mail icon, notifying the user that new emails
are available for review. Finally, the with the menu bar dropped down the user
can see more information (Illustration 38), like the email account and the number
of new emails. Selecting (pressing) the notice takes the user to the email
application. The user can also press the clear button to dismiss the notification.

Illustration 37: Notification Icon

Illustration 38: The Notifications Window

The aLife remote client software will display an icon in the top left of the menu
bar to indicate that there is an notice for the user to review. The user will pull the

95

menu bar down to review what the event is related to. Selecting the notification
will take the user to the aLife remote client application where the user will be
presented with more detailed information and options. Examples of notifications
are energy usage, temperature issues, security and lighting. The aLife
notification icon will be supplemented with overlay graphics that indicate what
type of notification is waiting for the users review. If more than one notification is
pending then the aLife icon will be over-layed with a plus symbol to indicate
multiple notifications. The icon will have different graphic overlays to indicate
security, energy and temperature notifications.

When the user has pulled down the menu bar and pressed on an aLife
notification they will be taken to the aLife remote client application information
and control page (See figure X). These pages are designed to give the user
feedback and, if possible, control.

For example, if the aLife system is set to make sure the house is secure at
10:00pm and the garage door is open then the user will receive a security
notification in the top left the Android user interface. And audible tone may also
sound as described in the notifications subsection of the research section of this
document. When the user pulls down the menu bar the notification window will
indicate a security issue with the garage door. When the user selects the
notification the user will be presented with a screen similar to the one in
Illustration 39. The aLife remote client software will tell the user that the garage
door is open and that the reason the notification was presented is because it is
set to do so if the time is 10:00pm and the garage door is open. The user will
have the option to close the garage door, set the system to ignore the garage
door for the rest of the night or never remind the user in future.

96

Illustration 39: Example Notification with Garage Door Control

Similarly, the aLife system may inform the user to an unsafe condition with the
front or back doors (Illustration 40).

Illustration 40: Example Notification with Door Lock Control

97

In addition to security notifications, the aLife system may also alert the user to
energy saving conditions, such as when the temperature outside is similar to the
temperature inside. If temperature outside is lower than the temperature inside
and the HVAC system is working to cool the house, then the system could alert
the user (Illustration 41) to a money saving opportunity.

Illustration 41: Example Notification with Temperature
Variables

The remote client software menu system will be easy to follow and require
minimum about of pages flips or button presses to navigate. Devices currently
added to the system will be listed in a scrollable list, followed by additional
program options. The list will have inertial scrolling so allow for easy 'flicking'
through the list. Pressing the 'back' button on the device returns the user to the
previous menu.

Selecting a device will display a basic graph showing the device history. History
length will be determined at testing. Devices that have an energy history will
show their energy graph. Devices that have on/off states will show their on/off
history. Below the history will be buttons related to individual devices (Illustration
42). Button behavior will be based on the control-ability of the device and its
options.

98

Illustration 42: Device Menu Tree

The program options page (Illustration 43) will give the user general the ability to
control whether or not to maintain a constant connection with the server or
periodically check the server for updates to save battery life. The user will also be
able to mute just the aLife audio feedback, control if the service starts with the
phone, and input user name data.

Illustration 43: Program Options Menu Tree

Adding a ZigBee device to the aLife system is simplified by the GUI we designed.

99

Once the device is recognized by the system, the GUI will automatically present
the user with the options that are relative to that device. See Illustration 44.

Illustration 44: Add Device Menu Tree

6.3.2.2 - Android Based Hardware

One of the reasons our group gravitated towards the Android Operating System
was due to it's wide-scale availability in many popular consumer electronic
devices. This would allow us to leverage equipment that users already owned
and were accustomed to using, such as a cell phones or tablet computers. Due
to this, we decided to outline general specifications required of any potential
remote client device along with a more detailed specifications list for the
particular remote client device we will be using with our prototyped system.
 There are three general purpose specifications required of any potential remote
device. First, the hardware for the remote client device must, of course, be
capable of running Android 1.6 platform or later. Second, the hardware device
must provide the user a communication medium, such as a keyboard or
touchscreen LCD, to interact with the aLife software system. Third, the device
must be capable of accessing the Internet as that is our current means for
sending/receiving request to/from the Base Station.

For our prototyped system, we would like to have our remote device fit
comfortably in your hand having dimensions no larger than 5.00 in x 5.00 in x
1.00 in and weight less than 8 ounces. The device must have a replaceable
rechargeable battery supply along with the ability to run off of an AC power cord.

100

6.3.2.3 - Remote Client Operating Systems and Software

aLife's software system was fashioned with simplicity and convenience in mind.
 We wanted any member of a family, young or old, to feel comfortable using our
system with little to no learning curve. We also wanted to avoid having the
system feel too simplistic and lose value with our clientèle. Our focus was then
to make the software robust, simple, and quick. In order to meet these goals we
needed our software system to be able to run on any Android enabled device
running Android 1.5 platform or later. We needed the software system to provide
secure data communications with the base station over the Internet and respond
to user request withing a timely manner (under 2 seconds under nominal
conditions). Our system will need to be equipped with a mechanism for
authenticating log-ins for different user profiles. We need our software to provide
help menus to our users to assist with specific tasks and general operation. We
need our system to be able to provide notifications to our users whether it's the
active process or just a background process.

6.3.2.4 - Client/Server Communications

The aLife server will communicate event notifications over TCP/IP using a
custom protocol. The protocol establishes differences between priority levels,
notification type (power, temperature, etc.), and device controllability. Table 8
specifies the the types of notifications the server will handle, the more specific
notification and control options and the command and response types.

101

Notification
Type

Event Name
Server -> Client
Protocol Number

Client -> Server
Protocol Number

Power Monitoring
Device Specific
with
Power Control

1 1

Power Monitoring
Device Specific
without Control

2 3

Power Monitoring
Whole House
Power
Information

3 3

Temperature
Monitoring

Indoor
Temperature with
HVAC Control

4 2

Temperature
Monitoring

Indoor
Temperature
without Control

5 3

Lighting
Device Specific
with Power Control

6 3

Security
Door Lock with
Control

7 3

Security Window Sensing 8 3

Security Motion Sensing 9 3

Security
Garage Door with
Control

10 3

Table 8: Server to Client Notification Types

Protocols are transferred over TCP/IP between the server and client. Different
event notifications require different GUI's that are tailored to the event. See Table
9, Table 10, Table 11. The GUI is designed to be transparent enough to allow for
additional devices be implemented in the system with minimum reprogramming
required for the client. Basic GUI pages will be constructed to cover several
event cases, with the headings and button field information coming from the
server for each event. The following two tables describe the protocol the aLife
server will use to communicate event notifications to the client.

When the client software receives a notification, it will be listed in the Android
notification window. Selecting the notification in the GUI causes a page flip to a

102

GUI designated for the event type. The event type determines if the user will be
presented with control options, temperature or time set points, power control or
silencing options.

Type 1
(Power)

Type 2
(Power)

Type 3
(Power)

Type 4
(Temperature)

Type 5
(Temperature)

Notification
Type

Notification
Type

Notification
Type

Notification Type Notification Type

Notification
Level

Notification
Level

Notification
Level

Notification Level
Notification
Level

Notification
ID#

Notification
ID#

Notification
ID#

Notification ID# Notification ID#

Short
Heading
Text

Short
Heading Text

Short
Heading Text

Short Heading Text
Short Heading
Text

Heading
Text

Heading Text Heading Text Heading Text Heading Text

Button 1
Text

Button 1 Text Current Temp

Button 2
Text

Button 2 Text

Button 3
Text

Button 3 Text

Current Set
Time

Current Temp

Current Set Point

Current HVAC
Mode

Page Flip Page Flip Page Flip Page Flip Page Flip

Display
State with
Control
Options

Display
History with
Notification
Options

Display
History with
Notification
Options

Display State with
Control Options

Display History
with Notification
Options

Table 9: Server to Client Notification Protocols 1-5

103

Type 6
(Lighting)

Type 7
(Security)

Type 8
(Security)

Type 9
(Security)

Type 10
(Security)

Notification
Type

Notification
Type

Notification
Type

Notification
Type

Notification
Type

Notification
Level

Notification
Level

Notification
Level

Notification
Level

Notification
Level

Notification
ID#

Notification ID#
Notification
ID#

Notification ID# Notification ID#

Short
Heading
Text

Short Heading
Text

Short Heading
Text

Short Heading
Text

Short Heading
Text

Heading
Text

Heading Text Heading Text Heading Text Heading Text

Page Flip Page Flip Page Flip Page Flip Page Flip

Display
History with
Notification
Options

Display History
with
Notification
Options

Display History
with
Notification
Options

Display History
with
Notification
Options

Display State
with Control
Options

Table 10: Server to Client Notification Protocols 6-10

104

Protocol Data Size Description

Notification Type 1 Byte
Defines the rest of the data fields in the
protocol and the GUI presented to the user

Notification Level 1 Byte
Defines how the client device alerts the
user to the receipt of the notification

Notification ID# 1 Byte

Used to keep track of notification events.
When the user responds with a command,
the client will respond with the notification
ID# that initiated the notification

Short Heading
Text

<32
Characters

The space for text in the Android
notification window is limited so here we'll
provide the event type. Ex: "Garage Door
Open" or "HVAC Temperature Problem."

Heading Text
<128
Characters

Once the user is in the aLife client
application there is more screen space to
present information to the user. Ex: "Hello,
it's after 10:00PM and your garage door is
still open."

Button 1 Text
<64
Characters

Button 1 will display control options. Ex:
"Close it for me." or "Turn it off for me."

Button 2 Text
<64
Characters

Button 2 will display a snooze option text

Button 3 Text
<64
Characters

Button 3 will display an ignore option text

Current Temp 1 Byte
Current temperature indoor temperature.
Outdoor temperatures will be displayed in
the heading text.

Current
Time/Temp Set
Point

1 Byte The current set point the HVAC is at

Current HVAC
Mode

1 Byte

The current HVAC Mode:
1 - Off
2 - Cool, Fan: Auto
3 - Cool, Fan: On
4 - Heat, Fan: Auto
5 - Heat, Fan: On

Table 11: Server to Client Protocol Definitions

105

Every notification event will have a response option available (Table 12). A
response to a notification is not necessary. The user has the option of clearing
the notification out of the Android notification window without opening the remote
client software. The response type is determined by the notification type. The
response type is designed to be generic enough to only require three different
types, as defined in the table below. The remote client software will transmit all
fields of information back to the aLife server. In the case of a time or temperature
set point, the remote client software will transmit the set point back to the server.
The server will determine if the set point has been changed and needs updating.
If the "set" button was pressed, the button number response will be zero.

Response Type 1 Response Type 2 Response Type 3

Notification ID# Notification ID# Notification ID#

Button # Pressed Button # Pressed Button # Pressed

New Set Time New Temp Set Point

New HVAC Mode

Table 12: Client to Server Response Protocols

Notifications are a critical component of the aLife system (Table 13.) Since the
system is designed to run silently until a notification is sent to a user it is
necessary for the receiving device to be able to receive those notifications at all
times. Notifications with high levels of importance should display a pop-up alert
and play a sound to alert the user whether they're playing a game, browsing the
web or carrying the phone in their pocket. Notifications from the aLife system that
don't require immediate attention could use less subtle notifications.

106

Notification
Type

Notification Name Notification Select Page Flip

1
Device Power Monitoring and
Switching

Graph with Power Control

2 Device Power Monitoring Graph

3
Whole-House Power
Monitoring

Whole House List

4
Indoor Temperature with
Control

Graph with control buttons

5 Indoor Temperature Graph

6 Lighting
Device History with Power
Control

7 Door Security
Device History with Lock
Control

8 Window View Device List

9 Motion Sensor View Device List

10 Garage Door
View Device Graph with
Control

Table 13: Client Notification Page Flip List
Notification
Level

Notification Name Notification Action

1 Urgent Audible alert with popup

2 General Audible with icon

3 Passive Icon only
Table 14: Server to Client Notification Levels

107

7 - Design Summary

7.1 - Wireless Sense and Control Modules

The wireless sense and control modules generally fit into the overall aLife system
as shown in illustration below:

108

The wireless modules will form a mesh network throughout the home to include
all modules so that they all have a data route back to the base station. An
example mesh network is shown in the illustration below.

Each wireless sense and control module has an MCU with a ZigBee transceiver
built into it that runs the Freescale BeeStack Consumer RF4CE protocol stack.
The stack interfaces with the ZigBee PHY, and MAC, as well as the MCU
application layer as shown below.

Illustration 2: (Wireless network pic here - illustration
18)

109

The hardware to implement the MCU, ZigBee transceiver, power supply, and
sensor and controls is in the schematics below, and the associated bill of
materials below that.

Illustration 3: (zigbee protocol stack pic
here - illustration 16)

110

Illustration 4:

111

Illustration 5:

112

113

114

7.2 - Base Station: Hardware

The Base Station hardware can be defined by two big components. The first
being the LPC3250 OEM Board. The following Illustration is of the LPC3250
board.

The functional requirements implemented by this can be found in the following
Illustration. This demonstrates the functional block diagram for the
microprocessor on the OEM Board.

Illustration 8: LPC3250 OEM Board

115

The other main component of the hardware is the QVGA Base Board. The
following Illustration is a picture of what it looks like with the LPC3250 OEM
Board in place.

Illustration 9: Functional diagram of microprocessor

Illustration 10: QVGA Base Board picture

116

The following illustration is the functionality that this base board will bring to the
project.

7.3 - Base Station: Software

The base station software will consist of the following classes, methods, and data
structures.

7.3.1 - Base Station Class

The base station class will be the responsible for creating the GUI, interacting
with Users, and fulfilling any autonomous services request required of the base
station. The handlers for the database and socket connections available directly
through the Android API which will not require our team to create any auxiliary
classes. The class fields and methods are explained below.

Fields:

• PowerNotif (Bolean): Field tells whether a powered device notification is
set up

• SecurityNotif (Bolean): Field tells whether a security device notification is
set up

• ControlNotif (Bolean): Field tells whether a control device notification is
set up

• ActiveDevices(Device []): Array of active devices in the network
• RequestedService (String): Integer representation of a request

Methods:

• BaseStation ():Constructor to create the GUI interface for our system.
• getActiveDevices(): Takes in no parameters. Returns all active devices in

database.
• addDevice(Device X): Adds specified device to network and database.

 No return.
• removeDevice(Device X): Removed specified device from network and

database. No return.
• setNotifications(): Takes no parameters. Sets all initial notifications

booleans. These will dictate which notifications will be checked for
continuously throughout the program.

• pollDevices(ActiveDevices): Takes in all active devices and updates their

117

information in the database tables. Returns nothing.
• socketParser (ByteStream): Takes in a socket byte stream and returns

the requested service in string format.
• requestService (Device X, RequestService): This method will take in a

device and service request and will fulfill the said service. Returns
nothing.

7.3.2 - Device Class

The devices class is the abstract parent class of all specific controlled devices. It
will be extended by a PowerDevice class, SecuirtyDevice class, and
ControlDevice class.

Fields:

• ID (Int) : Device's ID
• Name (String): Name provided by user for device
• Status (Boolean): Provides status of device, on or off

Methods:

• getID(): Takes in no parameters. Returns an Int, the value of the devices
ID.

• setID(Int ID): Takes in an Int and updates ID field. Does not return
anything.

• getName(): Takes in no parameters. Returns a String, the value of the
devices Name.

• setName(String name): Take in a String and update Name field. Does
not return anything.

• getStatus(): Takes in no parameters. Returns Status of device
• setStatus(Boolean Status): Takes in a boolean and updates Status of

device. Does not return anything.

7.3.3 - PowerDevice Class

The PowerDevice Class will be a factory class for power monitoring device ob-
jects.

Fields:
• TotalWatts (Int): Provides total watts used by device
• SetWatts (Int): Provides user defined limit for watt usage
• CurrentTemp (Int): Provides current temperature information
• SetTemp (Int): Provides user defined limit for temperature
• PollTime (Int): Time the information was polled

118

• SetTime (Int): Set time for notification purposes
• Timeframe (Int): Timeframe for power information i.e. 7 days or 30 days

Methods:
• PowerDevice(): Constructor to create object. Will have generic and spe-

cific constructors.
• turnOn(): Takes in no parameters. Sends message to Zigbee device to

turn on
• turnOff(): Takes in no parameters. Sends message to Zigbee device to

turn on
• getTemp(): Takes no parameters. Polls Zigbee device for temperature.
• setTemp(Int Temp): Sets Zigbee device with provided temperature. Does

not return anything.
• getWatt(): Takes no parameters. Polls Zigbee device for wattage.
• getTimeframe(): Takes in no parameters. Returns the timeframe field.
• setTimeframe(Int Timeframe): Sets the timeframe field. Does not return

anything.

7.3.4 - SecuirtyDevice Class

The Security Device Class will be a factory class for security monitoring device
objects.

Fields:
• SetTime (Int): Provides set time for any notifications

Methods:
• SecurityDevice(): Constructor to create object. Will have generic and

specific constructors.
• turnOn(): Takes in no parameters. Sends message to Zigbee device to

turn on
• turnOff(): Takes in no parameters. Sends message to Zigbee device to

turn on
• isOpen(): Takes in no parameters. Returns true if Zigbee device is open.
• IsLocked(): Takes in no parameters. Returns true if Zigbee device is

locked.

7.3.5 - ControlDevice Class

The ControlDevice Class will be a factory class for controlled device objects.

Methods:
• ControlDevice(): Constructor to create object. Will have generic and spe-

cific constructors.

119

• turnOn(): Takes in no parameters. Sends message to Zigbee device to
turn on

• turnOff(): Takes in no parameters. Sends message to Zigbee device to
turn on

7.3.6 - Database

The SQLite database will be utilized to store information about current users, de-
vices, power history, notification history, and notification set ups. Each of these
elements will be have their own table in our database with their own specified
fields. Listed below is our database structure.

Users:
• ID (Int)
• Password (String)
• Name (String)
• Permission (Boolean)
• IP Address (String)
• Fail Attempts (Int)
• Failed Time (Int)
• Success Time (Int)

Devices:

• ID (Int)
• Device Type
• Name (String)
• Address (String)
• Field1 (Various Types)
• Field2 (Various Types)
• Field3 (Various Types)
• Field4 (Various Types)
• Field5 (Various Types)
• Field6 (Various Types)
• Field7 (Various Types)
• Field8 (Various Types)
• Field9 (Various Types)
• Field10 (Various Types)
• History1 (Various Types)
• History2 (Various Types)
• History3 (Various Types)
• History4 (Various Types)

Power History:
• Device ID (Int)

120

• Power Usage (Int)
• Time of Day (Int)

Notification History:
• Notification Type (Int)
• Notification Level (Int)
• Notification ID (Int)
• User ID (Int)
• Device ID (Int)

Notification Set Up:
• ID (Int)
• Description (String)
• Users (String)
• Set Time (Int)
• Set Temp (Int)
• Set Energy (Int)

7.3.7 - Remote Client: Software

The remote client software is described in the following section.

7.3.8 - Remote Client Operating Systems and Software

aLife's software system was fashioned with simplicity and convenience in mind.
We wanted any member of a family, young or old, to feel comfortable using our
system with little to no learning curve. We also wanted to avoid having the
system feel too simplistic and lose value with our clientèle. Our focus was then
to make the software robust, simple, and quick. In order to meet these goals we
needed our software system to be able to run on any Android enabled device
running Android 1.5 platform or later. We needed the software system to provide
secure data communications with the base station over the Internet and respond
to user request withing a timely manner (under 2 seconds under nominal
conditions). Our system will need to be equipped with a mechanism for
authenticating log-ins for different user profiles. We need our software to provide
help menus to our users to assist with specific tasks and general operation. We
need our system to be able to provide notifications to our users whether it's the
active process or just a background process.

121

8 - Prototyping
The goal of the prototyping section is to discuss our team's strategy for
implementing our design into a working prototyped model. This section will
include information about PCB layouts, PCB manufacturing, parts acquisition and
component placement, and software implementation strategies.

8.1 - Parts Acquisition

The overall strategy our team is going to employ for acquiring parts is to find the
lowest priced parts we possibly can. We will continue to make cost our number
one priority when choosing a vendor unless time constraints will delay the
production of our final product. In order to successfully employ this strategy our
team is going to need to start acquiring parts as soon as possible and utilizing as
many resources as we can to compare vendors. Our team expects to get most
of our parts via online vendors due to the relatively cheap prices offered and
large selection of components. All items currently on loan to our group are
already in our possession and do not need to be sought after during this
timeframe. The purchasing of the hardware equipment will be the responsibility
of our hardware designer. We expect to have all parts purchased prior to any
major component installation based on the dates dictated by our milestone
charts.

8.2 - Hardware Implementation

There are three major hardware components that need to be built for our project,
the base station hardware, the wireless Zigbee modules, and the wireless Zigbee
base station. Due to the design decisions made during the development process
the hardware components needed to implement the wireless Zigbee base station
are the same as those needed for the wireless Zigbee module. For this purpose
we will group our implementation strategy for both of those items.

8.2.1 - Wireless Zigbee Base Station and Zigbee Module

Our team expects to spend the most of hardware development time building our
wireless Zigbee modules. For this reason we wanted to have as much man
power available as we could to assist with the labor. We decided to have all
software development done in the first third of our second semester so we could
focus the rest of our time implementing our hardware and integrating it with the
rest of our system. We expect to have all parts necessary for the build on hand
prior to configuring our modules and roles assigned to each individual builder.
Our plan is to have all hardware built and tested by the due dates set out in our
milestone chart. The stage of development will be considered complete when
the hardware modules meet all required specifications as outlined in the
document.

122

8.2.2 - Base Station Hardware

The Embedded Artist Demo Board is the only hardware necessary to implement
the Base Station hardware. We received the board on loan from Infrasafe, Inc
with all parts pre-assembled. The android port has already been compiled and
configured to work on the unit. Our team does not expect to spend any time
assembling or configuring the hardware for the base station.

8.3 - Software Implementation

There at two major software system's that will need to built for our project, the
base station software and the remote client software. Each system's functionality
has been discussed in detail in the paper's design section but no strategy has
been provided on how we will implement our design. The provided sections
below will discuss our team's strategy for coding, unit testing, integration testing,
and operating our system.

8.3.1 - Coding

At the end of Senior Design I our team expects to have all the design and
analysis completed for both our major software systems. The natural
progression from there, following our software model, would be to immediately
start the coding phase. Our milestones chart indicates that we wish to have both
the base station software and remote client software completed by the first third
of the semester. In order to meet these needs we will need to break the software
development responsibilities up between all our software engineers and work on
our respective modules in parallel. The software design clearly outlines all of our
modules preconditions and postconditions making it easy for our team to take
this modular approach to coding. We will coordinate our current progress during
team meetings while setting deadlines for completion of units. If a software
engineer were to complete there section of work they shall move on to other,
uncompleted units until both software packages are complete which will signify
the end of this stage of development.

8.3.2 - Unit Testing

Both the remote client software and base station software should be completed
by the first third of the semester. Following the guidelines of our milestone chart
the unit testing shall be completed by the first third of the semester of Senior
Design II as well. Unit testing responsibilities will be dividing amongst all of our
software engineers. Each module created by a software engineer needs to be
individually tested to verify all preconditions and postconditions are meet. If a
test unit fails it is the responsibility of the software engineer to troubleshoot the
issue and specify whether a redesign in specifications or design is necessary. If
a change is needed then the issue will be brought to the entire software team to
discuss and rework. This stage of development will be considered completed
when all modules for the base station software and the remote client software
have successfully passed all unit tests.

123

8.3.3 - Integration Testing

The integration testing shall take place after all unit testing has been completed.
 Following the guidelines of our milestone chart all integration testing shall be
done by the first third of semester of Senior Design II. The integration testing will
involve our software engineers following the guidelines of our test plan on both
the remote client device and base station software. All faults will be categorized
based on our evaluation criteria and will be debugged by the individual who
discovered the bug. It is the responsibility of the software engineer who is
running the test to specify whether a redesign in specifications or design is
needed due to a test failure. If a change is needed then the issue will be brought
to the entire software team to discuss and rework. The completion of this stage
will be denoted by the successful passing of all test cases for both the base
station software and the remote client device software.

8.3.4 - Operation

The operation stage takes place when the remote client software, base station
software, and aLife hardware components are complete and have been
integrated together. Following the guidelines of our milestone chart this stage
shall be completed by the end of Senior Design II. This stage demonstrates our
system's ability to meet all functional specifications described throughout our
document. Every member of our team will be responsible for testing our
software's ability to integrate with other units of our project. If there is an issue
that is discovered it is up to that team member to decide if redesign is necessary
in the specifications or design. If a change is deemed necessary then the issue
will be directed to the appropriate work group and will be reworked. This
completion of this stage will be signified by a successful demonstration of our
product to our Senior Design Panel.

124

9 - Testing and Evaluation

9.1 - Test Plan

aLife is a complicated system with many hardware and software components to
consider when selecting a testing plan to follow. With the built in modularity of the
three subsystems of the project and the need to interconnect them at the final
product, we decided to go with an integration style testing procedure. With this
type, it offers us a chance to first do some basic tests on the individual systems
before putting the final project together. To further help us in this goal we decided
to go with the Bottom-Up Integration Testing scheme. The following figure shows
a representation of what a Bottom-Up implementation looks like.

This style of testing, as seen in Illustration 45, begins at the most basic levels of
the system, and starts testing there. In this example they start with M1, M2, and
M3, and in aLife we will start with the 3 basic components of the system: the
Base Station, the remote client, and the ZigBee network. Once all of the tests,
run until a satisfactory result is obtained, we will start integrating the systems
together. Once 2 or more sections are integrated, we will run the tests for each of
the individual sections on this newly integrated part and test for correctness. This
method allows for easy testing for a very modular project, like aLife is, and it
allows us to focus on the very fundamentals of what our project is oriented to do.
It makes making test cases easier since there is a lot of re-use of them and it
allows for a very thorough test once the entire project is put together. The
following tables are the guidelines that we are going to follow for implementing
each of the different systems for aLife.

Illustration 45: Diagram of a Bottom-up Integration Test

125

For hardware testing using this model, it would be very tedious to check each
component individually on the board and then reassemble it in order to test a
completely different unit being integrated into the project. For this reason, this
particular testing scheme will deal with testing each of the individual
specifications of the hardware components. Once that test has been established
as a "passing" score, we will put the hardware pieces together and do an overall
hardware systems check. This will allow us to continue to use the Bottom-Up
model, as we will keep checking each of these requirements each time a new
part is added, and we also don't have to tear apart our whole board when there is
new testing to be done.

9.1.1 - Base Station: Hardware Tests

9.1.1.1 - Component

Component Test Name Description

NXP LPC3250
Microcontroller

Power
Test that the microcontroller works at 1.2V
by supplying that much power to it

Timers
Run a test on the timers to make sure they
are working correctly

Memory
Power up the microcontroller and see if you
can process anything by using the memory

Serial Interfaces
Connect the device to the appropriate
interface to make sure the serial interfaces
are working as intended

USB
Hook up a USB device and make sure that
the controller can interface with it

Ethernet
Test whether the microcontroller can
interface properly with the internet

Memory Card
Test to see if the memory card interface by
putting in the appropriate SD cards and
checking the results

LCD controller
Test that the microcontroller has the LCD
controller working

Keypad interface
Hook up a keypad to see if the interface is
working

External memory controller
Test by installed the appropriate DDR and
SDRAM and making sure it works

Low Power Mode
Turn the device to .9V to make sure that
low power mode is working properly

Table 15: Microcontroller tests

In Table 15 above, we test each of the individual features of our chosen
microcontroller. Once we have determined that all of those features are working
correctly, we will then place it in the OEM Board. With that in place, we will begin

126

to test the board and the microcontroller together, as seen in the following table.
Since we have to integrate all of the hardware pieces together as we are building
the base board, some of the test for each of the components will overlap.

127

Component Test Name Description

LPC3250 OEM
Board

Power
Supply the board with 3.15V-3.3V
and verify that is operational

External Flash
Connect the recommended 128 MB
NAND FLASH and test that it is
working

Data Memory
Test that the 64MB SDRAM is
working properly by having the board
store some type of information.

Connectors
Verify that the expansion connectors
are correct and that they will interface
with the Base Board

LED
Run a test on the board to verity that
it can output some results to the
LED's

Databus
Verify that the databus will transmit
data to the destination

Table 16: LPC3250 OEM Board tests

From the table above, we have thoroughly measured the working specifications
of the OEM Board. With that component working, we will move on the final state
of integration of the Base Board component. Since this is the final step of the
hardware integration we want to make sure that systems vital to the performance
of this piece are retested in this integrated environment. The following table
outlines the tests that will be performed on the Base Board component.

128

Component Test Name Description

QVGA Base Board Power
Test that the device can draw it's power from either a
USB port or directly from 9-15V DC

LCD
Test that the LCD screen is operational and make
test the LCD controller in the microprocessor is
working

OEM SODIMM
connector

Plug the OEM board into the Base Board to verify the
connectors are working

Ethernet
Connect an Ethernet cable to make sure the
interface is working properly

USB
Connect a USB device and verify the Base Board
can act as both a master and Slave to the external
device

RS232
Make a connection to the RS232 interface and verify
that is working properly

IR transceiver
Test the IR transceiver by allowing it to transmit and
receive IR signals

Power Supply
In accordance to the voltage requirements in the
earlier test, make sure this falls within acceptable
ranges

5-key joypad
Enable the joypad and verify it works through use of
the LCD

Accelerometer
Verify the 3 axis is operational by use of a specific
LED lighting up when the Base Board is turned

Analog input
Verify the analog input is working correctly by
connecting the proper input and verify the input date
is correct

USB/Serial Bridge
Test that the USB to serial bridge is operation by
connecting a USB device and having it output data to
the serial bus

Reset button
Test that the reset button will reset the Base Board
and any integrated components on board

Speakers
Test the speakers by having the Base Board output
some type of audio sound

Table 17: QVGA Base Board tests

With these of testing cases completed, we now have a working base board
model that we can then use in the rest of the integration testing. As before stated,
it would be very inconvenient for the previous 3 table's worth of testing
procedures had to be replicated whenever one of the 3 subsystems was added
into the integrated part of the project. For that reason, the following table will be
all of the tests we chose to implement.

129

9.1.1.2 - Base Board

Test Name Description

Plug in the base station
Turn on the base station and make
sure all of the components are on

Check Embedded Artists board
Make sure that the embedded artist
board is functioning correctly.

Drivers
Test to see if the drivers for the board is
properly controlling

Test Memory
Make sure all the memory on the
board, built in or external, is fully
functional

Ports
Check to make sure that all output
ports on the device are working

Ethernet
Test that the board is properly receiving
Internet

USB
Make sure that the built on USB port
allows for devices to be connected to it

Data Communication
Test that the output ports of the base
board and the USB port are all able to
send and receive information correctly

LCD Screen
Make sure the LCD screen is properly
powered and able to transmit any
relevant data to it's screen

Reset
Allow for testing of the Reset button to
make sure that the board can properly
be restarted

5-key Joypad
Make sure the built on joystick on the
board is working properly

Speakers
Test that the speakers are turned on
and allowing for noise to be emitted

Table 18: Integration tests - Base Board

The above list represents the core features that we need working for our Base
Board to be functional and our project to be able to function properly.

9.1.2 - Software Tests

Below is Table 19 - Table 22, the Base Station's Software's test cases. The
provided test cases will verify the base station software is working as expected.

130

Test Test Objectives Test Description Expected Results

Create New User
/ Remove a User

Verify the base
station is able to
add new users
and remove users

Register a new user
option selected. A valid
user login and password
are provided. After
successfully registering
the user will be removed
from the system

New user credentials will be
accepted by the system and a
new entry will be added to the
user table. The user will then
be unregistered and removed
from the table.

Login/Log out

To verify a user
can log in and out
of the base
station software

Login option selected. A
valid user's login and
password are provided.
 After successful login the
log out option is selected.

A user is successfully granted
access into our system. After
logout option selected the
user is successfully logged
out of the system.

Multiple User
Request

Multiple users will
send request to
the user to verify
all request are
fulfilled on a first
come first serve
basis

Multiple users will submit
the same request to the
same ZigBee device.
 Multiple user will respond
to the same notification at
the same time.

The base station will respond
to the request on a first come
first serve basis. All
unsuccessful request to have
a response notification sent to
the user.

Table 19: Software Tests - part 1

Test Test Objectives Test Description Expected Results

Modify Database
Table

To verify that the
system can add,
remove, or
update all table
in the database

A method call to the
database handler class
will be made to add a
row, delete a row, and
modify a row in every
table in the database

All data gets inserted
successfully, all data get
deleted successfully, and
all data gets modified
successfully.

Connect with
Remote Device

To verify we can
make successful
duplex TCP
connection's
between the
base station and
remote client
devices

A connection attempt will
be made with one
remote client device.
 Every successful
connection a new device
will attempt to connect
up until 5 total devices
are connected

All remote client devices
shall successfully connect
to the base station

ZigBee Device
Check

To verify the
base station can
communicate will
all ZigBee
devices currently
on the network

A call will be made to
each ZigBee device
connected to the
network and all that
ZigBee device's
functions will be test

The base station will be
able to successfully
communicate with the
ZigBee device and all
commands will work as
expected

Table 20: Software Tests - part 2

131

Test Test Objectives Test Description Expected Results

Notification
Delivery
Test

This test is to verify
only users set up for
notifications receive
notifications and that
each notification has
a unique ID

We will feed the system
simulated information that will
make a notification condition
true. The base station will
cross reference the
notification set up table and
only send notifications to user
who are registered. The
notification history table will be
updated with notifications sent
out. This will be done for all
notification types.

Only those user who
requested
notifications will
receive them. All
notifications will be
sent out with a
unique notification ID.

Create
Database

To verify that a
database can be
created by the base
station

A method call to the database
handler class will be made to
create a new database

A new SQLite
database file will be
created

Locked Out

To verify security
mechanism to lock
out user who place
in incorrect login
credentials at least 5
times are locked out

Five login attempts will be
made with a non valid user
login and password

A user should be
prompted of login
error and not be able
to login to the system
for at 5 minutes.

Table 21: Software Tests - part 3

Test Test Objectives Test Description Expected Results

Add / Remove
ZigBee Device

To verify the base
station can add or
remove a ZigBee
device from the
ZigBee network

An attempt will be made
to add a new ZigBee
device to the network.
 After successfully
adding the device to the
network an attempt will
be made to remove the
device.

The device will be
successfully added to
the network and then
successfully removed
from the network.

Self Polling

To verify the base
station is able to poll
all ZigBee devices
withing five minutes
and update their
status information in
our database

The base station will poll
all active ZigBee devices
on our network for their
status information and
send that data to our
database

The base station will
successfully receive the
status information and
successfully add it into
our database

Single User
Request

A single user request
will be made to every
ZigBee device on the
network to verify all
capable functions
can be fulfilled

The user will request all
available service from
every ZigBee device on
the network

All request will be
fulfilled sucessfully

Table 22: Software Tests - part 4

132

9.1.3 - Remote Client tests

Table 23 is the Remote Client Software test cases. The provided test cases will
verify the base station software is working as expected and meets all required
specifications.

Test Test Objective Test Description Expected Results

Turn on
Be able to turn on the
Remote Client

Physically turn on the
device and see if it
functions properly

The device should be
able to turn on properly

Log on/off
Be able to log in or out
of your profile at the
Base Station

Have the Base Station
on and be able to log
into a profile from the
remote client

There should be no
problem logging in and
out of a profile

Test Notifications 1
Be able to receive
notifications

Have the Base Station
send a notification to
the remote client

The remote client
should be receiving
notifications

Test Notifications 2
Be able to send
notifications

Send a notification
back to the Base
Station and verify that
is has been received

It should also be able
to send them out

View network
Be able to view active
ZigBee nodes

Access the network of
active ZigBee devices
from the Remote Client

The user should be
able to see the network
of active nodes

Access a Node
View information being
collected from a node

Select a ZigBee
module and be able to
see information
regarding it's status or
anything else it reports

The user should be
able to read
information regarding a
particular node

Add/Remove a node

Be able to add or
remove a ZigBee
device from the remote
client

Use the Remote client
to add a ZigBee device
to the network, then
use it to remove one

The Remote Client
should be able to
add/remote with no
problems

Notification interaction
Be able to interact with
incoming notifications if
they allow for it

If a notification is able
to be interacted with

The notification should
work correctly upon
receiving a command

Edit Profile
Be able to edit some
settings on your use
profile

Change something in
your profile and make
sure that the change
saves

The profile information
that we edited should
be correct

View History

If a node records
history, be able to view
it's past performance
or data

View the history of a
device from the
Remote Client

The history of a device
should be properly
displayed

Table 23: Remote Client Tests

133

9.1.4 - ZigBee Modules

 Below is Table 24 and Table 25, the ZigBee Module test cases. The provided
test cases will verify the ZigBee module is working as expected and meets all
required specifications.

Test Name Test Objective Description Expected Results

Enable Device

Make sure the
ZigBee module is
able to be
connected to the
network

We will supply
power to a ZigBee
Module and
attempt to detect
the device

The ZigBee device
should be detected
by the Base
Station

Add Device
Add a ZigBee
Module to the
ZigBee network

Integrate the
current module into
the network

The module should
be correctly added
to the network

Power

Verify that the
device is getting a
proper power
supply

Test that the
voltage supply is
between 3.4V DC
and 3.2V DC

The power should
bet within the
proper range

Ripple
Determine is the
ripple voltage is
within parameters

Test that the ripple
voltage is < 50mV

The ripple voltage
should be at a
nominal level

Power Monitoring

Test whether the
device can
accurately detect
power

Have the module
plugged into a wall
and measure the
power drawn.
Compare that with
the information the
module is
recording

The module should
be within a
reasonable range
of correctness:
>85%

Table 24: ZigBee Modules Tests part 1

134

Dimmer
Make sure the light
dimmer feature is
working correctly.

Have a light connected
to the module and look
to see if the light dims
as you adjust the
settings.

The module should
allow some control of
dimming functionality
to the light

I/O
Verify that the I/O lines
of the ZigBee device is
working

Measure the analog
and digital separately
to verify they are
outputting the correct
information

All of the output ports
should be functioning
correctly

Transmission range
Test the transmission
range of the device

Measure that the
ZigBee module can
transmit upwards of 30
meters away

The ZigBee should be
able to transmit at
maximum range, or
within 2 meters of it

Data rate
Test the data rate of
the system

Verify that the module
can transmit data at
speeds >= 200kb/s by
collecting the output
and clocking the speed

The output should be
at least 200 kb/s to
pass the test

Disable Device
Be able to disconnect
the device from the
network

Be able to disconnect
the device from the
network, either
physically or remotely

Test that the device will
correctly disconnect
from the ZigBee
network

Power Down Turn off the device
Test that the device
can be properly shut
down

The device should be
able to be powered off

Correct Data

Verify the correctness
of the data being
transmitted from the
module

Depending upon the
application this module
was created for,
determine correct
output logically and
compare that to the
physical output being
received

The device should be
able to output
information, and that
information should be
correct in the context in
which the device is
sending it

Table 25: ZigBee Modules Tests part 2

9.2 - Evaluation Criteria

Testing is a very integral part of any project. Since aLife incorporates so many
types of hardware and software features working with each other, thoroughly
testing each of the parts will be a challenge. In order to ensure proper testing is
done, we need to define what is and what isn't going to be considered a fault and
what category that type of fault falls under. This will allow for easier individual
testing, and will help ensure than any integrated system tests towards the
conclusion of our project are made easier.

Software faults

135

Doesn't run at
all

Only runs
partially

Runs but no
output

Incorrect
output

Correct Output,
but Slow
Performance

1 2 3 4 5
Table 26: Hardware faults categories

Doesn't turn on

Not reliable
100% of the
time in it's
functionality

Turns on but
no output

Incorrect
output on the
ports

Slow
processing
time

1 2 3 4 5
Table 27: Software faults categories

The above tables list out specific criteria that will be looking for in our project in
order to identify any faults that might have occurred. The label fields at the top
are a description of what type of fault has occurred, while the number below is
corresponds with a ranking of how "bad" that particular fault is. With this list we
can then work towards testing each of the individual sections and allow
corrections to be made according to urgency.

The lower the score of a particular part, for example the OEM board, the worse
condition it is in. For the aLife to be a reliable and efficient system, we need
these tests to be conducted and passed within a very high margin. Although
some of the categories don't apply in all cases to all modules being tested, the
tester can interpolate the region in the scale where the part functioned
incorrectly. This will allow us to quantify our test results and give us a standard,
testable basis for retests and comparisons between modules. Since we want to
keep accurate results and allow some type of comparisons between the
hardware and software components of this project, the tests will be formatted in
the following way. For each module, the tester will find the proper list of testing
cases that are required to thoroughly test that piece. Once the tests have been
completed, the numbers you gave each of the sections indicating where they
ranked on the above Hardware/Software scale is written down and added. Since
5 is the "best" score that you can give any test area, we will find the ratio
between what we scored the module and what the total score was. If it was
anywhere under 90%,there will be a discussion and research on where the
module was struggling at. In the case of multiple modules being integrated
together failing to produce the intended percentage, then both will be taken back
apart and improved individually before retrying the integration testing.

136

10 - Project Management
One of the most important elements to having a successful senior design project
is team management and organization. Having four individuals with a great
foundation in math, science, and engineering principles will only get you so far, it
takes good team communication and a well organized plan of execution in order
to facilitate a productive work environment. This, as our team found, is a
principle that is a lot easier to understand than it was to implement. Issues such
as scheduling coordination, distributing balanced workloads, compromising on
design ideas, and dealing with last minute adjustments were not easy issues to
address and could have easily caused a disruption in our work flow or, even
worse, led to an unsatisfactory final product. This was obviously an
unacceptable outcome for our team which lead us to focus a lot of our early
energy on establishing routine meetings, staying organized, and setting clear
milestones for project completion.

10.1 - Team Meetings

Meetings were a pivotal tool used by our team to stay up to date with each
individuals current progress and keeping everyone focused on meeting our
desired objectives. Our team set a goal to have at least one meeting a week with
all group members attending. Most of our meeting were done virtually through
Skype (Beta) Version 5.0.0.105 using the video conferencing feature with in
person meetings only held on an as needed basis. This helped to alleviate a lot
of the coordination issues we were experiencing with everyone's schedules. We
also incorporated an open forum style of discussion where any team member
could provide their input on the topic at hand or voice their concern about a
specific issue. Although this was an effective strategy to initiate discussion it
became troublesome whenever we allowed ourselves to get off topic. To combat
this issue we decided to start each meeting by creating objectives we would like
to complete prior to the conclusion of the meeting. This helped our group stay
organized and kept all members focused on the task at hand. At the conclusion
of our meetings we would discuss what milestones we would like to achieve prior
to our next meeting. This allowed our team to take a progressive approach to
completing our design project and is a practice we plan to continue going into our
second semester.

10.2 - Team Organization and Responsibilities

Below, in Table 28, is a list of our team's departmental responsibilities and a
description of each title listed. It was our belief that no one person should lead
our team for the entire duration of our project. We felt the best solution would be
to cycle that roll throughout both semesters between all group members.

137

Amos
Project Manager (1st half/1st Sem), Software Engineer,
Researcher, Assembler, Software Unit/Integration Tester

Tim
Project Manager (2nd half/1st Sem),Software Engineer,
Researcher, Assembler, Software Unit/Integration Tester

Todd
Project Manager (1st half/2nd Sem),Software Engineer,
Researcher, Assembler, Software Unit/Integration Tester

Jake
Project Manager (2nd half/2nd Sem), Hardware Designer,
Embedded Software Engineer, Researcher, Assembler, Hardware
Tester

Table 28: Team Member Responsibilities

Project Manager: Directs, coordinates, and exercises functional authority over
all other active engineers in the group. Is also responsible for leading team
meetings and providing the final word on team disputes.

Software Engineering: Responsible for the design, creation, and maintenance
of aLife's multiple software systems.

Hardware Designer: Responsible for layout design and implementation of
custom hardware components.

Researcher: Responsible for creating research topics for documentation and
researching said topics.

Assembler: Assists in the assembling of aLife's hardware components.

Hardware Tester: Is responsible for following following all test cases outlined in
our Hardware Test Plan and reporting any issues found. Also responsible for
making sure the system meets all outlined specifications.

Software Unit/Integration Tester: Is responsible for following the test plan
created to test all software modules and report any issues found. Also
responsible for making sure the software system meets all outlined
specifications.

10.3 - Milestone chart

Due to the large scale nature of this project and the unique group dynamics
involved, it was very important for our team to have direction throughout each
semester of our design project. For this reason we established a Milestone chart
for Senior Design I and for Senior Design II. The milestones listed below
incorporate most of the important objectives needed for project completion but is
not all inclusive. Any additional milestones added to our team's agenda will be
discussed during team meetings and scheduled for completion at that time.
 Below is Table 29 and Table 30, Senior Design I and Senior Design II milestone
charts respectively.

138

Milestone Due Date Status

Form a Project Group
End of Second
Week

Completed

Choose a Project End of Third Week Completed

Create a Meeting Schedule End of Third Week Completed

Create Roles for Team Members
End of Fourth
Week

Completed

Functional Analysis
End of Fourth
Week

Completed

Project Identification Document 6/28/10 Completed

Table of Contents 7/04/10 Completed

Distribute Roles for
Documentation/Design

7/04/10 Completed

Research
Periodic / End of
Semester

In Progress

Have 40 pages documented 7/19/10 Completed

Have 80 pages documented 7/26/10 Pending

Have 120 pages documented Last Day of Class Pending
Table 29: Senior Design 1 Milestone Chart

139

Milestone Due Date Status

General Purpose Refresher Meeting First Week Pending

Redefine Design Roles if necessary First Week Pending

Complete Low Level Design of all Hardware End of Third Week Pending

Complete Low Level Design of all Software End of Third Week Pending

Update Research and Documentation End of Third Week Pending

Complete Base Station Software First Third of Semester Pending

Complete Remote Client Software First Third of Semester Pending

Complete Database Design First Third of Semester Pending

Complete Software Unit Testing First Third of Semester Pending

Complete Software Integration Testing First Third of Semester Pending

Update Research and Documentation First Third of Semester Pending

Complete Base Station Hardware
Second Third of
Semester

Pending

Complete ZigBee Base Station Hardware
Second Third of
Semester

Pending

Complete Remote ZigBee Controller
Second Third of
Semester

Pending

Complete Hardware Testing
Second Third of
Semester

Pending

Update Research and Documentation
Second Third of
Semester

Pending

Complete Entire System Integration Last Third of Semester Pending

Make sure systems meets all required
specifications

Last Third of Semester Pending

Finalize Prototype and Demonstrate Last Third of Semester Pending

Finalize Research and Documentation Last Third of Semester Pending

Complete Presentation Slides Last Third of Semester Pending

Submit Project to Panel and Demonstrate Last Day of Class Pending

Table 30: Senior Design 2 Milestone Chart

10.4 - Budget and Financing

One of our team's motivations at the onset of this project was to keep this system
as low cost as possible. This made it important for us to only integrate high
value, low cost components into our design or to try to get as many donated
parts as possible. Our early goal was to have all purchased equipment equal no
more than $600 with all cost being evenly distributed between all group
members. Well felt that this goal was not too ambitious and would still allow us
to have a full featured final product. We still, however, had to be diligent in our

140

decision making as we did not want to spend any of our money unnecessarily.
 So the key to success in meeting our budgeting goals was to find as many free
parts as we could.

Luckily our group was able to find a company that was willing to provide us a few
key parts. Infrasafe, Inc loaned us, free of charge, the Embedded Artists NXP
LPC3250 demo board which includes all hardware listed for the base station
except for the Freescale MC13213 processor and antenna. It is the same device
as the remote ZigBee control units listed below but with some components
depopulated. This greatly reduced the out of pocket cost of the base station
hardware. This left us with finding parts to accommodate the needs for our
ZigBee remote control units, ZigBee base station, and our Android enabled
remote client device.

One of our team members volunteered the use of his Google G1 cell phone to
use as our Android enabled remote client devices. This device was the first cell
phone to be manufactured directly by Google and host the Android operating
system. The device was very familiar to our group and had a proven history of
running user built android applications. This was an additional item we were able
to acquire free of charge.

The ZigBee remote control units and ZigBee base station account for the majority
of our project's budget. The layout for the modules were created by our team's
hardware designers and all components were purchased individually. We did not
have any additional cost added to our budget for assembling the units but we do
expect to have pay for PCB production.

Listed below in Table 31Error: Reference source not found is the estimated cost
of all components needed for the completion of our project. All prices listed are
based off what we expect to pay for the item as we have yet to complete our
parts acquisition.

141

Item Description Unit Price Quantity Total

Base Station

Embedded Artists NXP LPC3250 demo
board

$0.00 (on
loan)

1 $0.00

Wireless Sense and Control Units /
Wireless Base Station

PCB Components $ 15.00 4 $60.00

PCB – Bare Boards $10.00 4 $40.00

Chasis $5.00 3 $15.00

Board Assembly Labor $5.00 4 $20.00

Additional Items

Google G1
$0.00 (on
loan)

1 $0.00

Total $135.00

Table 31: Project Budget

142

11 - Final Summary
We started this project with the goal of creating a system that would help simplify
peoples lives. This novel concept grew into an idea, this idea turned into a
project, the project became a design, and soon the design will be realized into an
actual product. The entire process was very long and full of lessons learned we
hope we can take with us. Two, in particular, come to mind that helped define
our team's approach to creating a successful design project. The first lesson
learned was the importance of keeping our group coordinated and oriented
towards task completion. The dynamics involved with working with four full time
students can cause many issues with scheduling and balancing priorities. We
addressed these issues early by placing a focus on attending regular team
meetings and keeping opens lines of communication between our group. Also,
our team learned relatively early the importance of understanding what we were
capable producing. We had very ambitious goals for our project in the early
stages and not all of our expected functionality could make it to our final design.
 This is a natural repercussion of the design process and it not always a bad
thing. Comparing different solutions and refining our choices allowed our team to
have a very sound and scalable project. We feel it was this deliberate approach
to problem solving that allowed us to successfully research and design our
project and we plan to continue this approach when implementing the second
phase of development.

143

12 - Appendices

12.1 - Copyright permissions

144

145

146

147

148

Illustration Index
Illustration 1: Android OS Software Stack ...10
Illustration 2: The Waterfall Model...12
Illustration 3: The V Model...13
Illustration 4: US electrical consumption per capita 1960 - 200723
Illustration 5: RemoteLinc Insteon Lamp Control Kit ..27
Illustration 6: IRLinc Receiver-IR to Insteon Converter ..28
Illustration 7: SmartLinc - Insteon Central Controller ..28
Illustration 8: Example of the Vera system GUI31 ...31
Illustration 9: LCD peep-hole device ..32
Illustration 10: P3 Kill A Watt module ..34
Illustration 11: Control4 System SR-250 Remote Control35 ...35
Illustration 12: I/O Linc Insteon doorbell and telephone alert system..............................36
Illustration 13: Insteon 8-Zone Sprinkler Controller37 ...38
Illustration 14: Insteon ApplianceLinc40 ..39
Illustration 15: The Dell Streak (Courtesy of Dell Inc.) 49...48
Illustration 16: Freescale MC13213 ZigBee communications stack53
Illustration 17: BeeStack Consumer layer interfaces 55..54
Illustration 18: Example BeeStack Consumer Mesh Network ..56
Illustration 19: Functional description of the NXP LPC3250...64
Illustration 20: Picture of the LPC 3250 OEM Board...66
Illustration 21: Embedded Artists LPC3250 Base Board...68
Illustration 22: Functional Specifications of the Base Station ...69
Illustration 23: Initial Base Station Software Design ...70
Illustration 24: Base Station Software Use Case Diagram ...72
Illustration 25: New User Registration ..73
Illustration 26: Add a New Device ...74
Illustration 27: Fulfill Service Request ..74
Illustration 28: Multiple Reply to Notification ...75
Illustration 29: Figure X - MC13213 block diagram...81
Illustration 30: MC13213 Pinout ..82
Illustration 31: MC13213 ZigBee transceiver block diagram7084
Illustration 32: Functional Diagram for a Wireless Module ...85
Illustration 33: MCU, Temperature Sensor and Terminal Block Schematics...................87
Illustration 34: Light Dimmer Schematic..88
Illustration 35: ZigBee Transceiver Schematic..89
Illustration 36: Android Home Page ..93
Illustration 37: Notification Icon ...94
Illustration 38: The Notifications Window ..94
Illustration 39: Example Notification with Garage Door Control......................................96
Illustration 40: Example Notification with Door Lock Control ..96
Illustration 41: Example Notification with Temperature Variables97
Illustration 42: Device Menu Tree ...98

149

Illustration 43: Program Options Menu Tree ...98
Illustration 44: Add Device Menu Tree ..99
Illustration 45: Diagram of a Bottom-up Integration Test...124

150

Table Index
Table 1: TPC vs UDP...19
Table 2: breaks down electrical power used in the US in 2008 by application19............24
Table 3: Hardware specifications for the microcontroller...63
Table 4: Functional description of the LPC3250 OEM Board..65
Table 5: Hardware specifications for the Base Board..67
Table 6: Base Station Event Table ..71
Table 7: HTC G1 Specification Table72...92
Table 8: Server to Client Notification Types...101
Table 9: Server to Client Notification Protocols 1-5...102
Table 10: Server to Client Notification Protocols 6-10...103
Table 11: Server to Client Protocol Definitions..104
Table 12: Client to Server Response Protocols...105
Table 13: Client Notification Page Flip List ...106
Table 14: Server to Client Notification Levels..106
Table 15: Microcontroller tests...125
Table 16: LPC3250 OEM Board tests..127
Table 17: QVGA Base Board tests..128
Table 18: Integration tests - Base Board...129
Table 19: Software Tests - part 1...130
Table 20: Software Tests - part 2...130
Table 21: Software Tests - part 3...131
Table 22: Software Tests - part 4..131
Table 23: Remote Client Tests...132
Table 24: ZigBee Modules Tests part 1...133
Table 25: ZigBee Modules Tests part 2...134
Table 26: Hardware faults categories..135
Table 27: Software faults categories..135
Table 28: Team Member Responsibilities..137
Table 29: Senior Design 1 Milestone Chart...138
Table 30: Senior Design 2 Milestone Chart...139
Table 31: Project Budget..141

151

Bibliography
1 Shari Pfleeger, Software Engineering Theory and Practice 4th Ed (Prentice Hall 2009)

2 Shari Pfleeger, Software Engineering Theory and Practice 4th Ed (Prentice Hall 2009)

3 Shari Pfleeger, Software Engineering Theory and Practice 4th Ed (Prentice Hall 2009)

4 Shari Pfleeger, Software Engineering Theory and Practice 4th Ed (Prentice Hall 2009)

5 Shari Pfleeger, Software Engineering Theory and Practice 4th Ed (Prentice Hall 2009)

6 Shari Pfleeger, Software Engineering Theory and Practice 4th Ed (Prentice Hall 2009)

7 http://en.wikipedia.org/wiki/Peer-to-peer

8 http://en.wikipedia.org/wiki/Client%E2%80%93server_model

9 Andrew Tanenbaum, Computer Networks 4th Ed (Prentice Hall 2003)

10 Andrew Tanenbaum, Computer Networks 4th Ed (Prentice Hall 2003)

11 http://www-01.ibm.com/software/data/db2/express/

12 http://www.microsoft.com/express/database/

13 http://www.oracle.com/technetwork/database/express-edition/overview/index.html

14 http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL

15 http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL

16 http://www.sqlite.org/

17 http://en.wikipedia.org/wiki/Amoled

18 http://www.google.com/publicdata?ds=wb-
wdi&met=eg_use_elec_kh_pc&idim=country:USA&dl=en&hl=en&q=us+electricity+cons
umption+trends

19 http://www.eia.doe.gov/ask/electricity_faqs.asp#electricity_use_home

http://www.eia.doe.gov/ask/electricity_faqs.asp#electricity_use_home
http://www.google.com/publicdata?ds=wb-wdi&met=eg_use_elec_kh_pc&idim=country:USA&dl=en&hl=en&q=us+electricity+consumption+trends
http://www.google.com/publicdata?ds=wb-wdi&met=eg_use_elec_kh_pc&idim=country:USA&dl=en&hl=en&q=us+electricity+consumption+trends
http://www.google.com/publicdata?ds=wb-wdi&met=eg_use_elec_kh_pc&idim=country:USA&dl=en&hl=en&q=us+electricity+consumption+trends
http://www.sqlite.org/
http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL
http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.microsoft.com/express/database/
http://www-01.ibm.com/software/data/db2/express/

152

20 http://www.eia.doe.gov/ask/electricity_faqs.asp#electricity_use_home

21 http://www.eia.doe.gov/emeu/aer/txt/ptb0810.html

22 http://en.wikipedia.org/wiki/Phantom_voltage

23 http://www.crestron.com/

24 http://www.blackanddecker.com/

25 specs taken fromhttp://www.smarthome.com/2490A1/RemoteLinc-INSTEON-Lamp-
Control-Kit-Silver-Remote/p.aspx

26 image copied from http://www.smarthome.com/remote-lighting-control.html

27 http://www.smarthome.com/2411R/IRLinc-Receiver-IR-to-INSTEON-Converter/p.aspx

28 http://www.smarthome.com/2412N/SmartLinc-INSTEON-Central-Controller/p.aspx

29 http://www.smarthome.com/remote-lighting-control.html

30 Table referenced
from http://www.adt.com/wps/portal/adt/for_your_home/products_services/security_syst
ems/store?
ru=http://prod.commerce.adt.com/webapp/wcs/stores/servlet/ProductDisplay&storeId=1
0101&langId=-
1&parent_category_rn=10112&productId=11421&catalogId=10101&commerceParams=
ru,storeId,langId,URL,categoryId,debug,productId,parent_category_rn,catalogId&categ
oryId=10112

31 http://www.smarthome.com/images/1370side2big.jpg

32 http://www.smarthome.com/1370/Vera2-Z-Wave-Web-Enabled-Automation-
Controller/p.aspx

33 http://www.smarthome.com/5041/Brinno-PeepHole-Viewer/p.aspx

34 http://www.smarthome.com/1626-10/FilterLinc-10-Amp-Plug-In-Noise-Filter/p.aspx

35 http://www.control4.com/products/5/54/control4_system_remote_control_sr_250/

36 http://www.smarthome.com/24950A6/I-O-Linc-INSTEON-Doorbell-and-Telephone-
Ring-Alert-Kit/p.aspx

http://www.smarthome.com/24950A6/I-O-Linc-INSTEON-Doorbell-and-Telephone-Ring-Alert-Kit/p.aspx
http://www.smarthome.com/24950A6/I-O-Linc-INSTEON-Doorbell-and-Telephone-Ring-Alert-Kit/p.aspx
http://www.control4.com/products/5/54/control4_system_remote_control_sr_250/
http://www.adt.com/wps/portal/adt/for_your_home/products_services/security_systems/store?ru=http://prod.commerce.adt.com/webapp/wcs/stores/servlet/ProductDisplay&storeId=10101&langId=-1&parent_category_rn=10112&productId=11421&catalogId=10101&commerceParams=ru,storeId,langId,URL,categoryId,debug,productId,parent_category_rn,catalogId&categoryId=10112
http://www.adt.com/wps/portal/adt/for_your_home/products_services/security_systems/store?ru=http://prod.commerce.adt.com/webapp/wcs/stores/servlet/ProductDisplay&storeId=10101&langId=-1&parent_category_rn=10112&productId=11421&catalogId=10101&commerceParams=ru,storeId,langId,URL,categoryId,debug,productId,parent_category_rn,catalogId&categoryId=10112
http://www.adt.com/wps/portal/adt/for_your_home/products_services/security_systems/store?ru=http://prod.commerce.adt.com/webapp/wcs/stores/servlet/ProductDisplay&storeId=10101&langId=-1&parent_category_rn=10112&productId=11421&catalogId=10101&commerceParams=ru,storeId,langId,URL,categoryId,debug,productId,parent_category_rn,catalogId&categoryId=10112
http://www.smarthome.com/remote-lighting-control.html
http://www.smarthome.com/2412N/SmartLinc-INSTEON-Central-Controller/p.aspx
http://www.smarthome.com/2411R/IRLinc-Receiver-IR-to-INSTEON-Converter/p.aspx
http://www.smarthome.com/remote-lighting-control.html
http://www.smarthome.com/2490A1/RemoteLinc-INSTEON-Lamp-Control-Kit-Silver-Remote/p.aspx
http://www.smarthome.com/2490A1/RemoteLinc-INSTEON-Lamp-Control-Kit-Silver-Remote/p.aspx
http://www.eia.doe.gov/emeu/aer/txt/ptb0810.html
http://www.eia.doe.gov/ask/electricity_faqs.asp#electricity_use_home

153

37 http://www.smarthome.com/31270/INSTEON-8-Zone-Sprinkler-Controller-Lawn-
Irrigation-System/p.aspx

38

http://www.petco.com/Shop/petco_ProductList_PC_productlist_Nav_179_N_22+429495
6560+30+4294965683.aspx?cm_mmc=GooglePKW-_-60-DOG_BOWLS-
FEEDERS_AUTO-_-[auto+pet+feeder]-_-xxx

39 http://www.petco.com/product/106284/Petmate-Le-Bistro-Portion-Control-Automatic-
Feeder.aspx

40 http://www.smarthome.com/2456S3/ApplianceLinc-Relay-INSTEON-Plug-in-
Appliance-Control-Module-3-pin/p.aspx

41 http://en.wikipedia.org/wiki/ZigBee

42 http://www.z-wave.com/modules/AboutZ-Wave/

43 http://mobiledevdesign.com/hardware_news/zigbee_zwave_battle_1008/

44 http://www.newsguide.us/technology/electronics/Kwikset-Expands-Home-Connect-
Product-Line-and-Announces-New-Certification-at-CES-2010/

45 http://www.differencebetween.net/technology/difference-between-zigbee-and-
bluetooth/

46 http://www.stg.com/wireless/ZigBee_comp.html

47 http://news.cnet.com/From-Dangers-realm-come-Androids-makers/2008-1039_3-
6218126.html

48 Source: http://gdgt.com/dell/streak/specs/

49 Source: http://content.dell.com/us/en/corp/d/corp-comm/image-gallery-tablets.aspx

50 http://en.wikipedia.org/wiki/Ford_Sync

51 http://mashable.com/2010/04/20/ford-sync-applink/

52 http://en.wikipedia.org/wiki/MIPS_architecture

53 http://www.mipsandroid.com/projects/show/mips-android

54 Paragraph copied from Freescale BSCONRM Beestack reference manual page 13

http://www.mipsandroid.com/projects/show/mips-android
http://en.wikipedia.org/wiki/MIPS_architecture
http://mashable.com/2010/04/20/ford-sync-applink/
http://en.wikipedia.org/wiki/Ford_Sync
http://content.dell.com/us/en/corp/d/corp-comm/image-gallery-tablets.aspx
http://www.smarthome.com/2456S3/ApplianceLinc-Relay-INSTEON-Plug-in-Appliance-Control-Module-3-pin/p.aspx
http://www.smarthome.com/2456S3/ApplianceLinc-Relay-INSTEON-Plug-in-Appliance-Control-Module-3-pin/p.aspx
http://www.petco.com/product/106284/Petmate-Le-Bistro-Portion-Control-Automatic-Feeder.aspx
http://www.petco.com/product/106284/Petmate-Le-Bistro-Portion-Control-Automatic-Feeder.aspx
http://www.petco.com/Shop/petco_ProductList_PC_productlist_Nav_179_N_22+4294956560+30+4294965683.aspx?cm_mmc=GooglePKW-_-60-DOG_BOWLS-FEEDERS_AUTO-_-[auto+pet+feeder]-_-xxx
http://www.petco.com/Shop/petco_ProductList_PC_productlist_Nav_179_N_22+4294956560+30+4294965683.aspx?cm_mmc=GooglePKW-_-60-DOG_BOWLS-FEEDERS_AUTO-_-[auto+pet+feeder]-_-xxx
http://www.petco.com/Shop/petco_ProductList_PC_productlist_Nav_179_N_22+4294956560+30+4294965683.aspx?cm_mmc=GooglePKW-_-60-DOG_BOWLS-FEEDERS_AUTO-_-[auto+pet+feeder]-_-xxx

154

55 Freescale BSCONRM Beestack referenc manual page 13

56 Freescale BSCONRM Beestack reference manual page 13

57 Freescale BSCONRM Beestack reference manual page 13

58 Freescale BSCONRM Beestack reference manual pages 11-12

59 Freescale BSCONRM Beestack reference manual

61 http://www.talkandroid.com/android-forums/android-hardware/2-android-minimum-
hardware-requirements.html

62 Table copied from EA website (See permissions)

63 Table copied from EA website (See permissions)

64 Image copied from NXP LPC3250 product page

65 Table copied from EA website (See permissions)

66 Image copied from EA website (See permissions)

67 Image copied from EA website (See permissions)

68 Table copied from MC13213 datasheet

69 Copied from Freescale MC13213 datasheet

70 Image copied from MC13213 datasheet

71 Feature list copied from Freescale MC1321X datasheet

72 Specification copied from http://www.htc.com/www/product/dream/specification.html

73 http://www.freetutes.com/systemanalysis/sa9-bottom-up-integration.html

http://www.htc.com/www/product/dream/specification.html

	1 - Introduction
	1.1 - Problem Statement

	2 - Purpose
	3 - Research and Component Selection
	3.1 - Base Station
	3.1.1 - Embedded Linux Kernel
	3.1.2 - Android GUI
	3.1.3 - Software Life-cycle Models
	3.1.4 - Waterfall Model
	3.1.4.1 - The V Model
	3.1.4.2 - Spiral Model
	3.1.4.3 - Agile Methods

	3.1.5 - Communication Architecture
	3.1.5.1 - Peer to Peer
	3.1.5.2 - Client-Server

	3.1.6 - Communication Protocols
	3.1.6.1 - UDP
	3.1.6.2 - TCP

	3.1.7 - Database Management Systems
	3.1.7.1 - IBM's DB2 Express-C
	3.1.7.2 - Microsoft SQL Server Express
	3.1.7.3 - Oracle Database Express Edition
	3.1.7.4 - MySQL
	3.1.7.5 - PostgreSQL
	3.1.7.6 - SQLite

	3.1.8 - Display

	3.2 - Wireless Sense and Control Modules
	3.2.1 - US Electric Power Consumption
	3.2.2 - Appliance Ghost Power Usage
	3.2.3 - Existing Smart Home Devices
	3.2.3.1 - Smart Lighting
	3.2.3.2 - Security Systems and Access Control
	3.2.3.3 - Appliance Power Monitoring and Shutoff
	3.2.3.4 - Home Theater and Entertainment
	3.2.3.5 - In-home Communication Systems
	3.2.3.6 - Climate Control
	3.2.3.7 - Irrigation
	3.2.3.8 - Pet Care

	3.2.4 - Communication Standards
	3.2.4.1 - ZigBee
	3.2.4.2 - Z-Wave
	3.2.4.3 - X10
	3.2.4.4 - INSTEON
	3.2.4.5 - Bluetooth
	3.2.4.6 - WiFi
	3.2.4.7 - Conclusions on Wireless Standards

	3.2.5 - MCU
	3.2.6 - ZigBee Transceiver

	3.3 - Remote Client Hardware
	3.3.1 - Apple iPhone/iPod Touch
	3.3.2 - Smart Phones vs Feature Phones and Basic Phones
	3.3.3 - Android Based Phones
	3.3.3.1 - MIPS Based hardware and other embedded devices
	3.3.3.2 - Ford Sync
	3.3.3.3 - MIPS based devices and set top boxes

	3.3.4 - Multi-Tasking and Notifications

	4 - Theory of Operation
	4.1 - Base Station
	4.2 - Wireless Sense and Control Modules
	4.2.1 - General
	4.2.2 - ZigBee Wireless Network

	4.3 - Remote Client

	5 - Feature and Performance Specifications
	5.1 - Base Station
	5.1.1 - Hardware
	5.1.1.1 - Base Board
	5.1.1.2 - ZigBee Base Station

	5.1.2 - Software

	5.2 - Wireless Sense and Control Modules
	5.2.1 - Hardware
	5.2.1.1 - MCU
	5.2.1.2 - ZigBee Transceiver
	5.2.1.3 - Control and Sensor Related
	5.2.1.4 - Power Supply
	5.2.1.5 - Package

	5.2.2 - Software
	5.2.2.1 - Main Program
	5.2.2.2 - ZigBee Protocol Stack

	5.3 - Remote Client
	5.3.1 - Hardware
	5.3.2 - Software
	5.3.2.1 - aLife Service
	5.3.2.2 - aLife GUI

	6 - Design
	6.1 - Base Station
	6.1.1 - Hardware
	6.1.1.1 - NXP LPC3250 Microcontroller62
	6.1.1.2 - LPC3250 OEM Board
	6.1.1.3 - QVGA Base Board

	6.1.2 - Software
	6.1.2.1 - Board Support Package
	6.1.2.2 - Initial Design Prototype
	6.1.2.3 - Final Design
	6.1.2.4 - Base Station Class
	6.1.2.5 - Device Class
	6.1.2.6 - PowerDevice Class
	6.1.2.7 - SecuirtyDevice Class
	6.1.2.8 - ControlDevice Class

	6.1.3 - Database

	6.2 - Wireless Sense and Control Modules
	6.2.1 - Hardware
	6.2.1.1 - MCU
	6.2.1.2 - Control and Sensor Related
	6.2.1.3 - Power Supply
	6.2.1.4 - Package
	6.2.1.5 - Schematics
	6.2.1.6 - Bill Of Materials
	6.2.1.7 - ZigBee Protocol Stack

	6.3 - Remote Client Device
	6.3.1 - Hardware
	6.3.1.1 - HTC G1 Dream

	6.3.2 - Software
	6.3.2.1 - User Interface
	6.3.2.2 - Android Based Hardware
	6.3.2.3 - Remote Client Operating Systems and Software
	6.3.2.4 - Client/Server Communications

	7 - Design Summary
	7.1 - Wireless Sense and Control Modules
	7.2 - Base Station: Hardware
	7.3 - Base Station: Software
	7.3.1 - Base Station Class
	7.3.2 - Device Class
	7.3.3 - PowerDevice Class
	7.3.4 - SecuirtyDevice Class
	7.3.5 - ControlDevice Class
	7.3.6 - Database
	7.3.7 - Remote Client: Software
	7.3.8 - Remote Client Operating Systems and Software

	8 - Prototyping
	8.1 - Parts Acquisition
	8.2 - Hardware Implementation
	8.2.1 - Wireless Zigbee Base Station and Zigbee Module
	8.2.2 - Base Station Hardware

	8.3 - Software Implementation
	8.3.1 - Coding
	8.3.2 - Unit Testing
	8.3.3 - Integration Testing
	8.3.4 - Operation

	9 - Testing and Evaluation
	9.1 - Test Plan
	9.1.1 - Base Station: Hardware Tests
	9.1.1.1 - Component
	9.1.1.2 - Base Board

	9.1.2 - Software Tests
	9.1.3 - Remote Client tests
	9.1.4 - ZigBee Modules

	9.2 - Evaluation Criteria

	10 - Project Management
	10.1 - Team Meetings
	10.2 - Team Organization and Responsibilities
	10.3 - Milestone chart
	10.4 - Budget and Financing

	11 - Final Summary
	12 - Appendices
	12.1 - Copyright permissions

