

Tactical Up-armored Vehicle - Automatic Distress Detection System

A. PROJECT DESCRIPTION:

1. PROJECT NAME:

Tactical Up-armored Vehicle - Automatic Distress Detection System (TUV-ADDS)

2. PROJECT MEMBERS:

- 1. Alyssa Almanza
- 2. Eric Nachtigal
- 3. Jason Skopek
- 4. Julien Mansier

3. PROJECT SPONSORS:

We currently do not have any sponsor. We are, however, writing proposals for several DOD contract companies for project support.

4. PROJECT INFORMATION CONTRIBUTORS:

- Nicole Coeyman Improvised Explosive Device Effects Simulator (IEDES) program Lead Engineer, U.S. Army Program Executive Office Simulation, Training, and Instrumentation (PEO STRI), Product Manager Training Devices (PM TRADE), Product Manager Live Training Systems (PM LTS).
- Brittney Johnson U.S. Army, Deployed to Iraq. Combat Vehicle Systems (CVS) Team Military Analyst, PEO STRI, PM TRADE, PM LTS.
- Eduardo Irizarry United States Marine Corp, Deployed to Iraq and Afghanistan. Subject Matter Expert for Lockheed Martin.
- Yair Guzman United States Navy, Deployed to Iraq.

5. PROJECT NARRATIVE:

The concept of the Tactical Up-armored Vehicle – Automatic Distress Detection System (TUV-ADDS) is to be able to automatically detect that a vehicle is in distress by recognizing certain characteristics of a distress causing event, and accurately communicate that there is a need for help and the position of where it is needed to other vehicles in the area. The scope of the system is meant to be relative to up-armored, but not heavy armored tactical vehicles, and two specific distress instances; roll-over and significant IED hits.

The motivation of this project came from the interest many of the group members had in pursuing a defense related project. Many members hope that having a defense related project will be beneficial in pursuing a defense or military related career.

We hope to achieve in the creation of TUV-ADDS, a system that is not only successful in detecting specific event s and recognizing that they are important, but also having the system contact others in these events for help and relay the distressed vehicles position. From speaking with some military experts who have been in the recent Iraq and Afghanistan theaters, we have heard of several instances where vehicles become nonoperational and help was

needed. Usually the vehicle occupants have to radio this request, but we thought that it might be helpful to the user if these requests were automatically sent to commands or nearby vehicles. Therefore, our goal is to make TUV-ADDS user-friendly, accurate at detecting specific events and relaying position, and out of the way so that it is not a burden to the user. The objective is to allow the user to focus on what is wrong with their vehicle, engage an enemy or even save time when trying to escape a vehicle, and know that there is help on the way without having to call for it themselves.

B. SPECIFICATIONS AND REQUIREMENTS:

- Module A Sensor Module
 - Sensor MCU
 - ■Must have a clock speed of between 5 10MHz
 - Must have a minimum of 5 data lines
 - Must have extensive Interrupt Service Routines
 - ■Must be able to communicate data in packets with the main processors
 - Accelerometer
 - ■Sensitivity: +/- 20g
 - ■Rise/Fall time: < 25ns
 - ■Three axis capable: X, Y and Z
 - ■Bandwidth:500 to 1000 Hz
 - Temperature
 - ■Range: up too 150°C
 - ■Accuracy: +/- 0.5°C
 - ■Response time: < 1,000 ms
 - Flash/Photodioes
 Rise/Fall time: < 3.0us
 Detect near the visible light spectrum: 400 to 800nm
- Module B The Brain and Mouth
 - Main Processor
 - ■Must have a minimum clock speed of 20 MHz
 - Must have multiple extensive interrupt services
 - Must be able to run multiple data lines simultaneously
 - ■Must have a minimum flash ram size of 512K
 - Must contain a WatchDog Timer
 - Must be able to packet data for data lines
 - Minimum supply voltage

• Comm

TUV-AD

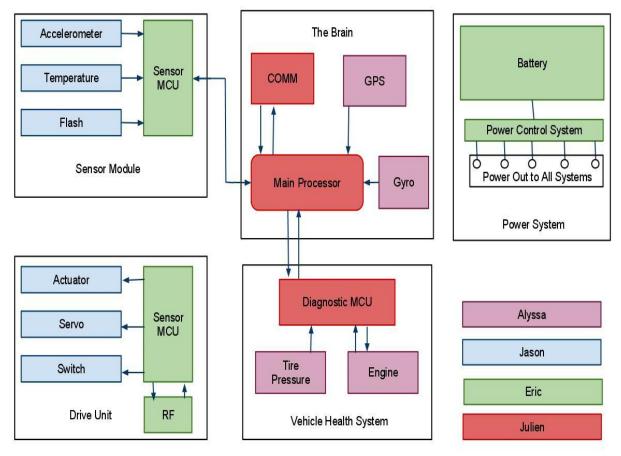
- ■Must have a minimum range of 100ft
- Must be able to send packets
- ■Must have a low fail rate
- ■Must have interference avoidance capabilities
- Minimum supply voltage

• GPS

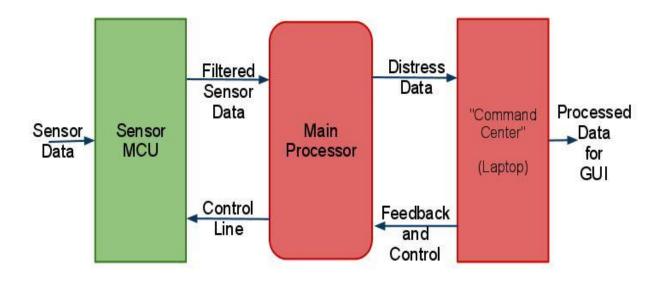
- ■Must be accurate with in 5 meters
- ■Frequent updates would be preferred
- ■Must be have Speed accuracy of above 60 mph
- ■A cold start up time of below 35 secs
- ■Supply voltage below 5V
- Gyro
 - ∎3 axis
 - ■Supply voltage below 5V
 - ■High Refresh rate
 - High Shock Resistance
- Module C Vehicle Health System (VHS)
 - Diagnostic MCU
 - ■A simple, low-power processor will suffice
 - ■Must have a minimum of 3 data control lines
 - ■Must have a clock speed of between 5 10 MHz
 - Must have interupt service capabilities
 - Tire Pressure
 - ■Be able to detect drastic changes in tire pressure
 - ■Must take several readings per second
 - Must be able to withstand high pressures
- Module D Drive Unit
 - Drive MCU
 - The MCU from the Sensor Module will suffice
 - Drive RF
 - A device equivolent to the Main Comm will suffice
 - Actuator
 - ■Must be a linear actuator
 - Must have a max force below 20 lbs
 - ■Must have a smooth extention
 - ■Position must be stable

• Servo

TUV-ADD


- A turning radius no less than 180 degrees
- ■High Torque
- Maximum turning speed
- ■Able to adapt to hardware
- Switch

A simple relay switch will suffice


- Module E Power Control System
 - ■Must allow several different voltage outputs i.e. 1V, 2.2V, 3.3V, 5V
 - Must have consistent current
 - ■Must be stable
 - Must have a fail safe
- Module F Software
 - Main Processor
 - ■Will utilize extensive intterupt services
 - ■Will send all data in packets
 - ■Will utilize high clock speed for efficient data control
 - Will utilize processor fast wake-up time to keep power consuption at a minimum
 - Command Center
 - Intuitive GUI
 - ■Stable Platform
 - ■Must be able to decode data packets from Serial (WiFi)
 - ■User will have control over previous vital data
 - Development will be done in either C++ or Java

C. BLOCK DIAGRAM:

1. HARDWARE BLOCK DIAGRAM:

2. SOFTWARE BLOCK DIAGRAM:

TUV-ADDS

3. BLOCK STATUS:

Device	Group Member	Status
Accelerometer	Jason Skopek	To Be Acquired
Temperature Sensor	Jason Skopek	To Be Acquired
Flash Sensor	Jason Skopek	To Be Acquired
Actuator	Jason Skopek	To Be Acquired
Servo	Jason Skopek	To Be Acquired
Switch	Jason Skopek	To Be Acquired
Sensor MCU	Eric Nachtigal	To Be Acquired
Drive MCU	Eric Nachtigal	To Be Acquired
Drive RF	Eric Nachtigal	To Be Acquired
Battery	Eric Nachtigal	To Be Acquired
Power Control System	Eric Nachtigal	Research
GPS	Alyssa Almanza	To Be Acquired
Gyro	Alyssa Almanza	To Be Acquired
Tire Pressure	Alyssa Almanza	Research
Engine Health	Alyssa Almanza	Research
Main Processor	Julien Mansier	To Be Acquired
VHS MCU	Julien Mansier	To Be Acquired
Main Comm	Julien Mansier	To Be Acquired
Data Packing Software	Julien Mansier	Research
Data Comm	Julien Mansier	Research
Command Center GUI	Julien Mansier	Research

-

D. BUDGET:

The budget for this project will be between 400-800 dollars with a potential overrun to approximately 1400 dollars. Looking at the itemized budget we could easily fall to the lower end of the projected costs if we give ourselves enough time to work with the components and not have to purchase the more expensive but easier to use components. We are going to attempt to source as much of the project from sample programs offered by semiconductor manufacturers. We plan to fund the project by splitting the costs of the components at the time of purchase.

Budget	Low	High	Average	Low Part	High Part
Vehicle	30	350	180	Metal Frame	Powerwheels
Battery	10	250	45	Racers Edge 6 Cell	Thunder Power g6
Power Control Systems	10	25	15	SparkFun	Jameco
CPU	1	50	20	TI Arm Cortex M3	TI ARM Cortex A8
Sensor MCU	0.25	6	2	TI MSP430	Atmel ATMega
Drive MCU	0.25	6	2	TI MSP430	Atmel ATMega
Tire Pressure Sensor	7	22	0	Adafruit Industries	SEN-08712
Flash Sensor	0.3	1.99	0.9	TBD	TSL14S-LF
Accelerometer	3.09	53.16	9	Bosch Sensortec BMA220	ADIS16240ABCZ
Temperature Sensor	3.5	3.5	3.5	TMP03FSZ Analog Devices	
GPS	50	90	55	Venus w/ SMA connect	GS407 Helical
Vehicle Health MCU	1	5	2.5	MSP430 (low end)	MSP430 (high end)
Actuator	40	90	0	MigaOne Linear	FA-400-L-12-18"
Servo	14	45	20	SparkFun	RobotZone
Engine Switch	0.99	17	3	Panasonic Corp	Тусо
Main Comm (one end)	44	80	45	ХВее	XBee Pro
Drive RF	10	100	20	Stepper Motor, Driver board	RC controlor
Gyroscope	7.53	13.57	10	L3G4200DTR	L3G4200DTRIC
PCB Fabrication	43	60	50	SunStone Circuits	ExpressPCB
33% Misc. Expenses	91.05	418.85	159.36		
Total	366.96	1688.08	642.26		

E. PROJECT MILESTONES:

D		Tas k	Task Nam	e	Duration	May	1	Ju	ly 1		Se pte mbe	r 1	Janus		
	0	Mode				4/17	5/15	6/12	7/10	8/7	9/4	10/2	10/30	11/27	12/25
1		*	Phase 1	Research	22 da ys		*	+							
2		*	In it is I W	rite-Up	6 days										
з		*	Accelero	meter	24 days		I								
4		*		ture Sensor	24 days				•						
5		*	Flash Ser	isor	24 days				2						
6		*	Actuator	r	24 days		I		2						
7		*	Servo		24 days										
8		*	Sw itch		24 days										
9		*	Sensor N	ICU	24 days										
10		*	Drive MC	CU	24 days		I I								
11		*	Drive RF		24 days		I								
12		*	Batte ry		24 days		I •								
13		*		ontrol System	24 days		I								
14		*	GPS		24 days										
15		*	Gyro		24 da ys										
16		*	Tire Pres		24 days										
17		*	Engine H	ealth	24 days		- I -								
18		*	Main Pro		24 days										
19		*	VHS MC	-	24 days		- I I								
20		*	Main Co		24 days		I								
21		*		king Software	24 days										
22		*	Data Con		24 days										
23		*		d Center GUI	24 da ys		I								
24		*	Phase 2-		31 days			-							
25		*	Sensor N		31 days			-							
26		*	Main Pro	cessor and Comm	31 days			C	-						
				Tas k	_		Externa	I Mileston			Mai	nualSumm	mary Rollup		
				Split			Inactive					nualSumm		-	
													nary	•	
	t: Mile			Milestone	•		Inactive	Milestone	e - •		Sta	rt-only		C	
Date:	Mon 6	/6/11		Summary			Inactive	Summary			U Fini	sh-only		3	
				Project Summary	-		Manual	l Tas k	5		Dea	dline		4	
				External Tasks	_	-	Duratio	n-only			Pro	ress			
				I								-			
							Page 1								

-

		Task	Task. Na me	Duration	May :	1	Ju	ly 1		Se pte mbe r	1	Nove mbe	r 1	Janu
	0	Mode			4/17	5/15	6/12	7/10	8/7	9/4	10/2	10/30	11/27	12/2
27		*	Vehicle Integration	31 days										
28		*		31 days										
29		*	Final Design Document	3 days										
30		*		71 days					-				ψ	
31		*	Phase 3.A - Initial Prototype	17 days					-	•				
32		*	Test/Build Sensor Module	16 days										
33		*	Test/Build Main Comm	16 days										
34		*	Test/Build Drive Unit	16 days										
35		*	Test/Build Command Center GUI	16 days										
36		*	Phase 3.B - Final Prototype	56 days						-			÷ .	
37		*	Test/ Debug Circuit	31 days?						C				
38		*	Build Circuit	16 days?						C	- 2			
39		*	Design Review	10 da ys?								- 3		
40		*	Final Revisions	12 days								C 3		
41		*		6 days										
42		*	Presentation	6 days									•	
42		<u>, 18</u>	Presentation TBs k	b da ys		External	I Milesto ne	• ŵ		Mar	ualSumm	ne ry Rollup		
42		<u>×</u>		b days		External Inactive		• •			uua I Sum m	na ry Rollup		
	: Miles	tone	Tesk	€ daγs		Inactive				Man		na ry Rollup		
roject	t: Miles		Tesk Spirt	¢		Inactive Inactive	Tas k	•		Man Star	ualSumm	na ry Rollup		
roject			Tesk Spit Miestone	• days		Inactive Inactive	Task Milestone Summary	•		Man Star ⊽ Finis	ualSumm t-only	na ry Rollup		
roject			Tesk Spit Mitstone Summery	•		Inactive Inactive Inactive	Task Milestone Summary Task	•		Man Star ⊽ Finis	tonly tonly honly dline	na ry Rollup		

F. ACRONYM LIST:

ARM: Application Real-time Embedded **CPU: Central Processing Unit** CVS: Combat Vehicle Systems DOD: Department of Defense **GPS:** Global Positioning System GUI: Graphical User Interface Gyro: Gyroscope IED: Improvised Explosive Device IEDES: Improvised Explosive Device Effects Simulator MCU: Micro Controller Unit PCB: Printed Circuit Board PEO STRI: U.S. Army Program Executive Office Simulation, Training, and Instrumentation PM LTS: Product Manager Live Training Systems PM TRADE: Product Manager Training Devices **RF: Radio Frequency** Servo: Servomechanism TBD: To Be Determined **TI: Texas Instruments** TUV-ADDS: Tactical Up-armored Vehicle - Automatic Distress Detection System VHS: Vehicle Health System