
aLife – Home Monitoring

System

Amos Kittelson, Jacob Peery, Todd Denton,

Tim Tewolde

School of Electrical Engineering and

Computer Science, University of Central

Florida, Orlando, Florida, 32816-2450

 Abstract - In this paper we present the design of the

aLife home monitoring system. The main functionality of

the system is use the Android operating platform to allow

for the use of notifications to be sent to the user. They will

be sent via a base station whenever the Zigbee wireless

network replies that an event has been triggered. The

notification will contain information about the event and

possibly a set of actions that could be taken for it.

 Index Terms --- home monitoring, wireless networks,

I. Introduction

 In our hectic lives there exists a need: Simplify our

lives, please! The aLife (Advanced Living Integration

for Education) project will aim to help by taking

information from in and around your home, run it
through a filter and give your gray matter a break. The

system will be smart enough to know when to give

feedback to the user and when not too.

 People’s lives are increasingly complicated,
especially in managing their homes. You have to

remember the shopping list, when to take the kids to

soccer practice, whether you locked the front door, if

the garage door is closed, when the dog needs more

water, to turn off the lights when you're not using them,

turn the coffee pot off, keep the AC at the correct temp,

and a multitude of other things that eventually lead to

some degree of information overload and stress. While

there are devices that can increase our standard of living

and give us more ways to be lazy (clap on lights), what

would be far more useful is a way to make managing

our lives more efficient, with respect to time, electrical
energy, and mental energy. A "one stop shop" system of

monitoring and control of all of the devices (and even

some non-electronics) in your home that only presents

information to you when pertinent, allow you to set

automatic settings for electronics such as lights, and

even monitoring power consumption of electronics and

disconnect them remotely, saving you money and stress
when the electric bill comes. It's like autopilot for your

home so you can focus more on living.

 For our project, we will develop a prototype system
with the potential to do all these things. It will consist

of 3 major parts: An in home base station, wireless

appliance control modules, and a remote user interface

device such as a cell phone. The base station will act as

a repository for all of the information about the status of

devices in your house. It will pass information back in

forth between the user interface and the modules that

actually control your home appliances via Ethernet,

ZigBee, and USB. The remote modules are designed to

be simple, cost effective devices that monitor and

control household appliances in a non-intrusive

way. They are designed to be as flexible as possible so
they can be interfaced with a wide variety of common

household items. They will each have a ZigBee

transceiver for communicating with the base station and

basic I/O hardware to perform monitoring and control

functions. The user interfaces will be a wall mounted

touch screen LCD that is hard wired to the base station,

as well as applications that run on any any Android

equipped cell phone to allow remote control connection

with the base station over the Internet. The user

interfaces will present the user with intuitive, concise

menus that display information about items in your
home and allow the user to change the operation of

items in their home. Although there may be several

items in your home that are connected, information

about them will be integrated and displayed in a central

Android app in order to keep the information

organized.

II. Base Station Hardware

Fig 1. Functional Diagram of the Base Station.

 The Base Station is designed to be a wall mounted
unit that is always active and able to respond to requests

from both the remote client and the ZigBee network. It

will also have a built in GUI that will allow the user

some access for changing and adding devices to the

ZigBee network from the Base Station. In processing

requests from the ZigBee network side of the system, it

will provide a way to determine upon receiving a signal

from what device it came from and to alert the user of

this by sending a notification to the remote device with

this information. From the remote device it will be able

to receive commands on the software side of the Base
Station and then to transfer those commands into

instructions for the specified ZigBee network device to

decode and follow. The hardware will allow for

multiple connections to be made for remote devices and

for multiple sensors to be set up on the ZigBee

Network. It will also have the means of communicating

through the Internet and updating the database about

notifications being received, transmitted, or handled

according to what the notification was sent about.

 The Base Station hardware is composed of three main
components. Our microcontrollers, the NXP LPC3250,

will serve as the main controller for our system. Some

of the attributes of the microcontroller are listed below.
1

Processor ARM926EJ-S Core @266

Mhz

RAM 256 KB

Serial Connections 7xUART, 2xI2C, 2xSPI

Other Features Ethernet driver

USB 2.0 support

 With the microcontroller defined, we can then move

on to integrating that with the rest of the board. The next

hardware section includes the microcontroller placed
into the LPC3250 OEM Board. This allows us to

interface with the final base board that we will be using,

and that will be covered later in the paper. The

following picture is microprocessor mounted on the

OEM Board3

Fig 2. ARM9 processor on the OEM board

 The next component is the actual base board that will
make up the base station. The board we are using is the

QVGA Base Board. Some of the features that it offers

are listed below.

Power Either 3.3 (USB) or 9-15

Interfaces USB, RS232

Connectors Ethernet, MMC/SD

Other Features USB-to-Serial Bridge

240x150mm size

Fig 3. OEM board mounted in the QVGA base board

 The last key feature of our system is the touchscreen
itself. We are using the QVGA TFT LCD screen that is

included with the base station that we are using. The

main reason for this is to allow the user some direct

access to the system without having to user the serial or

USB inputs. This will help when registering devices or

interacting with the system without the use of a remote

client

 The Board Support Package for the base station
included both the Linux kernel and the Android

operating system. The version of Android that is

running on the board is 1.5 (Cupcake).

 The reason that we went with the baseboard for this
project is that it meets the requirements for running

Android. All Android versions require the same

hardware specifications as 1.5, so this is useful for us

because we know that this board meets minimum

system requirements.2

III. Base Station Software

Fig 4. Functionality of the Base Station software. It shows
how all of the different classes interact throughout the system.

 The Base Station Software is intended to be an

"always on" process that works with little to no user

intervention. The system is responsible for responding
to service requests sent from remote client devices in a

reliable and time efficient manner. The software will

also have the responsibility of periodically polling

certain controlled devices and sending their information

to its specified table in our database. The software must

also provide the user a basic security mechanism, basic

log in and log out functionality, which will allow access

into our system. The only feature that will be enabled to

the user through the base station software will be the

ability to add a device to the ZigBee network. Any
additional services provided to the user will be done by

the remote client device. The Base Station must also be

able to accept full duplex TCP socket connection

requests from one, or up to five users, with a high

degree of reliability. After connecting with a remote

client device the system must be able to handle any

service request sent from the said device on a first

come, first serve basis. Any duplicate request,

simultaneous request, or unsuccessful requests must be

handled accordingly and a notification must be sent to

said remote devices if the issue was not resolved. The
Base Station software is also responsible for sending

notifications to one, or all, remote client devices. These

notifications are based on a user's specific notification

settings.

 The idea behind the model was to make the base
station software as similar as possible to the remote

client software. It must also be able to accept up to 5

simultaneous service requests on a first come, first serve

basis. Other functional requirements we set up for the

software were that multiple requests for the same

notification must be serviced only once, and be able to

store information on an embedded SQLite database. We

also wanted to add some type of security to the system

by adding limited number of login attempts, registering

wireless devices before allowing them to send and
receive information, and using a security scheme over

the ZigBee network itself.

 For developing the software we used many different

platforms. Eclipse with the Android Development Tools
(ADT) plug-in was used to program the software in, and

a SQLite database was implemented in java to store any

information that might need to be polled from the

wireless devices.

 The following Figures shows the actions that our
system will take when dealing with the system. The first

Figure shows the steps that the new user will undergo to

register for the system. The second picture is that will

happen when a new device is detected and added to the

network for later use. The final picture is the fulfill

service requests, and it shows how requests will be

processed from the remote client to the base station.

These three pictures represent the base functionality for

our project and how it interacts with the users and

clients.

Fig 5. New User Registration

Fig 6. Add a New Device

Fig 7. Fulfill service request.

The main functionality of the software can be divided
into two categories: user class and device class. The

user class is going to be composed of the GUI, the

interaction between users, and fulfilling any

autonomous service requests required of the base

station. The device class, as seen below in the multiple

class types of devices that the base station will service,

are specific to devices and are made to incorporate the

type of data we plan on receiving from them. The

following lists the types of methods that we are seen

with the corresponding devices.

A. Power Device

 PowerDevice(): Constructor to create
object. Will have generic and specific

constructors.

 turnOn(): Takes in no parameters. Sends

message to ZigBee device to turn on

 turnOff(): Takes in no parameters. Sends

message to ZigBee device to turn on

 getTemp(): Takes no parameters. Polls

ZigBee device for temperature.

 setTemp(Int Temp): Sets ZigBee device with

provided temperature. Does not return

anything.

 getWatt(): Takes no parameters. Polls ZigBee

device for wattage.

 getTimeframe(): Takes in no

parameters. Returns the timeframe field.

 setTimeframe(Int Timeframe): Sets the

timeframe field. Does not return anything.

B. Security Device

 SecurityDevice(): Constructor to create
object. Will have generic and specific

constructors.

 turnOn(): Takes in no parameters. Sends

message to ZigBee device to turn on

 turnOff(): Takes in no parameters. Sends
message to ZigBee device to turn on

 isOpen(): Takes in no parameters. Returns

true if ZigBee device is open.

 IsLocked(): Takes in no parameters. Returns

true if ZigBee device is locked.

C. Control Device

 turnOn(): Takes in no parameters. Sends

message to ZigBee device to turn on

 turnOff(): Takes in no parameters. Sends
message to ZigBee device to turn on

 The last component of the base station software is the

database that will be used to store information about
current users, devices, power history, notification

history, and notification set ups. Each of these elements

will have their own table in our database with their own

specified fields.

IV. Wireless Network

Fig 8. Functionality of our Wireless Modules

 The purpose for all of the modules is to serve as a

sensor and/or control device for the main system. They

are the entry point for all home status information, and

the end points for control commands. For instance,

these devices will monitor the actual current being

consumed by an appliance, physically connect or

disconnect an appliance, or have a wired connection to a

sensor. The native aLife modules and 3rd party
modules will operate with the same wireless protocol,

so the interface with the base station is

identical. Example 3rd party devices are ZigBee

thermostats, window and door sensors, and electronic

door locks. This allows a high degree of flexibility and

expandability in the overall system, allowing the user to

select any compliant ZigBee device and add it to the

system for their specific application.

 In operation, the wireless modules would essentially
act as slave devices to the master base

station. Configured as a sensor, the module would

continuously monitor the sensor data and report the data

back to the base station when polled (ex for power

monitoring), or if there's an interrupt even that requires

immediate notification to the base station (ex. window

or door open sensor). If configured as a control (output)

device, they would wait for instructions from the base

station and maintain a constant output state until the

base station commands them to do otherwise.

 This section outlines the hardware requirements of all

of our ZigBee remote modules. The following lists

cover some of the hardware components that are going

to be included with the MCU part of the wireless sense

and control modules.

MCU

Low voltage MCU with 40 MHz HCS08 CPU core

Dedicated SPI for Zigbee interaction

2 SCI

60K Flash and 4K Ram

Power Supply

120 VAC to 9VAC transform

9VAC full wave bridge rect. to create 7VDC rail

7VDC input into 300mA 550kHZ switching power

supply

 The wireless modules will also contain a ZigBee chip
that will serve as our wireless home network. The

specifications for the chip can be found in the list

below.

ZigBee Transceiver

802.15.4 compliant

Operates on 2.4 GHz ISM band

<-92 dBm receive sensitivity

Three low power modes

Supports packet and streaming data

Programmable clock frequency

Seven GPIO for use by the user

V. Remote Client

Fig. 9 Picture of our remote client

The following table lists out some of the hardware

specifications for the remote client.4

Processor Qualcomm® MSM7201A™, 528 MHz

Platform Android™

Memory ROM: 256 MB

RAM: 92 MB

Display 3.2-inch TFT-LCD flat touch-sensitive
screen with 320 x 480 (HVGA)
resolution

Network HSPA/WCDMA:
2100 MHz
Up to 7.2 Mbps down-link (HSDPA) and
2 Mbps up-link (HSUPA) speeds Quad-
band GSM/GPRS/EDGE:
850/900/1800/1900 MHz
(Band frequency, HSUPA availability,
and data speed are operator
dependent.)

Device
Control

Trackball with Enter button

Keyboard Slide-out 5-row QWERTY keyboard

GPS GPS navigation capability with Google
Maps™

Connectivity Bluetooth® 2.0 with Enhanced Data
Rate
Wi-Fi®: IEEE 802.11b/g
HTC ExtUSB™ (11-pin mini-USB 2.0
and audio jack in one)

The aLife remote client software will be designed to

give the user an intuitive, responsive and fluid interface

to the aLife system. The interface design will mix text,
icons, scrollable lists and gestures for the user to interact

with. The user interface look similar across platforms.

The iPhone remote client software should have the same

look and feel of an Android version of the remote client

software. Since the scope of this project is focusing on

Android, the following user interface specifications will

focus on Android. Remote client software build on other

platforms in the future will use the Android application

as a design standard.

The aLife remote client software will display an icon in
the top left of the menu bar to indicate that there is an

notice for the user to review. The user will pull the

menu bar down to review what the event is related to.

Selecting the notification will take the user to the aLife

remote client application where the user will be

presented with more detailed information and options.
Examples of notifications are energy usage, temperature

issues, security and lighting. The aLife notification icon

will be supplemented with overlay graphics that indicate

what type of notification is waiting for the users review.

If more than one notification is pending then the aLife

icon will be over-layed with a plus symbol to indicate

multiple notifications. The icon will have different

graphic overlays to indicate security, energy and

temperature notifications.

For example, if the aLife system is set to make sure the
house is secure at 10:00pm and the garage door is open

then the user will receive a security notification in the

top left the Android user interface. And audible tone

may also sound as described in the notifications

subsection of the research section of this document.
When the user pulls down the menu bar the notification

window will indicate a security issue with the garage

door. When the user selects the notification the user will

be presented with a screen similar to the one in

Illustration 39. The aLife remote client software will tell

the user that the garage door is open and that the reason

the notification was presented is because it is set to do

so if the time is 10:00pm and the garage door is open.

The user will have the option to close the garage door,

set the system to ignore the garage door for the rest of

the night or never remind the user in future.

The remote client will have its own interface to the

aLife system. Below are a few examples of what

notifications would look like when they are received by

the system. The first is an alert about the garage door

being open and options about how to fix it. The second
is an alert about controlling the temperature in your

house.

Fig. 10 Picture of a garage door event as a notification

Fig. 11 Picture of a thermostat triggered event to the

system

Selecting a device will display a basic graph showing

the device history. History length will be determined at

testing. Devices that have an energy history will show

their energy graph. Devices that have on/off states will

show their on/off history. Below the history will be

buttons related to individual devices. Button behavior

will be based on the control-ability of the device and its
options.

Fig. 12 Device menu for the selected device

The program options page (Figure 13) will give the user
general the ability to control whether or not to maintain

a constant connection with the server or periodically

check the server for updates to save battery life. The

user will also be able to mute just the aLife audio

feedback, control if the service starts with the phone,

and input user name data.

Fig 13. Program options for the remote client

VI. Conclusion

With all of the information listed, we now have a

general overview of what the aLife is capable of doing.

From the bottom level of the Zigbee protocol to the

higher level of notification passing and internet

communication, we have detailed our senior design

project.

VII. The Engineers

Amos Kittelson is currently a senior
computer engineer at the University of Central Florida.

After Senior Design, he plans on moving to Europe to
continue his education and to finish up graduation

Jacob Peery is currently a

senior electrical and computer engineering student at the

University of Central Florida. After graduation he plans
on trying to get a job at his current company, Advantor.

Tim Tewolde

Tim Tewolde is currently a

senior computer engineer at the University of Central

Florida. After graduation, he plans on looking for a job

in the software development field and hopes to be
working on android in the future as well.

Todd Denton

Todd Denton is currently a
senior computer engineering student at the University of

Central Florida. After graduation he plans on applying

to University of Central Florida again to continue with a

master’s degree in Artificial Intelligence.

Acknowledgments

We would like to thank Dr. Richie for taking the time

and helping us with our project, and overall keeping us

motivated to do the best we could on it.

We would also like to thank Jacob’s company Advantor

for lending us the boards that we used in our project and

providing some support for troubleshooting issues that

we had.

Lastly we would like to thank Freescale for offering

many reference guides online for their products and a

good support line for help most any time of the day.

References

[1] http://ics.nxp.com/products/lpc3000/lpc32x0/

[2] http://www.talkandroid.com/android-

forums/android-hardware/2-android-minimum-

hardware-requirements.html

[3]

http://ics.nxp.com/products/lpc3000/datasheet/lpc3220.l

pc3230.lpc3240.lpc3250.pdf

[4]

http://www.htc.com/www/product/g1/specification.html

http://www.talkandroid.com/android-forums/android-hardware/2-android-minimum-hardware-requirements.html
http://www.talkandroid.com/android-forums/android-hardware/2-android-minimum-hardware-requirements.html
http://www.talkandroid.com/android-forums/android-hardware/2-android-minimum-hardware-requirements.html
http://ics.nxp.com/products/lpc3000/datasheet/lpc3220.lpc3230.lpc3240.lpc3250.pdf
http://ics.nxp.com/products/lpc3000/datasheet/lpc3220.lpc3230.lpc3240.lpc3250.pdf

