
EEL 4915 – GROUP 5

TUV-ADDS
Tactical Up-Armored Vehicle – Automatic

Distress Detection System

Julien Mansier – Jason Skopek – Eric Nachtigal – Alyssa Almanza

7/18/2011

i

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY ... 1

2 PROJECT DISCRIPTION ... 2

2.1 MOTIVATION .. 2

2.2 GOALS AND OBJECTIVES ... 3

2.3 SPECIFICATIONS AND REQUIREMENTS ... 4

3 PROJECT RESEARCH ... 9

3.1 SIMILAR PROJECTS .. 9

3.2 GOVERNMENT RELEVENCE ... 10

3.3 PROJECTED USER RESEARCH ... 11

4 DESIGN RESEARCH ... 13

4.1 RESEARCH METHODS .. 13

4.2 MODULE A – SENSOR MODULE .. 14

4.2.1 SENSOR MCU ... 15

4.2.2 ACCELEROMETER ... 24

4.2.3 TEMPERATURE ... 25

4.2.4 FLASH/PHOTODIODES.. 27

4.3 MODULE B – MAIN CONTROL UNIT .. 27

4.3.1 MAIN PROCESSOR .. 27

4.3.2 COMMUNICATION ... 31

4.3.3 GPS .. 34

4.3.4 GYROSCOPE ... 35

4.4 MODULE C – CAN .. 36

4.5 MODULE D – POWER CONTROL SYSTEM .. 39

4.6 MODULE E – SOFTWARE ... 40

ii

4.6.1 MAIN PROCESSOR .. 42

4.6.2 XBee – PRO .. 42

4.6.2.1 GPS and Gyroscope ... 43

4.6.3 COMMAND CENTER ... 44

4.6.4 COMMAND CENTER MODEM .. 44

5 DESIGN DETAILS ... 45

5.1 MODULE A – SENSOR MODULE .. 45

5.1.1 SENSOR MCU ... 45

5.1.2 ACCELEROMETER ... 48

5.1.3 TEMPERATURE ... 52

5.1.4 FLASH/PHOTODIODES.. 59

5.1.5 SENSOR PCB ... 61

5.1.6 SENSOR MODULE DESIGN REVISIONS .. 62

5.2 MODULE B – MAIN CONTROL UNIT .. 63

5.2.1 MAIN PROCESSOR .. 63

5.2.2 COMMUNICATION ... 65

5.2.3 CAN BUS CONNECTION .. 66

5.2.4 GPS .. 67

5.2.5 GYROSCOPE ... 68

5.2.6 MCU DESIGN REVISIONS .. 69

5.3 MODULE C – CAN .. 72

5.3.1 CAN REVISIONS .. 76

5.4 MODULE D – POWER CONTROL SYSTEM .. 76

5.4.1 POWER CONTROL SYSTEM REVISIONS ... 78

5.5 MODULE E – SOFTWARE ... 78

iii

5.5.1 MAIN PROCESSOR .. 78

5.5.1.1 WIRELESS .. 82

5.5.1.2 GPS ... 84

5.5.1.3 GYROSCOPE .. 85

5.5.2 COMMAND CENTER ... 86

5.5.3 COMMAND CENTER MODEM .. 88

5.5.4 SENSOR MCU ... 89

5.5.5 CAN CONTROLLER .. 93

5.5.6 SOFTWARE DESIGN REVISIONS .. 95

6 EXPLICIT DESIGN SUMMARY .. 97

7 OPERATORS MANUAL .. 107

7.1 GENERAL OPERATION ... 107

7.2 GENERAL CONSIDERATIONS FOR SUCCESSFUL OPERATION 108

8 PROTOTYPE CONSTRUCTION ... 110

9 TEST PLAN .. 113

9.1 TEST MATERIALS ... 114

9.2 TESTING EVENTS PLAN .. 115

9.3 TEST EXPECTATIONS ... 123

10 SCHEDULING AND BUDGETING ... 123

10.1 PROJECT MILESTONES .. 123

10.2 PROJECT BUDGET .. 125

11 CONCLUSION ... 128

11.1 POSSIBLE FUTURE IMPROVEMENTS.. 128

11.2 FEATURES LEFT OUT ... 128

11.3 REFLECTIONS .. 129

iv

12 SOURCES/ COPYRIGHT PERMISSIONS .. 131

1

1 EXECUTIVE SUMMARY

The concept of the Tactical Up-armored Vehicle – Automatic Distress Detection
System (TUV-ADDS) is a system that is intended to be able to detect if a vehicle
has been in a specific distress event resulting in the need for assistance. This
system, which was designed for the Iraqi and Afghanistan theaters, will
automatically communicate a distress signal to a designated command center.
This project has a two-phase design, phase one being the recognition of certain
characteristics of a distress-causing event through specific sensor values that
quantify the distress. The second phase is that the system automatically and
accurately communicate that there is a vehicle in need and the position of where
that vehicle is to command center.

The scope of the system is meant to be relative to up-armored, but not heavy
armored (an example of an up-armored vehicle can be seen in Figure 1),
wheeled tactical vehicles, and two specific distress instances: rollover and
significant Improvised Explosive Device (IED) hits. After speaking with some
members of the armed forces who served in the recent Iraq and Afghanistan
theaters, there were several accounts where vehicles had become
nonoperational and help was needed to continue a mission or save a life. The
TUV-ADDS system is intended to aid occupants of specific vehicles in these
critical instances.

Figure 1: U.S. Marines MRAP; example of an up-armored wheeled tactical

vehicle
(Permission from Sgt. Irizarry, Eduardo)

The way TUV-ADDS recognizes if a vehicle is in distress is through a
sophisticated network of sensors. The system senses and monitors certain
percentage increases such as vertical displacement, flash, and heat to indicate

2

an IED blast. For rollover indication, an accelerometer is used to sense if the
vehicle is overturned. These sensors collect the data, which then the system
analyzes and concludes whether the information combined is an indication of a
distressed vehicle.

After recognizing the vehicle has been involved in a distress situation based on
the specified criteria, TUV-ADDS wirelessly communicates that an incident has
occurred to the command center. This is achieved by applying the use of a
Global Positioning System (GPS) device and wireless communication capability
to the design. This feature allows for occupants of the distressed vehicle to focus
on other tasks rather than radioing in for support themselves.

TUV-ADDS is a system that consists of many key components to detect a vehicle
in distress along with software to analyze the data. The software portion of this
system is able to identify if there are more than one characteristic of a distressed
vehicle from the information taken in from the sensors, and with that, accurately
relay to the command center that there is a vehicle in need. In the end, this
feature is what makes this system useful, it will allow for timelier responses to
vehicles in need along with allowing the vehicle occupants to focus on other
immediate tasks that they are responsible for.

2 PROJECT DISCRIPTION

2.1 MOTIVATION

There is a lot of motivation for the TUV-ADDS project to be pursued. First of all,
general interest was a main motivation. Many of the group members had interest
in pursuing a defense related project in hope that it will be beneficial in pursuing
a defense or military related career. After recognizing that this type of project
was what the team wanted to pursue, it then opened the door to a variety of
project ideas. A drive to design a system that would be of assistance to the men
and women in uniform was a significant motivating factor for the team. News of
the fighting in the ongoing war in the Middle East far too often reference harm
resulting from IED strikes. With this method of attack being so predominant, the
team decided to pursue a project that would assist in these specific incidents.

As important as our future careers are to the team, there was also an amount of
personal motivated by many of the teammates having ties by either family
members or close friends that are in the military and felt that this is a beneficial
way to apply the engineering skills we have acquired. The safety of our fellow
Americans fighting in the Middle East, and any theater of war for that matter, was
another motivation for our team to pursue this project idea.

3

The TUV-ADDS group is made of entirely electrical engineering students. There
was motivation for the group to pursue a project with a large amount of controls
design. The amount of sensor interfacing and the lack of need for high level
programming experience in this project was an appealing idea, while taking into
consideration the group‟s specialties.

2.2 GOALS AND OBJECTIVES

The objective of TUV-ADDS was to design a system that is not only successful in
detecting that specific events have occurred to a vehicle and recognizing that
they are important, but also having the system notify the command center that a
timely response for assistance is needed and provide the distressed vehicles
position. Our goal was to make TUV-ADDS user-friendly, accurate at detecting
specific events, accurate in relaying the position of the vehicle in need, and have
it embedded into the vehicles previous structure so that it is not a burden to the
user. The objective is to allow the user to focus on what is wrong with their
vehicle, engage an enemy, or even save time when trying to escape a vehicle
while feeling confident that there is help on the way without having to radio for it
themselves.

Sometimes, a vehicle‟s occupants may be in a situation where they could better
use the abilities of their skills right away rather than having to call for assistance.
There is also the possibility that the occupants are in a condition that they are
unable to call for assistance. The objective of TUV-ADDS is intended to help in
these very situations. The system was designed with the hope that an automatic
detection of distress and communication of these events could possibly be an
effective aid in saving time, money, and even in some cases lives.

Accuracy was a very important goal for TUV-ADDS. The objective is to avoid
false alarms if at all possible. The intent was for this system to be beneficial, not
a nuisance, so it is imperative that it is accurate. The system is supposed to
automatically communicate if the vehicle is in need of assistance, we do not want
the system to alert for help if none is needed. This would cause a loss of time
and resources that could be used somewhere else in a wartime situation, not to
mention put others in danger for no reason by causing them to venture out into
areas that are very dangerous. That is why TUV-ADDS will only communicate a
need for assistance if there are more than one distress characteristic indicated.
The group hoped this would allow for the vehicle to do its purpose without setting
off any false need for assistance requests. The group understands that it is
necessary for up-armored vehicles to go through rough terrain and that fact has
been incorporated into the design. For the system to be considered beneficial, it
is also very important that the GPS location is accurate. If a vehicle is truly in
distress the system needs to relay the exact position to the command center,
allowing them to aid them. Without an accurate location, this system would be
very little assistance.

4

Another goal for this system was for it to be practically invisible to the user. It is
ideal that TUV-ADDS is out of the way and only in use when needed. The idea is
that the system should not be an inconvenience, therefore making it unfavorable
to use. If the system is a burden, it is little help to the intended user because
they could just as easily perform the current procedures that are implemented
instead.

2.3 SPECIFICATIONS AND REQUIREMENTS

There are many technical specifications that this system needed to meet to
achieve the goals that the group had set for this system. In the following
requirements list, the specifications have been broken down the system into five
(5) modules to make the requirements easier to follow. The hardware flow
diagram can be seen below in Figure 2.

Figure 2: System Hardware Overview

Module A describes the specification requirements for the sensors that were
used in the system. This module will be further broken down into four (4) main
components; the Sensor MCU, Accelerometer, Temperature Sensor, and a
Photodiode. The Sensor MCU collects and interprets data from the various

5

external sensors and transmits the data to the main processor if it detects a
distress event. The Accelerometer quantitatively measures the change in motion
of the system and sends that data to the Sensor MCU. The sensitivity of the
accelerometer was chosen because it is a low G accelerometer and was suffice
for the testing the system endured. It was decided to require three (3) axes
because the software is able to detect significant motion in the X, Y, and Z
directions. Digital interface was required for this component allowing it to
connect directly to the Sensor MCU. The photodiode measures the luminance
applied to the system, and sends the data that it measures to the Sensor MCU.
The required wavelength (see Table 1 below) of the photodiode is due to the fact
that we tested the system with visible light, meaning the photodiode would need
to be measuring within the visible light spectrum. The Temperature sensor
collects temperature data and relays this to the Sensor MCU. The digital output
was a requirement so it could communicate with the sensor MCU. High
operational frequency of the sensor was also required so it can transfer data as
quick as the sensor MCU could interpret the data.

6

Module A-Sensor MCU

 Need for External interrupts? Yes

 Processing Speed: > 8 MHz

 Supported Digital interfaces protocols: SPI and I2C

Operating Voltage: 6 Volts or less

Number of Analog inputs needed At least 3

Module A-Accelerometer

Supply Current Consumed (normal
mode):

250uA

Ideal Voltage supply: 1.8V

Supported Digital interfaces
protocols:

SPI or I2C

Sensitivity: ± 2g to ± 16g

Axes: X, Y, and Z

Bandwidth: 1kHz to 32 kHz

Operating Temperature: -40°C + 85°C

Module A-Temperature Sensor

Typical max current consumed: 150uA

Voltage supply range: 2.7V to 5.5V

Output: Digital

Supported digital interface protocol: I2C

Accuracy: ±2.0°C from −25°C to +85°C (max)

Speed of Data transfer: High

Operating temperature: −55°C to +125°C

Module A-Photodiode

Supply Current (max): 1.7mA

Supply voltage: 2.7V – 5.5V

Output: Analog or digital, light intensity to voltage

Operating Free-air Temp: 0°C to 70°C (recommended), -25°C to 85°C (max)

Wavelength: 320nm to 1050nm

Table 1: Module A Specifications

Module B contains the Main Control System. This module goes into detail about
the communication, GPS, Accelerometer, and Main processor. The Main Control
system is the liaison interface between the raw data that is collected from the

7

sensors and the command center GUI. The specifications maximize efficiency of
the system. The requirement for at least three (3) USART lines in the main
processor was to allow the processor to communicate with other components
that utilized USART protocol. To prevent interference with other wireless devices
the network parameters had to be configured. The Accelerometer is the same as
the accelerometer in module A, so we are not repeating the specifications in this
table. Accuracy of the GPS was an important requirement for the system design
because one of the main objectives of TUV-ADDS is reliable position information.
Other general requirements of the all the devices specification can be seen
below in Table 2.

Module B-Main Processor

Operational Frequency: 16 MHz

Need for interrupt services? Extensive

Need for data lines:
Ability to run multiple likes
simultaneously

Minimum flash ram size: 512K

Need for WatchDog Timer? Yes

Supply voltage: 3.3V – 5V

Amount of UART lines: At least 3

Module B-Communication

Minimum range: 100ft

Ability to send packets? Yes

IEEE 802.14.5 Protocol: Yes

Need for Interference avoidance
capabilities?

Yes

Supply voltage: 3.3V – 5V

Network Parameter
Controllability: Assignable PAN ID

Module B-GPS

Accuracy: Within 5 meters

Update rate: Frequent

Speed accuracy: > 60 mph

Cold start up time: < 35 Seconds

Supply Voltage: < 5V

Table 2: Module B Specifications

8

Module C, the CAN-bus functions as a connection for all the nodes of the design
for the system, such as the sensor controller. It also allows for easy integration
of new hardware without the worry of bus collisions. The need for the interrupt
output pin is to save clock cycles by allowing the microcontroller to directly check
whether a message is waiting rather than it having to communicate with the CAN
Controller. The USART communication is necessary to the system design
because the microcontroller needs to send and receive messages to the CAN
controller. The BUS speed of 500 Kbits/sec (see Table 3) was chosen as a
requirement because it will be easy to interface with and be more than sufficient
to meet or system design needs.

Module C-Can Controller

Number of interrupt output pins: 1

SPI or I2C USART serial ports: 1

Need to implement CAN 2.0 A/B? Yes

Bus Speed: 500 Kbits/sec

Table 3: Module C Specifications

Module D is the Power System with general specifications that can be seen
below in Table 4. The power system draws power from a 9.6V/1600mAH battery
and then uses voltage regulators to step the voltage down to the appropriate
levels needed for each component. Therefore, the requirement for several
different regulators was very important because each device has a different
voltage requirement.

Module D- Voltage Regulator

Need for several different
Voltages:

Yes; 5V, 3V, and 1.8V

Current: Consistent

Stability: Must be stable

Need for fail-safe? Yes

Need for Low Dropout? Yes

Table 4: Module D Specifications

Module E goes into detail about the main processor and command module
software. The software takes the data collected and decides whether or not a
distress event has occurred based on a series of characteristics. Programmable
interrupts are required to control the flow of data throughout the system.

9

Software needed to send data as packets for the system to be able to operate at
a high efficiency level. The choice of programming language facilitated the
graphical user interface as well as interfacing with serial ports. Other general
software requirements can be seen below in Table 5.

Module E-Main Processor

Need for interrupt services? yes

Ability to send data in packets? yes

Clock speed: High for efficiency

Wake-up time:
Fast, for efficient data
control

Module E-Command Center

Platform:
Intuitive GUI Stable
Platform

Decoding needs:
Ability to decode data
packets from serial (Wi-Fi)

Control requirements:
User must have control over
previous vital data

Coding languages: C++ or Java

Table 5: Module E Specifications

3 PROJECT RESEARCH
3.1 SIMILAR PROJECTS

In a way, TUV-ADDS is similar to the popular system called OnStar©, which is a
system that is integrated to many civilian vehicles and includes a feature that will
contact the OnStar© representatives if the system identifies that the vehicle has
been involved in an accident. The system designed in this project has similar
objectives, but the system design is geared to detect events very specific to a
handful of military vehicle types and two events that occur frequently in the
current war in the Middle East.

10

3.2 GOVERNMENT RELEVENCE

While TUV-ADDS is not a military grade system, research of military vehicles and
the difficulties that the military has with some of their vehicles was performed and
the system design is intended to be relevant to the vehicles and users that would
benefit from a system of similar characteristics. Great measures were taken to
make TUV-ADDS a system that soldiers, marines, sailors, and other military
personnel alike, could relate to. While our team has neither access to genuine
government equipment nor the budget to create a system that would be to
military grade standards, the group has geared our project towards emulating a
solution for the Department of Defense.

After talking with several DOD personnel and being aware of the situation in the
Afghanistan and Iraq theaters, it is quite obvious that IED hits are very prominent
and the cause of many American injuries and deaths. It is also evident that the
United States has been taking great measures in combating this type of warfare.
Our group decided that an automatic vehicle distress alert system could be a
helpful aspect to the warfighter. Our team took on the challenge to research
characteristics of military vehicles being hit by an IED. This process included
questioning members of the armed forces that had personally been encountered
with IED hits in their deployments as well as members of the PEO STRI IEDES
team, to gain insight to these characteristics on different vehicles, and
characteristics of IEDs themselves. After accumulating this research it was
realized that most vehicles acted differently. Since the project was on a tight
budget, stringent schedule, and had limited testing abilities, it was decided to
narrow the scope of the project to a small amount of vehicles. The group chose
up-armored, not heavy armored tactical vehicles, because we felt we would be
able to simulate characteristics of these vehicles in an IED blast most efficiently
with our team knowledge, project schedule, testing abilities, and monetary
assets.

There are a few key characteristics that these specific vehicles generally endure
in a significant IED blast that the project will focus on. The idea is, when all of
these characteristics occur together, that would define a “distress situation.” A
sudden drastic increase in heat is one characteristic we have chosen to
measure, because IEDs generally emit a large about of heat when they blow up.
The system will also measure any greatly significant change in any one direction,
but mostly in the vertical direction, since when IEDs explode they generally
produce a momentum upward. A significant increase in illumination will be
another characteristic that will be measured. When the systems sense all of

11

these activities happening in a close interval of time, the system will recognize
this as a “distress situation.”

Our group decided to add the detection of a roll-over incident (shown in Figure 3)
after research indicated that certain up-armored vehicles have a tendency to do
so. After talking with SGM Patrick Ogden, it was made clear that a roll-over can
be a traumatic experience, and can be very dangerous which is evident from the
pictures below. Our group looked into the ways we could detect a rollover and
decided to include this into our system design.

Figure 3: U.S. Marines LVSR; examples of a vehicle rollover

(Permission from Sgt. Irizarry, Eduardo)

An accelerometer will be used to detect if the vehicle is in a vulnerable position
for a specified period of time. Those are the characteristics that are needed to
alert the TUV-ADDS system that the vehicle is in distress.

3.3 PROJECTED USER RESEARCH

As usual, all systems start with one thought: the user. The TUV-ADDS group has
done extensive research into the projected user of this system. Interviews were
conducted with members of the armed forces and their information was
incorporated to make our system more geared to a vehicle‟s occupants. As
stated before it is not expect that this system will be military standard, but the
focus of this project was with a military relevance. It was our goal to do our best
to create a system that men and women of the armed forces could relate to and
could see as beneficial.
Brittney Johnson, who served in the U.S. Army from September 2001 to
December 2008, was able to inform the TUV-ADDS team about different vehicles

12

she was familiar with from her time in the Army. She also gave insight she gained
when she was deployed to Iraq from 2003 to 2005 for Operation Iraqi Freedom
(OIF) 1 and OIF 2, on what the projected user would find useful and very
honestly what an average solider would not care about or not use. She
explained if a system is too inconvenient to operate, then it will most likely be
tossed aside by the average solider. Also, she stated that currently there is a
way to communicate if you are in distress, but there is nothing that could
communicate automatically, and that could be very helpful to a soldier in certain
circumstances.

While in a state of distress, the vehicle occupants would usually have a radio to
request assistance; it was the objective of the project that a system such as TUV-
ADDS might be helpful to the user by automatically sending requests for help to
command. The idea was that this would save time if the vehicle occupants need
to react quickly to a vehicle problem or if there are insurgents to be engaged.
The system would be useful in much more urgent situations as well, such as,
requesting help when there are injuries or circumstances that impede the vehicle
occupants to be able to request help for themselves.

During research, the team interviewed Sgt. Irizarry, Eduardo, who served in the
U.S. Marine Corps from June 2004 – May 2011 and just recently returned from
Afghanistan. With the knowledge he gained from being involved in dozens of
IED strikes, both directly and as a first responder, he expressed that with the
implementation of a system of this scope to military operations could allow for
more efficient tactical and strategical employment of assets, personnel,
equipment, vehicles, and weaponry. He told the team that his experience also
taught him that the first action taken after an IED strike occurs is communication,
without communication, there will be no response for assistance. Therefore, if the
communication is automatic, this would cut down on the number of procedures
required to follow before the occupants can attend to the vehicle, fellow
occupants if needed, or possible ambush. As a point vehicle commander,
navigator, and scout element, he explained that a system such as this would
increase situational awareness of the battlefield by communicating the status and
location of vehicles involved in distress situations and amplify the effectiveness of
first responders.

13

4 DESIGN RESEARCH

4.1 RESEARCH METHODS

To achieve the TUV-ADDS design that met our specification requirements, there
were several different methods of research that the TUV-ADDS group relied on.
Web research, data sheet analysis, price comparisons, previous projects
research, and personal interviews were the main methods of research that were
used. Incorporating these different methods allows us to get the best
components for our design and design a system that was relevant to the
projected user and scope of the project.

In the early stages of the project personal interviews were used to define the
scope of the project and to ensure relevance to the government and projected
user. Several sources knowledgeable on related subjects were sought out and
questioned about the way several different vehicles reacted in certain events,
and what characteristics of the different vehicle in these events we could quantify
to recognize that these events have occurred. As more information was
collected about these characteristics, the clearer the scope of the project would
be based on available testing abilities, budget, and team specialties. These
personal interviews also were helpful in understanding accurate characteristics of
IEDs so accuracy of the system could be maintained.

Once the project was defined and the specification requirements had been laid
out, web research was widely used by the group to research different
components to use in the design. This allowed the team to better define the
general design of the system and make sure that the correct components would
be used to work as a system. The team also used web research to find testing
equipment which will be able to test the system in the future, as well as see
reviews online about different brands of the same component. When
researching different designs for the system, the team took advantage of the
plethora of information that could be gathered from what students of previous
years had done in their projects.

After the initial design was brainstormed, research of different variants of the
same components was done through analysis of multiple data sheets. This was
needed to make sure the variants of the component would align with the
specifications and requirements. Comparing data sheets allowed the group to
understand how the part would perform and allowed for the best selection for the
system performance to be made.

14

Since TUV-ADDS is a student sponsored project, there is a budget that had to be
kept in mind when research on parts was performed. If a part is outside of the
price that the budget allows then it was not a possible option for incorporating
into the system. Significant research was been done in various companies
sample programs to stay in the budget for this project. This project calls for the
best parts that are within the range of prices that are budget approved.

4.2 MODULE A – SENSOR MODULE

For this design, an array of sensors was needed to satisfy the system objective
of being able to detect several select parameters, which would be characteristic
to an IED strike or rollover event. Several sensors where considered to include:

 Accelerometer

 Ambient Pressure sensor

 Thermo sensor

 Photodiodes

The ambient pressure sensor was considered in the early stages of the system
design, as one of the most distinct characteristic experienced when in close
proximity to an explosion. Unfortunately, this sensor was quickly cut from the
design. The rational came from the fact that there was no practical way to create
a drastic change in pressure to test the system with. The cost of the sensor was
also proving to be outside the reach of the planned budget.

It has been noted that the expectation of this project is not to produce a military
grade system, but to build a system at a smaller scale that could be related to the
needs of the military. The specification requirements of the various sensors will
only be required to meet the test requirements of this project, and not the
intensity of an actual IED strike or rollover incident. With that said, the design of
this system has incorporated sensors which will be sufficient to the events that
are laid out in the test plan. The sensors incorporated in the design at this point
in time are:

 Accelerometer

 Thermo sensor

 Photodiode

For simplicity of physically mounting and testing, the entire sensor will be
mounted to a single circuit board. Mounting the sensors on one PCB should help
with the team‟s concern of lack of space available on the Power Wheels vehicle.

15

The objective of this design decision to mount all the sensors on one PCB also
helps keep TUV-ADDS true to its objective of a system that does not bring
burden to its users. Compacting all the sensors to one board will also simplify the
testing of this module because it will eliminate the struggle to keep the same
applied events to separate boards when testing specific characteristics.
It is likely that the system will require two or more sensors to reach a
predetermine threshold before a distress event would be recognized by the
system. Therefore it is crucial that the sensors that are selected can monitor a
range of values for the characteristic they measure. For example, to detect an
IED strike, the sensors would have to detect a predetermined change in motion,
rise in temperature, and percent increase in luminance before an event could be
categorized as a “distress event” by the system. This is the failsafe the team has
built into the system to help minimize and isolate any false positive signals, which
is another goal of the system design so the sensors must have a wide range of
values that they are able to read to meet.

4.2.1 SENSOR MCU

The initial design of the sensor MCU board contains 4 basic components; these
are communications, sensor input, data logging, and the micro-controller. The
sensor unit must be fast enough to store, process, and report data from several
sensors to a master controller as well as respond and make requests to both the
master controller and other sensor units. The communication between the sensor
MCU and other networked controllers will take place using the MilCAN
communications protocol.

The communication portion of the design can be broken down into two further
design components: the software implementation, and the hardware
implementation. The first consideration for software implementation is whether or
not to have the CAN capability integrated into the sensor micro-controller, or to
use a separate chip to handle all of the CAN communication. The issues with
using a single MCU to handle both CAN protocols and sensor data is that the
controller itself would have to be more powerful and costly than otherwise
necessary in order to handle both tasks. It would also not allow much flexibility if
a major design revision was required for the CAN or MCU. Due to these
drawbacks it will be assumed that the design will use a separate microcontroller
and CAN controller, though further research may find a suitable single chip for
these purposes. The hardware portion of the CAN protocol must be handled by a
CAN transceiver in order to ensure that all ISO 11898 protocol standards are
met. The major considerations for this device are size, cost, and operating
voltage.

16

During normal operation of the sensor microcontroller the unit must take readings
from several external sensors. It must then compare this data with preprogramed
nominal values and if it detects a value outside of normal range it will flag the
current timestamp as a possible event and gather data for the next 3 seconds.
While collecting the data during this time period the controller will write it to a
removable external memory device with a timestamp. Once the 3 seconds have
elapsed the controller with observe data on the other sensors around the time of
the flagged event. If it determines that the data is showing abnormal data it will
flag the captured chunk of data to be transferred via the CAN-bus to the main
processor for further interpolation and necessary action. The microcontroller
selected must be able to handle all of these functions with little to no loss of
critical data while still being simple enough to keep the cost down as well as
reduce the risk of a malfunction caused by interfering controller features that are
not being utilized.

Firstly, the external flash memory must be able to capture at least 1 minute worth
of data while having a high enough transfer speed as to prevent unnecessary
system slowdown during a write cycle. Optimally it will communicate with the
sensor microcontroller via the SPI USART protocol as it is already a requirement
for this communication to be implemented on the microcontroller. The memory
must also be easily removable from the system and be able to simply interface
with a PC through commercially available adaptors. The device however does
not require hot swap capabilities as the optimal placement of the sensor device
will be inaccessible during normal usage. Durability and read/write lifetime will
also be a factor in the selection of this device.

Figure 4 shows the basic design of the sensor control unit. The main component
of the device is the microcontroller, which communicates with the removable
memory device and the CAN controller via the USART SPI protocol. During a
normal cycle the microcontroller will read data from the sensors, analyze them for
any events that would need to be sent to the main controller for further
processing and write that data to a removable memory device. If the controller
determines that a sensor input is outside of user defined nominal readings it will
forward the previous 10 seconds worth of data from the Flash memory to the
main processor via the CAN controller communicating with the MilCAN protocol.
The CAN controller is required to implement the software level of CAN
communication, while the CAN transceiver is required to ensure the physical
CAN layer is within the ISO 11898-2 standard [1]

17

Figure 4: Sensor MCU and CAN bus

Micro-Controller Requirements:

 External interrupts

 8 MHz processing Speed

 SPI & I2C USART Capabilities

 6V or less operating voltage

 3 or more Analog inputs

 Low Cost

The first controller design choice is whether to use an FPGA or a microcontroller
to handle the sensor processing applications. Basic research in both cost and the
development cycle for an FPGA shows that the high startup cost for learning to
program an FPGA board as well as the group‟s lack of experience with FPGA
development would be major obstacles to overcome and could bottleneck
development to a point where other features would have to get cut. The benefits
of an FPGA system would be parallel processing as well as very high processing
speeds.[2] The development team however already has some experience coding
for microcontrollers and also own very basic development boards. Keeping in
mind the relatively low cost (compared to FPGA‟s) for basic microcontrollers and
it becomes clear that while the FPGA‟s advantages would be and enhancement
to the project the hindrances far outweigh any possible gains. With this
knowledge further research will be given solely to microcontrollers as the sensor
units embedded processor.

18

The lower end microcontrollers will be the first to be examined in the research
phase as they will most likely be powerful enough to handle the requirements of
the sensor MCU while remaining low cost in both individual chip cost as well as
the development tools. The two processors in this category that stood out were
the TI Msp430g2231 and the Atmel Atmega328P. The largest selling point of
these chips is a wide array of community developed tools and available support
in the event of issues in the development cycle. The Atmega328P has the added
feature of a more user friendly programming language that is based largely off of
the C / C++ languages[3]. This will allow the group to move more or less directly
to the prototyping stage of the project rather than have to spend several weeks
learning how code on the target board. While the Msp430 is a very functional
board and has its own large user base and support community it is nowhere near
as user friendly or well documented as the Atmega328P [4]. Another major
detractor from the MSP430 is the very small program space. At only 2k it is very
possible that there would not be enough room on the chip for the necessary
code. The different features offered by each chip are shown below in Table 6. [5]
[6]

Microcontroller MSP430g2231 Atmega328P

Manufacturer TI Atmel

Cost $2.17 $4.98

Clock Speed 16MHz 20Mhz

I/O Pins 10 23

Analog pins 8 6

Operating Voltage 1.8 – 3.6 Volts 1.8 – 5.5 Volts

Package 14 Pin PDIP 28 Pin PDIP

Communication 1 USART(SPI/IC2) 1 USART (SPI, I2C)

On-Board Memory 2k Flash 32k Flash

External Interrupts 2 2

Architecture 16 Bit RISC 8 Bit RISC

Programming (Hard.) ICSP ICSP

Programming (Soft.) C, C++ Processing

CAN Compatibility None None

Table 6: Main MCU Comparison Chart
Next mid-end microcontrollers were also considered for this design. The mid end
controllers tend not to have more processing power than the lower end models
though they do tend to have more I/O pins as well as larger program memory.
Once again the amount of community support was the deciding factor as to why
these two boards were selected for review. The TI Msp430f6638 corrects many
of the g2231‟s faults. It has a larger program memory, more I/0 pins, and a faster

19

clock speed. It also includes a hardware multiplier which is a useful feature that
the g2231 lacked. On the other hand the Atmega2560 uses the same code and
programming environment as the Atmega328P and also has the same excellent
documentation and community support. For an added bonus both mid-end chips
have multiple USART ports which would prevent the need for a multiplexer for
communication with sensors and the CAN controller. While the mid-end chips
would serve our purpose well they are overkill for our project. Also they come in a
less durable package than the PDIP offered by the low end controllers. Almost
90% of the pins on either of these controllers would be unused and many
features would be unused. This adds to the cost while adding no appreciable
performance gain. The Atmega328P remains the best controller for the job
reviewed so far. Table 7 shows the comparison between the mid end micro-
controllers, we can see that both chip-sets are very similar in features though the
Atmega2560 is double in price it is offset by the community support available. [7]
[8]

Microcontroller Msp430f6638 Atmega2560

Manufacturer TI Atmel

Cost $9.24 $17.97

Clock Speed 20Mhz 16Mhz

I/O Pins 74 86

Analog pins 12 16

Operating Voltage 1.8-3.6 Volts 4.5-5.5 Volts

Package 100 PZ 100-lead TQFP

Communication 2 USART 4 USART (SPI,I2C)

On-Board Memory 256K Flash 256k Flash

External Interrupts 4 8

Architecture 16 Bit RISC 8 Bit RISC

Programming (Hard.) ICSP ICSP

Programming (Soft.) C / C++ Processing

CAN Compatibility None None

Table 7: Sensor MCU Comparison Chart

Finally, microcontrollers with on board CAN2.0 support were considered. The
benefit of on board CAN is that the sensor MCU board can be much smaller,
interfacing two different controllers (the sensor MCU and the CAN MCU) is no
longer a problem and in general it will allow the CAN functions to run in parallel
with other functions. Major downsides to utilizing this type of chip is that there is
very little available documentation for controllers of this type because they are
more specialized and thus have a smaller installed user base and therefore less

20

community support. The first chip of this type considered is the Atmel
AT90CAN32 the architecture of this chip is very similar to the Atmega line and
the code written for the Atmegas can with time be migrated over to the
AT90CAN32. This would still consume valuable development time and would
prevent any progress on sensor interface as well as the CAN-bus until a reliable
method could be developed for migrating the code. This chip however fits the
basic requirements for the sensor unit very well with multiple external interrupts
and multiple USART communications as well as several analog input pins. If later
in the development cycle it is decided to migrate to an integrated CAN MCU for
the sensor unit this would be an excellent choice. The AT91SAM9263 is also
considered for this project. This controller would fall into the high end
microcontroller category with 2 USB 2.0 ports, Ethernet capabilities, based
around an ARM core, and a high price tag. While this controller would definitely
achieve the requirements of the sensor MCU it would be overkill for the project.
Table 8 shows a comparison between the Atmel AT90CAN32 and the
AT91SAM9263 while the AT90CAN32 shares very similar specs to all of the
previously considered controllers it is clear that the AT91SAM9262 has far more
features and power than this design requires. [9] [10]

Microcontroller AT90CAN32 AT91SAM9263

Manufacturer Atmel Atmel

Cost $6.97 $29.28

Clock Speed 16 Mhz 240 Mhz

I/O Pins 54 160

Analog pins 7 4

Operating Voltage 2.7-5.5 Volts 1.08-1.32 Volts

Package 64-lead TQFP 324-ball LFBGA

Communication 2 USART (SPI) 2 USB 2.0, 4 USART

On-Board Memory 32k Flash, 1k
EEPROM

96Kbytes SRAM

External Interrupts 8 160

Architecture 16 Bit RISC ARM926

Programming (Hard.) ICSP ICSP

Programming (Soft.) C , C++ C , C++

CAN Compatibility 2.0A / 2.0B 2.0A / 2.0B

Table 8: CAN Comparison Chart

Having reviewed many controller options the Atmel ATMega328P was selected
for the relative ease of coding, available examples, and excellent community
support. There are several available examples of similar projects for the

21

ATMega328P which will allow for a more rapid design cycle as well being able to
quickly prototype the sensor board. Along with all of these helpful features the
ATMega also has two open source header files that simplify the interface with the
microchip MCP2515 CAN controller (CAN.h and SPI.h). If it is determined that
this chip can serve the necessary CAN functions for the system it will significantly
speed up prototyping as well as allow more time to be used for optimization of
the packet contents and troubleshooting data interface issues between the
sensor units and the main processor. If the CAN interface required cannot be
achieved with the Atmega328P, the AT90CAN32 will be used as the main
microcontroller.

CAN Controller Requirements

 1 interrupt output pin

 1 SPI or I2C USART serial communications

 Implements CAN 2.0 A/B

The main factors to be considered for CAN controller selection will be USART
capabilities (SPI preferred), simple to no programming necessary for the CAN
controller, full CAN2.0 support to the ISO 11898-2 standards. Lesser factors will
include package, cost, sampling, manufacturer documentation, available
application examples. The first chip looked at is the MCP2515; this CAN chip is
preprogrammed and is entirely controlled via SPI register modification. Another
major bonus is open source header files available for the ATMega328P which
combined with the SPI header files makes interfacing the two chips much more
simple. The second CAN controller researched is the Phillips SJA1000. This chip
functions very similar to the MCP2515, except rather than USART
communication this controller requires 15 I/O pins to select and control the
various registers used to transmit CAN messages. While this would not be a
major setback, the 15 pins could be called from only a few sensor MCU pins and
a shift register, without existing header files for the Atmega328P this chip
becomes a less than ideal solution for the CAN controller though it will remain an
option in the event the MCP2515 has unforeseen interfacing issues.
Table 9 below shows the differences between the two chips that were
researched above. [11] [12]

22

Can Controller MCP2515 SJA1000

Manufacturer Microchip Phillips

Cost $1.98 $3.27

Clock Speed 16 Mhz 24 Mhz

Operating Voltage 2.7-5.5 Volts 4.5-5.5 Volts

Package 18 Pin PDIP 28 Pin PDIP

Communication 1 USART (SPI) 15 Bit proprietary I/O

Programming (Hard.) None None

Programming (Soft.) None None

CAN Compatibility 2.0A/2.0B 2.0A/2.0B

Table 9: CAN Controller Comparison Chart

The MCP2515 Can controller was selected due to the existence of the open
source software library that allows it to be more easily interfaced with the
Atmega328P [13], its relatively low cost, and it meets all of the necessary criteria
to adhere to both the MilCAN standards as well as the project requirements.
Application notes from Microchip indicate that an optimal CAN transceiver to use
in conjunction with the MCP2515 is the MCP2551. With this in mind the
MCP2551 will be used in this design [14].

There are several ways to program the Atmel ATmega, of which two of the most
common ways will be utilized for this project. The first, for initial prototyping will
be done via the Arduino bootloader [15]. This code allows the microcontroller to
be programed with only serial input with a computer and can be done with a USB
to Serial converter or on the proprietary Arduino board. The second method that
will be utilized is a JTAG programmer. Pins on the final printed circuit board will
be made available to program the chip without needing either the preinstalled
bootloader (saving valuable memory-space) and eliminating the need for an
external serial connection on the final PCB.

The external data logging will be done via an external MicroSD flash card
formatted to the FAT16 file system. This is done because of the existence of a
C++ library utilizing the SPI library to communicate with the MicroSD flash card
[16]. This supports short 8.3 filenames and will greatly simplify organizing the
memory space, interfacing with a computer, clearing the data and overall project
organization and simplicity. Due to the simple nature of the data being collected,
1gb, (the smallest size commonly available), will be more than adequate to store
large quantities of sensor information. It also is available in an extremely small
package as seen below in Figure 5.

23

Figure 5: MicroSD Card with dimensions

(Wikimedia Commons)

With multiple devices communicating over the SPI protocol, chip select will need
to be taken into account to avoid collision errors on the ATMega328P‟s single
USART port. Due to the relatively small number of devices being used for this
purpose and the excess of I/O pins the ATMega will handle chip select with no
external interface needed. Though, if later in the project more SPI devices are
added to the sensor unit a decoder can be used to free up I/O pins. Figure 6
shows an example of this USART connection.

Figure 6: Chip Select SPI Connection

(Wikimedia Commons)

24

4.2.2 ACCELEROMETER

An accelerometer was chosen to detect any significant jarring, or change in
motion, which would make this component well suited for aiding in recognizing an
explosion such as an IED strike. The team understands from conducted
research, when an IED strike occurs there is significant propulsion of the vehicle
in a specific direction in a very short span of time. Axes, accuracy, range,
bandwidth, power consumption, dimensions, and output type are the
specifications of a part that will be considered when selecting the best
accelerometer for TUV-ADDS.

A three axis: X-Y-Z, accelerometer would be most ideally suited because the
direction of the change in motion will typically be unknown. The direction of
propulsion of the vehicle is an unknown factor because there would be no way of
knowing at what direction the IED was directed and at what angle the vehicle
would approach the IED. The ability to measure values along all three axes
would ensure good qualitative measurements regardless of the direction of an
explosion.

The sensitivity of the accelerometer is not the highest priority when it comes to
the characteristics of the device. The IED strike would produce an explosion that
would place significant force on the vehicle, which would make an accelerometer
with very precise accuracy would be unnecessary for the scope of this project.
Understanding the effects that would be placed on the vehicle, our limitations for
resources, and the extent of force the vehicle will undergo in testing, a low G
accelerometer is sufficient. A typical low sensitivity sensor appears to be ± 2 to
±4g‟s, which is usually controlled by the user. This typically can be accomplished
by the pin lay out per the manufactures instructions.

Bandwidth is a crucial requirement pertaining to the accelerometer. The
unpredictable nature of the events that the system is monitoring for makes the
need for a high bandwidth accelerometer sensor. If the bandwidth is too low,
there is a risk of missing an event, which would cause the system to not meet the
basic goals it was designed for. Having looked at the accelerometers readily
available for purchasing, a bandwidth of greater than one or two hundred Hertz
would be sufficient.

Power consumption of the accelerometer, as well as the other sensors, would
ideally be as low as possible. The system will be operating off a fixed 6-volt
battery, and since the system design will consist of an array of sensors and
micro-controllers, preservation of the operational lifespan of the system before

25

recharging is necessary. Keeping the power consumption of the components low
is an effort to make our design as efficient as possible.

All of the sensors will be placed on a circuit board together since all the sensors
will connect directly to the sensor MUC that will control and monitor all the
sensors using a digital interface. Research has resulted in multiple types of
common digital interface approach methods such as SPI and I2C. In some
instances the accelerometer can incorporate either method, by the user‟s choice.
The data sheets for individual components indicate which particular pins are
used for each method of interfaced used. Once again, in this design we'll need to
make sure the sensors and sensor MCU have compatible interfaces.

The dimensions of the average accelerometer are quite small for instance, Bosch
manufacturers the BMA220 which had the dimensions of 2mm x 2mm x 0.98mm.
Understanding this, the team is currently looking into way to make their lack of
size more manageable for our prototype. One option is an accelerometer that is
pre-mounded on a breakout board. Then this break out board could be
incorporated into the board that is planned to contain the remaining sensors.
However, this will drive up the cost significantly which may lead the team to opt
to deal with the small nature of the accelerometer and adapt traditional surface
mounting techniques to accomplish this task.

We plan on connecting the accelerometer to a MCU, which means a digital
output would be most desired. However, should we find an analog output
accelerometer that meets our need and cost requirements we do have the
capability to use an AD converter to the sensor usable to the MCU.

4.2.3 TEMPERATURE

A temperature sensor also seemed an effective way to detect an IED strike. It's
understood that an explosion from an IED, would release a significant amount of
energy. This means heat would be a sensible way to gauge that an explosion
took place near the vehicle. There are an abundance of types of temperature
sensors and the team researched many such as: thermocouples, thermistor, IC
CMOS and purely just for insight non-contact infrared styles. While the non-
contact IR types were the most interesting, we failed to foresee its successful
implementation into our design. Of the remaining choices, the IC type proved
most appealing to the team. Through research of data sheets, IC type
temperature sensors seem to have the most linear voltage output through the
whole range of specified temperatures. With a thermistor we would have to
assure a constant unvarying current source, as the voltage output would be a

26

function of the resistance of the thermistor. So, at this point in the design an IC
type of temperature sensor will be focused on to reduce the risk of a false trigger
of an event if for some reason there is a chance in the current.

As with the accelerometer, the dimensions tend to be quite small. The
dimensions are less that 3mm x 3mm, so use of a breakout board may be
considered, depending upon cost and availability. These dimensions are again
proving to be beneficial to the team because the sensors will be mounted on the
same PCB.

The prototype design will be tested with something more along the lines of a heat
gun or hair dryer. After some research it was concluded by the team that heat at
about 170°F was produced from an 1800W hair dryer. Through these findings, it
was concluded that the sensitivity of the temperature sensor is not critically
important. This is because the system will be looking for an extreme change in
the temperature not necessarily an extremely high temperature that would be
outside any normal operating conditions. Likewise our design, as implemented
for this class, will only call for a temperature sensor to operate near 70 °C
maximum.

Many of the sensors that were researched by the team, such as National
Semiconductor's LM94021, operate in the analogue domain. Published data
regarding the time that it would take the sensor to report the change in
temperature could not be found. This would suggest the change in output voltage
was continuous, with respect to the change in temperature, in the IC for the
analog configuration. The digital temperature sensors such as Texas Instruments
TMP100 seem to have a conversion rate of 75ms (max) for a 9-bit resolution.
The time for the conversations appeared to be the most intensive and time
consuming part of the cycle as the all other parameters could be measured in
nanoseconds.

As stated before, we plan to feed the data from all the sensors to the sensor
MCU. Therefore, in an effort to reduce complexity we would like to choose the
digital output temperature sensor. This will avoid the use of having to include an
additional A/D converter. Also, stated earlier, It is idealistic that the power
consumption of the temperature sensor be as low as possible to preserve the
operational lifespan of the system before recharging is necessary to keep the
power low in an effort to make our design as efficient as possible.

27

4.2.4 FLASH/PHOTODIODES

A photodiode has also been selected to encompass our design, as we could
consider a luminance a characteristic output of IED explosions. Most often with
any explosion there is an admittance of light as one of the forms of energy
released in the exothermic reaction. In an effort to attempt to measure this
luminance we will encompass a photodiode into our design to detect and light or
drastic change in lighting conditions.

The realm of sensor we are interested in will have a linear output with respect to
the irradiance sensitivity. The particular wavelength is not necessarily a concern
since there is likely a whole range of wavelengths emitted during an explosion.
However, for the scope of this project and the corresponding test procedure; we
will implement a sensor that can detect the visible portion of the electromagnetic
spectrum. This would allow something as simple as a flashlight to trigger the
desired test condition.

The photodiodes that are being considered for this design are analog type since
they are the predominate type. The output of the analog type photodiodes can
be one of two types; current output or voltage output. The team decided that
through research, the voltage output type photodiode would be easier to
incorporate into the system design. The greater the intensity of the light source
applied to the photodiode, the greater the output voltage.

This sensor idealistically will be place on a circuit board with the other sensors
incorporated in our design so they are all located close to the sensor MCU since
they will all be connected to it. It is also ideal that the power consumption of the
temperature sensor be as low as possible to make our design as efficient as
possible.

4.3 MODULE B – MAIN CONTROL UNIT

4.3.1 MAIN PROCESSOR

The importance of a suitable processor is evident in knowing the tasks it will be
responsible for. Some of these include: GPS, wireless RF (radio frequency),
Sensor data, and probably most important, decision making. These tasks require
a processor that can handle several tasks simultaneously without fault and with
efficiency. With the given requirements, our research has been able to narrow
down to three possible solutions: Texas Instruments‟ (TI) Stellaris ARM
processor, Microchip‟s PIC24 processor, and Atmel‟s ATmega processor. The

28

processor will have interface with many subsystems using several protocols
including UART and CAN. Figure 7 below displays how the processor will interact
with all of the other TUV-ADDS systems.

Figure 7: Main Controller Functional Diagram

The magnitude of the performance required of the processor means that strict
requirements will be set for selecting the appropriate product. A list below (Table
10) compares the vital requirements between the three semiconductor products.
After a discussion reviewing the specifications available, the TUV-ADDS Main
Control System will utilize an Atmel ATmega2560 processor. This processor is
used in the Arduino Mega (Figure 8) development board. This decision was
based on two factors; One, the processor meets all specification requirements;
Two, prototype development will be simplified with the Arduino coding
enviorment and physical development platform. Several group members have
experience with developing complex systems using the Arduino development
board.

29

Specification TI Stellaris ARM
Microchips

PIC24 Atmel Atmega

Frequency 50MHz 10MHz 16MHz

Flash Memory 256Kbytes 32Kbytes 256Kbytes

RAM 64Kbytes 2Kbytes 8Kbytes

ROM None None 4Kbytes

Software Interrupts Yes Yes Yes

Hardware Interrupts Yes Yes Yes

Total Interrupts 28 5 8

UART/USART 2 UART 2 UART 4 UART

CAN Parts 3 2 None

Supply 3.3V 3.6V 5.5V

WatchDog Timer Yes Yes Yes

I/O Pins 46 35 54

Language Ansi-C Assembly C derivative

Development
Software CodeComposer MPLab Arduino IDE

Table 10: MCU Comparison Chart

Figure 8: Arduino Development Board

(Print with Permission from Arduino)

The CPU frequency and available Flash memory play a vital role in the efficiency
of the processor. The processor must be able to run through a given complex
task, such as parsing data, as quickly as possible. The ATmega2560 series has
an operational CPU 16MHz [17]. This frequency will provide sufficient processing
power for the functions to be implemented on the device. Also a large amount of
Flash memory is required so that data from many sources can be temporarily

30

stored. The ATmega series provides 256KBytes flash memory [17]. The sources
include the senor modules, GPS, and the COM system. Data from the sensor
modules must then be evaluated to check for user designated thresholds. The
GPS and COMM data will be bundled into large data structures, which must then
be parsed. The parsed data will then be temporarily stored then be evaluated to
user defined requirements.

The way that data is transmitted to and from the processor is also an issue that
requires some detailed research. Appropriate protocols must be followed so that
the data can be sent safely and without failure or corruption. The COM and GPS
unit will be embedded on the same PCB as the processor, so basic
UART/USART (Universal Synchronous/Asynchronous Receiver/Transmitter)
protocols will be used. The ATmega contains four fully programmable [17]. For
the components (i.e. the Sensor Module and the Drive Unit) that are not
physically connected to the processor‟s PCB, a CAN (Controller Area Network)
bus will be used. The Atmega does not directly support a CAN bus. Research
and Development is being done to construct an independent CAN line. The CAN
capability is vital knowing the environment that the TUV-ADDS system will be
operating in. According to National Instruments “Wires that have to pass through
the door of a vehicle are low-speed/fault-tolerant in light of the stress that is
inherent to opening and closing a door. Also, in situations where an advanced
level of security is desired, such as with brake lights, low-speed/fault-tolerant
CAN offers a solution.”[18]. Additional information on the research and
development of both the independent CAN bus as well as USART interaction can
be seen later in this report.

Once the processor receives a signal from either the CAN or UART line, a
hardware interrupt service will need to be activated. This will allow the data to be
dealt with in the most efficient process. The ATmega provides eight hardware
interrupts as well as software interrupts [17]. The incoming data could also trigger
a software interrupt. If data received needs to be parsed, then an Interrupt
Service Routine (ISR) will be run to do so. Once this ISR is complete then the
system can either run the next routine in the ISR stack, or return control to the
main system. The ATmega will be able to dynamically reprioritize an interrupt
meaning, if desirable, the system can change the order of the stack to allow a
high-priority routine to run next in the chain.

The project may require the use of other simple devices to interact with the
processor. An example of this would be a simple Light-Emitting Diode (LED) to
blink when the GPS is initializing triangulation. For this example, the LED would
need to be attached to a General Purpose Input/Output (GPIO) port. The 54
GPIO ports available are 5volt tolerant for both input and output [18].

31

4.3.2 COMMUNICATION

The wireless components utilized with TUV-ADDS is vitally important to support
the overall purpose of the entire system. The major aspect of the system is that it
can wirelessly transmit data from the vehicle to the command center. The basic
design of this system is rather simple since two Radio Frequency (RF) devices
can generally communicate with each other without much additional design
required. The basic design that the wireless system will incorporate is displayed
below with Figure 9.

Figure 9: General TUV-ADDS Wireless System

There is an unimaginable number of different wireless systems available for
commercial use on the internet. Some are radio based, some are RFID, and
others are infrared. Because of the large distance we want the on-board system
to be from the Command Center, the only appropriate option would to go with a
Radio Frequency (RF) transceiver. After referencing a few of the Do-It-Yourself
(DIY) sites for electronic hobbyist, such as Adafruit Industries (ref), the XBee was
considered a top product for projects, such as the TUV-ADDS system.

The XBee is a ZigBee Alliance Z-Stack© derivate developed by Digi, Inc. The
XBee modules meet IEEE 802.15.4 standards [19]. Both the XBee and the
XBee-PRO module consume a minimal amount of power compared to other RF
devices. The PRO module does consume more power but it has a much further
range compared to the basic module. Our project will utilize the extended range
of the Pro module. Table 11 below compares the two XBee models.

32

Parameter XBee XBee - PRO

Meets IEEE 802.15.4 Yes Yes

Operation Frequency 2.4 GHz 2.4 GHz

Indoor Range 100 feet 300 feet

Outdoor Range 300 feet 1 mile

Transmit Power 1 mW 63 mW

Receiver Sensitivity -92 dBm -100 bDm

RF Data Rate 250Kbps 250Kbps

TX Peak Current 45 mA 250 mA

RX Peak Current 50 mA 55 mA

Power Down Current < 10 mA < 10 mA

Serial Interface Baud 1200bps – 250Kbps 1200bps – 250Kbps

Supply Voltage 2.8 – 3.4 V 2.8 – 3.4 V

Operation Temperature -40 - 85° C -40 - 85° C

Number of Channels 16 Direct 12 Direct

Table 11: Wireless Device Comparison Chart

There are several different antenna options for the PRO module. This includes
Integrated Whip (Figure 10), Chip (Figure 11), or U.FL Connector. The U.FL
requires additional components so it will not be considered because of the
complexity of the antennae needed, which also drives up cost. The Whip is a
short wire that protrudes upward from the XBee module. This may be
problematic because of the nature of the environment the system will be in. The
chip is the only option left. This is a small square IC chip that is soldered directly
to the module. This chip is capable of the same characteristics as the whip
antennae in a smaller package. Some users on various online forums claim that
the whip model has a greater range, but the manufactures have not released any
data proving this claim.

 Figure 10: XBee with Integrated Whip
(Permission from Digikey)

33

Figure 11: XBee – PRO with Chip

(Permission from Digikey)

There are many different types of XBee adapters which aid in the interface of the
module with other devices. Each adapter focuses on certain parameters such as
power management, data transformation (such as UART to USB). Adafruit
Industries makes a simple adapter which steps down a standard five volts to the
XBee supply voltage of 3.3V (Figure 12). The adapter also has the data in/ data
out lines conveniently located. Adafruit Industries has given us permission to
embed the schematic of this adapter directly into our system design. The
modules must also be configured to have matching network parameters; if these
parameters do not match then the units will not communicate. One way to easily
upload the Personal Area Network Identification (PAN ID) number is by using the
XCTU (see Figure 13 below) software available for free from DigiKey.

Figure 12: XBee Adapter

(Printed with Permission from Adafruit Industries)

34

Figure 13: Picture of the XCTU software

(from Digikey)

4.3.3 GPS

The Global Positioning System (GPS) component of the TUV-ADDS system is
arguably one of the most vital. The idea of the TUV-ADDS is that the Command
Center will receive and accurate position of the vehicle. To do this, the system
must have a high-grade GPS unit. There are many similarities between the TUV-
ADDS and a previous UCF Senior Design project, named ARMORD [20]. The
ARMORD team used a GPS unit from SparkFun. This GPS unit that team used
is no longer available from that vendor. However, the D2523T Helical GPS
Receiver (see Figure 14) is comparable unit.

35

Figure 14: Global Positioning System (GPS) Component

(Printed with Permission from SparkFun)

The GPS will be required to be accurate and get readings as fast as possible.
The Helical system is a 50 channel with standard civilian L1, Clear/Acquisition
(C/A) code based on Galileo [21]. The C/A for this unit runs at a 1.023MHz chip
rate. The unit allows a horizontal Position Accuracy of near 2.0m using Satellite-
based Augmentation System (SBAS). The SBAS uses additional satellites in a
wide-range area to recalculate the triangulation. This also allows a max velocity
of 515 m/s (1151 mi/hr) [21] which is greatly above what they system will require.

The Helical unit will communicate with the main processor (an ARM processor)
through UART (TTL). Both system have UART capabilities so attaching the GPS
unit to the processor will be as easy as connecting the output of the GPS to a
GPIO port on the processor.

4.3.4 GYROSCOPE

One of the TUV-ADDS requirements is that the system will detect vehicle
rollover. This was originally thought to be easily detected using a gyroscope
(gyro). If the gyro is offset by nearly 180° of a set threshold for a long duration of
time (30 seconds or more), then it can be assumed that the vehicle has rolled
over. Because it will not be possible to detect which direction the vehicle will roll
over using only a single axis gyroscope, meaning the system will have to
implement a 3-axis gyroscope (seen below in Figure 15). It was later decided to
just use the accelerometer (Figure15) for the detection of a rollover.

36

Figure 15: Accelerometer Component
(Printed with permission from SparkFun)

4.4 MODULE C – CAN

TUV-ADDS will be utilizing the MilCAN communication standard as laid out by
the MilCAN Working Group. This deterministic protocol is designed to be
implemented on the ISO 11898-2 CAN-bus standard physical architecture also
known as CAN2.0. Milcan is an asynchronous standard that can transmit at
speeds of up to 1Mbit per second. The protocol uses bit stuffing to allow such
high data transfer without use of a common clock. Due to the deterministic nature
of MilCAN (not CAN-bus in general) the protocol allows for the user to know
precisely the amount of time it will take for a message to reach its destination
regardless of interfering factors. We will be implementing Milcan A which is
based on the ISO11898-2 standard of the general communications protocol
Can2.0 [22].
CAN-bus 2.0 is based on the broadcast communication method. This means that
the standard describes message transmission and contents rather than the
physical transmitter itself. There are many devices and mediums capable of
implementing the CAN protocols in general though they must communicate using
the same message format in order to be considered CAN. Firstly, every message
has its own unique identifier rather than the node. This allows the importance of
the message determine the outcome of a message priority check, furthermore
referred to as message arbitration. Message priority is determined by dominant
bits in the ID, in the CAN protocol a dominant bit is logic zero, this means that the
lowest message ID will be the first transmitted over the bus. Message
transmission begins thus, there is a start of frame (SOF) Dominant bit sent when

37

the transmitter detects zero bus traffic, the message then begins to transmit its
unique identifier, 11 bits for CAN2.0A and 29 Bits for CAN2.0B, and It also
monitors the bus at this time. If at any time during the ID transmission the
transmitter sends a recessive bit (logic 1) but detects a dominant bit (logic 0) on
the bus it determines another unit with a higher message priority is attempting to
transmit and end its send attempt and waits for the bus to bus to become free
again to transmit. This is known as Carrier sense multiple access with collision
detection or CSMA/CD [23].

Data for CAN 2.0 is arranged in what referred to as frames. There are four basic
types of frames as described by ISO 11898-2 standards. The first frame and
most often called by the user, is a Data Frame. This is used to transfer normal
operating data between nodes on the network and is the frame the system
designer has the most control over and flexibility in using. The second frame that
is called by a user under normal operating conditions is the Remote Transmit
Request Frame. This is used to send a request to any node to send some
specified information. The remaining frames are the Overflow Frame and the
Error Frame. These are not called by the system designer but rather are sent
when an error is automatically detected by the can nodes and are used to
implement some of the error checking features of the protocol.

The Data Frame begins with the SOF dominant bit. This is followed by the 11 or
29 bit identifier for 2.0 A and 2.0 B respectively. This is followed by the RTR bit
which is set dominant. These are followed by two more dominant bits and then
the 4 bit data length code. This is used to announce how many data bytes will be
carried by the data frame with a minimum of 1 up to a max of 8. Immediately
following is the data field which contains the number of bytes specified in the
data length code. The next 16 bits is a cyclic redundancy field which allows other
nodes to perform error checking on the received message. There are then 3
reserved recessive bits followed by 7 recessive end of frame bits. The Remote
Transmit Request Frame is set up the same as a Data Frame, the only difference
is the RTR bit is set dominant rather than recessive. In Figure 16 we see a blank
data frame for the CAN 2.0A standard (11 Arbitration Field bits) with all of the
reserved values displayed and all of the system designer controlled variables left
blank.

38

Figure 16: Blank Data Frame

There are several types of errors recognized by CAN 2.0. These are bit error,
stuff error, form error, acknowledge error, and a CRC error. The bit error occurs
when the transmitter sends a dominant bit and a recessive bit is detected on the
bus, when this occurs and error frame is generated and the original message is
resent after a delay. The stuff error occurs when the system detects 6 bits of the
same polarity in a row. This violates the CAN 2.0 bit stuffing where after 5 bits of
the same polarity are sent a 6th bit of the opposite polarity is inserted, this is due
to the asynchronous nature of ISO 11898-2 and it allows clock data to be
recovered from the message. If this error occurs than an error frame is sent and
the message is repeated from the transmitting node. A form error occurs when a
node detects a dominant bit in the inter-frame space, acknowledge delimiter,
CRC delimiter, or the end of frame. When this is detected a form error message
is created and the message is resent. An acknowledge error occurs when a
transmitting node detects recessive, bits in the acknowledge error field. When the
transmitter sends these as recessive a node receiving the message is supposed
to fill this slot with dominant bits. If no dominant bits are detected than no nodes
received the message an error frame is created and the message is resent after
a delay. A CRC error occurs when the CRC (Cyclic Redundancy Check) number
that is generated by the transmitting node doesn‟t match the value calculated by
a receiving node. The node (or nodes) that detect the error generates an error
frame and the transmitting node has to resend the message after a delay.

A CAN node has 3 modes it can be in, which are, error active, error passive, or
bus off. The node will determine which state it is in based on two registers the
transmit error counter (TEC) and the receive error counter (REC). These
registers store a value from 0 to 255. The transmit error counter is incremented
every time the node detects an error when it is transmitting a message, the
receive error counter increments whenever an erroneous message is received.
The state of the system is determined by the current TEC and REC. Error active
is the normal operating state of a CAN-bus node, it can send and receive
messages as well as generate error frames with no limitations. If however the
TEC or REC are greater than 128 the node switches to error passive mode. In
this mode error flags generated are done with recessive bits instead of dominant
bits, and when there is an error with a message it transmits it must delay an 8
additional bit times before it will attempt to resend the message. If the TEC

39

counter is greater than 255 the node switches to bus off mode where it is unable
to communicate over the bus in any capacity, this mode can never be activated
by the REC register, preventing one faulty node from shutting down the entire
system. The device must be reset, clearing the TEC and REC registers in order
for the node to return to the error active mode. In Figure 17 below a state
diagram shows the progression of node states with respect to the TEC and REC.

Figure 17: Error Modes of the MCP2515

4.5 MODULE D – POWER CONTROL SYSTEM

The power control systems requirements are directly related to the devices
selected for this project. However the 6v max output of the vehicles battery
limited the maximum operating voltage of the devices chosen. As the last section
researched the voltage and current output requirements were determined easily
and previous experience allowed the required components to be quickly
selected.

Power System Requirements:

 5v 1A max regulated output for each sensor unit

 3.3v 1A max regulated output for main processor sensors

 1.8v 100mA max regulated output for each accelerometer

Due to the 5v component supply requirement being within 1v of the 6v battery
supply a low dropout voltage regulator is required to provide power to the
ATmega boards as well as some of the sensors. The 1A max requirement led to
the selection of two 5v regulators to be considered. These are National

40

Semiconductors LM2940CT-5 in the TO-220 package, and the
STMicroelectronics L4941 also in the TO-220. Below in Table 12 is the side by
side comparison between the two. Due to the similarities between the two
[24][25] devices and the ease of ordering samples from National Semiconductors
the LM2940CS-5 was chosen for this project. For the 3.3 and 1.8 volt voltage
regulator, past experience with the LM1117 family from National Semiconductors
made it the clear choice for this purpose as it meets the specification
requirements with 800mA max supply current and 0.2% output voltage
tolerances. The LM1117T-1.8 will be used for 1.8 voltage regulation and the
LM1117T-3.3 will be used for the 3.3 voltage regulation. These models are in the
TP-220 Package [26].

Device LM2940 L4941

Dropout .45-.7V .5-.8V

Input voltage (Max) 16V 26V

Output voltage 4.8-5.2V 4.85-5.15V

Package TO-220 TO-220

Table 12: 5v Low Dropout Regulators

4.6 MODULE E – SOFTWARE

Proper software is the only true compliment to a well designed hardware system.
The TUV-ADDS system cannot function up to required specifications without
some sophisticated software development. This development will be handled in
two theaters: first, the sensor MCU and interfacing it with the main processor
through a CAN bus; second, the main processor and the wireless interface with
the „virtual‟ command center. Figure 18 below displays this connection between
the systems.

41

Figure 18: System Data Flow Diagram

The main processor as well as the sensor MCU will be prototyped on an Arduino
development board. The group members involved with the sub-systems utilizing
the Atmel MCU both have experience with developing with the Arduino, which is
the basis for the decision. The Arduino uses a user-friendly Integrated
Development Environment (IDE) which is based on Processing. The language
developed for the Arduino IDE is a C language derivative. Many of the control
syntax (for loops, if/else statements) are exactly the same as the C language
[27]. The obvious advantage of the Arduino comes with port mapping. The
development board will easily control I/O from both dedicated analog and digital
pins. A simple line of code will set a digital output pin (pin 13 in this example) to 1
or HIGH:

digitalWrite(13, HIGH);

The other source of software development is stemmed from the user‟s „virtual‟
“Command Center.” This Graphical User Interface will be the only interaction with
the user. The GUI will display the vital information sent by the TUV-ADDS in the
event of distress. All GUI require an Object-Oriented Programming (OOP)
Language, such as Java or C++. The team has experience programming Java
since the OOP class offered at UCF is focused on Java. This proves to be
beneficial since Java‟s Virtual Machine (JVM) would allow the Command Center
software to be run on any computer platform (Windows, Mac, Linux, etc.) just as
long as the computer has the most up to date Java software. Java also has well
documented serial communication projects and there is a Java-API for the XBee
protocol available.

42

Good programming practice can help maintain time management and reduce the
chances of errors. The general convention for this type of process of
programming is known as the Software Design Process, which can be seen
below with Figure 19.

Figure 19: Software Development Cycle

4.6.1 MAIN PROCESSOR

The main processor will be responsible for many functions including I/O using
several different communication protocols like CAN bus and UART. All processes
required will be run as an interrupt. The processor will have to differentiate
between both hardware and software interrupts and place a certain priority on the
interrupt request. It will then place the interrupt request on a priority stack (if need
be). All of this will increase the efficiency of the system while helping prevent any
failure in major processes. In the case of a failure, there will be fail safes in place
to counteract the failure. An example of this would be to store all vital data in a
separate flash memory unit so that it would not be destroyed. This will also allow
the system to reset and reboot automatically, then read the stored data from the
flash memory.

4.6.2 XBee – PRO

The XBee – PRO is a Zigbee derivative with a plethora of resources available.
Every major carrier of the devices have a forum, and every forum has solutions
available for any imaginable problem. This is a great resource to have. The Atmel
can communicate to the RF unit using any of the four UART lines available. The
programming language and development IDE has several XBee library which
further simplifies the programming. One of these libraries is from Mikal Hart of
Arduiniana [28]. This library allows several individual bidirectional point-to-point
connections. It will also simplify the packet and parsing needed to send large

43

amount of data over a short timeframe. The components of the library are
initiated in a way which is similar to Java or any other class driven language. An
example of the NewSoftSerial can be seen below.

#include <NewSoftSerial.h>

 // Sets up a new serial communication
 NewSoftSerial mySerial = NewSoftSerial(2,3);

 void setup() {
 // Starts the comm. At 9600 baud rate
 Serial.begin(9600);
 mySerial.begin(9600);
 }

 void loop() {
 //If there is a budder, read it in
 if (mySerial.available()){
 Serial.print((char)mySerial.read());
 }

4.6.2.1 GPS and Gyroscope

These two components will both have to connect to the processor through two of
the four UART connections. The software for these devices will be nearly exactly
the same except for which pins on the processor they are connected to. The
ATmega can easily read in a buffer of data from the UART lines. The software
will have to convert the raw data into something useful such as an integer,
character, string, or array. All of these data types will allow the data to be stored,
transferred, and used in a multitude of fashions. A sample of how the gyroscope
code may be programmed using the Atmel development IDE can be seen below:

int pinX = 24;
 int pinY = 25;
 int pinZ = 26;

 void setup(){
 //Nothing to set-up
 }

 void loop(){

44

 //Read in each of the values
 int xValue = digitalRead(pinX);
 int yValue = digitalRead(pinY);
 int zValue = digitalRead(pinZ);

 delay(10) //Slow it down
 }

4.6.3 COMMAND CENTER

The command center will be written with Java, which is an Object Oriented
language. The system will only utilize the basics of the Graphical User Interface
(GUI) capabilities that Java has. This decision was made based on the fact that
the focus should really be on the sending of vital data to some sort „command
center.‟ All that the project requires is that the information can be seen by the
user on a laptop (or desktop). If time permits, it could be possible to scale up the
complexity and user ability of the command center. Several members have
experience with Java.

Java makes it easy to communicate via serial ports; it has built in libraries for
serial communication. Java can also dynamically select from any of the available
ports which will reduce the chance of error. The first part of the GUI will require
the user to select from a list of available ports. After this the software will make
an initial wireless check then go into standby. In standby the software will do
nothing except wait to grab data from the selected serial port. If a distress signal
is caught, the software will then display all vital data including the event that took
place, where (GPS), what time, and so forth.

4.6.4 COMMAND CENTER MODEM

The command center modem will connect to the command center (computer)
using a TTL-232R USB to TTL Serial cable. This cable has a USB to TTL
converter embedded directly into the cord. This will allow to XBee module to
“talk” directly to the Java software passing all data through an Atmel processor.
The processor will wait for an available message from the vehicle, organize the
data, and finally send the data serially to the Java software. The XBee can
communicate directly to the Java software through a serial port and the TTL cord,
but the module does time-out the network to save power. The processor will
„wake-up” the XBee while it is getting the data ready to send.

45

5 DESIGN DETAILS
5.1 MODULE A – SENSOR MODULE

5.1.1 SENSOR MCU

The project utilizes an Atmel ATmega328P in a 28 PDIP package. The pinout for
this device as well as the functions of these pins are seen below Table 13.

46

Pin Name Function

1 (PCINT14/RESET) PC6 Reset, Connected 5v w/ switch to
ground

2 (PCINT16/RXD) PD0 Unconnected

3 (PCINT17/TXD) PD1 Unconnected

4 (PCINT18/INT0) PD2 Digital I/O, connected pin 10 BMA220

5 (PCINT19/OC2B/INT1)
PD3

Digital I/O, connected pin 16
MCP2515

6 (PCINT20/XCK/T0) PD4 Digital I/O, connected chip select
Microsd

7 Vcc Connected to 5v

8 GND Ground

9 (PCINT6/XTAL1/TOSC1)
PB6

Connected to 16Mhz oscillator

10 (PCINT7/XTAL2/TOSC2)
PB7

Connected to 16Mhz oscillator

11 (PCINT21/OC0B/T1) PD5 Digital I/O, connected pin 3 4043

12 (PCINT22/OC0A/AIN0)
PD6

Digital I/O, connected pin 2 4043

13 (PCINT23/AIN1) PD7 Unconnected

14 (PCINT0/CLKO/ICP1) PB0 Unconnected

15 PB1 (OC1A/PCINT1) Unconnected

16 PB2 (SS/OC1B/PCINT2) Unconnected

17 PB3 (MOSI/OC2A/PCINT3) SPI serial in, connected MOSI bus

18 PB4 (MISO/PCINT4) SPI serial out, connected MISO bus

19 PB5 (SCK/PCINT5) SPI clock, connected SCLK bus

20 AVCC ADC voltage supply, connected to 5v

21 AREF Analog reference voltage, Externally
decoupled

22 AGND ADC Ground, connected to ground

23 PC0 (ADC0/PCINT8) Analog input, Connected to flash
sensor

24 PC1 (ADC1/PCINT9) Unconnected

25 PC2 (ADC2/PCINT10) Unconnected

26 PC3 (ADC3/PCINT11) Unconnected

27 PC4 (ADC4/SDA/PCINT12) I2C Data line, connected to pin 6
TMP100

28 PC5 (ADC5/SCL/PCINT13) I2C Clock line, connected to pin 1
TMP100

Table 13: Atmel ATmega328P Pinout

47

MicroSD cards communicate natively in SPI and the ATmega is most compatible
with the FAT16 filesystem that can be implemented on the card. The pins for the
SDcard are industry standard and listed in Table 14 below.

Pin Function Pin Function

1 Chip Select 6 GND

2 MOSI 7 MISO

3 GND 8 No Connection

4 5V 9 No Connection

5 SCLK

Table 14: MicroSD pinout

Below in schematic (Figure 20) the Atmel ATmega 328P is combined with the
CAN module and the required connections are made available for the various
sensors that will be pooled for the unit. The RS latch used to store an interrupt
from the CAN controller is shown as IC2. The Atmega 5v input is recommended
coupled to ground to prevent any possible instability in line voltage from affecting
the operation of the device. Connections to the external sensors are shown in the
bottom left along with the LM117T-1.8 voltage regulator used to supply 1.8 volts
to the accelerometer. The CAN-bus connection is labeled as X1 and next to it is
the MicroSD connector. Both controllers require a 16 Mhz oscillator to function as
the CPU clocks.

Figure 20: Sensor Unit

48

5.1.2 ACCELEROMETER

The accelerometer we have chosen is the BMA220, manufactured by BOSCH;
this is a three-axis low g accelerometer. The cost is $3.09 per unit and we will be
able to get these accelerometers form the online vender Digi-Key.

Referencing the specifications, from the data sheets, this accelerometer has the
potential to meet our requirements. It is a low g accelerometer with a digital
interface. The BMA220 can support either a SPI or I2C digital Interface as
selected by the user. The acceptable I/O supply voltage is 1.6 to 3.6 volts, which
is obtainable through the six-volt battery that is contained on the vehicle.

The user, as shown below in Table 15 below, can select the scale and resolution
of the accelerometer. The testing that the system will endure will only call for low
g forces to be applied to the system. It is likely the testing will only need to stay in
the realm of ± 2g‟s. If the sensitivity at ± 2g is found to be under sensitive once
the prototype is constructed, the component allows for the user to adjust the
sensitivity with the use of software routines.

Scale and resolution

range[1:0] Scale Sensitivity Resolution Topical use

00 + 2g 16 LSB/g 62.5mg/LSB Orientation

01 + 4g 8 LSB/g 125mg/LSB

10 + 8g 4 LSB/g 200mg/LSB

11 + 16g 2 LSB/g 500mg/LSB Shock &Vibration

Table 15: Accelerometer Scale and Resolution Table

The orientation of the pin numbers and function is shown in Figure 21 below. The
figure is of the top view orientation of the accelerometer. This accelerometer will
be required to be surface mounted on the PCB. The pin and pin function will be
needed in the creation of a library file for the schematic of the circuit that will
need to be generated.

49

Figure 21: Accelerometer Pin-out

The accelerometer is capable of working with several types of interfaces: SPI
and I2C. Table 16 below will aid in the identification and understanding the
function of each pin on the accelerometer. This information will also be helpful
when deciding which pins need to be connected to what source to achieve the
selected interface method. We will need to connect pins# 1, 2, 10, 12 and 11 to
ground. We will also need to create an EAGLE library for this sensor. Therefore,
the pin numbers and names will need to be referenced in order to maintain
consistency between the schematics and PCB board design layout. For this
sensor we are going to use the SPI interface method to pass on data to the
sensor MCU.

50

Pin Description (FOND on PAGE 47)

Pin

Name Type Description Connect
to (SPI

4w)

Connect
to (SPI

3w)

Connect
to (I2C)

1 SDO Digital
Out

SPI serial data output SDO NC NC

2 SDx Digital
I/O

SDA for I2c serial
data in/output
SDI for serial data
input (SPI 4wire)
SDA serial data
in/output (SPI 3wire)

SDI SDA SDA

3 VDDI
O

Supply
I

I/O supply voltage
(1.62 to 3.6 volts)

VDDIO VDDIO VDDIO

4 VDDD Supply
I

Power supply for
analog domain

VDDD VDDD VDDD

5 INT Digital
I/O

Interrupt Output INT INT INT

6 CAP0 DNC Do not connect NC NC NC

7 VDDA Supply
I

Power supply for
analog domain

VDDA VDDA VDAA

8 GND Ground Shared GND for
digital, I/O, analog

GND GND GND

9 GND Ground Shared GND for
digital, I/O, analog

GND GND GND

10 CSB Digital
In

Chip-select for SPI
mode. Address-select
for I2C mode, see
chapter 8.3. Pint
must not float

CSB CSB CSB

11 PS Digital
In

Protocol select pin
(0=SPI, 1=I2C, float =
μC-less); pin must
not float unless
dedicated mode is
used, see chapter 6.1

GND GND VDDIO

12 SCK Digital
In

SCK for SPI serial
clock
SCL for I2C serial
clock

SCK SCK SCL

Table 16: Pin Name with Respect to its Corresponding Interface Function

51

Table 17 below identifies the pin name with respect to its corresponding interface
function. This will be helpful when mounting the accelerometer to the board and
choosing which interface method will be preferred when connecting the sensors
to the sensor MCU. This will also be needed as reference when designing the
interface to connect the sensor to the MCU.

Interface Pin Name

PIN Name PIN Description

CSB SPI serial enable bar

SCK SPI serial clock

SCL I2C serial clock

SDI SPI serial data input

SDO SPI serial data output 3wire

SDA I2C serial data

SDO SPI serial data output

Table 17: SPI and I2C Chart

This is one of the suggested power setups given, by BOSCH, which will show
where to place a voltage sources and capacitors required operating the chip. As
seen in Figure 22 there are three 100nF capacitors connected to the chip. These
will be placed on the PCB that will contain all the sensors. The figure also shows
the voltage that will need to be provided to the respective pins.

Figure 22: Minimum Circuit Requirements

52

Shown below (Figure 23) is the recommended dimension of the landing pattern
with respect to the accelerometer. This information will need to be consulted
while designing the sensor PCB. Existing EAGEL libraries for this sensor have
not been found, therefore, we will have to reference the below diagram to create
a library for this sensor so it can be included in the schematics board design. The
figure below also includes the solder mask pattern and where the solder mask
should stop. All measurements of this accelerometer are given in mm and not mil
just to make a note, as to avoid confusion later on in the design. This sensor will
be surface mounted on the sensor board and this figure will need to be consulted
in the landing pattern and surface mounting design.

Figure 23: Accelerometer Pin Spacing

5.1.3 TEMPERATURE

The team via the TI sample program acquired five Texas Instruments
temperature sensors. The model is the TMP100, Digital Temperature Sensor
with I2C Interface. This model meets our specifications and is no cost to the
team, so it will be incorporated into the design of the system.

Looking at the specifications published by Texas Instruments the TMP100
appears to meet our expectations, in what we needed in a temp sensor. To be
more precise, our testing procedure will call for a temperature sensor capable of
measuring a temperature of near 70°C; this is well within the maximum

53

operational temperature listed at 125°C. The IC temp will take the temperature at
the surface of the board wherever it is mounted; being this will be mounted on a
board with only other low power sensors any erroneous heat sources can be
neglected.

Because of the nature of the events that this system would be detecting, it would
be ideal if it had the ability to record the data, process it and have it transmitted
before any permanent damage is done to the sensor. The TMP100 can operate
in what TI calls high-speed mode, defined as frequencies above 400 kHz, and
would have a better chance of transmitting data before it is no longer operational.
It is noted that the “master device must issue an Hs-mode master code
(00001XXX) as the first byte after a START condition to switch the bus to high-
speed operation. The data rise and fall times for this particular temp IC can be as
fast as about 160ns. This should be fast enough to accomplish the task quick as
possible. The operational frequency can be as high as 3.4MHz in the high-speed
mode.

Figure 24 below shows the pin configuration along with a block diagram of the
temp sensor. This is a top view orientation of the temp IC chip and will serve
useful when designing the landing pad on the PCB for the placement of this
sensor.

Figure 24: Temperature Sensor Pin and Function Diagram

Courtesy Texas Instruments

54

Shown in Figure 25 is further explanation of the setup with additional hardware
called for such as the 0.1 µF capacitor and a pull-up resistors. The data sheets
state the 0.1 µF capacitor is recommended but not required but the pull-up
resistors are required though. These additional elements will need to be placed
on the PCB board.

Figure 25: Temperature Sensor Minimum Circuit Requirements

Courtesy Texas Instruments

Once again, we are more concerned with speed at which we will retrieve and
process the data and not necessarily with the accuracy. The system is just
looking to recognize that the temperature did increase in a short period of time.
The table below (Table 18) will help judge the accuracy verses speed of the
sensor relationship.

Resolution

R1 R0 Resolution Conversion Time

0 0 9 Bit (0.5°C) 40ms

0 1 10 Bit (0.25°C) 80ms

1 0 11 Bit (0.125°C) 160ms

1 1 12 Bit (0.0625°C) 320ms

Table 18: Temperature Sensor Resolution Chart

Courtesy Texas Instruments

55

Table 19 gives the temperature characteristics of the IC thermo chip. As seen in
the table there is a tradeoff between the temp range and general accuracy of the
device. Our test procedure will call for a heat source near 70°C. This should give
our design a maximum error in temp of + 2.0°C

Temperature Characteristic

Parameter Test Condition Minimum Typical Maximum Unit

Range ---------- -55 ------ + 125 °C

Accuracy -25°C to +85°C ------ + 0.5 + 2.0 °C

Accuracy -55°C to +125°C ------ + 1.0 + 3.0 °C

Resolution Selectable ------ + 0.0625 ------ °C

Table 19: Temperature Sensor Temperature Characteristics

Courtesy Texas Instruments

The input-output characteristics of the temp sensor are shown below in Table 20.
The max and min logic levels are given as well as the resolution from 9 bits to 12
bits. Also, the conversion time is listed for each bit of resolution. Most likely a 9-
bit resolution will do just fine and the test procedure will call for a large change in
temp therefore making our ability to test or precession less important.

56

Digital I/O Characteristic

Parameter Test Cond. Minimum Typical Maximum Unit

Input Logic:

VIH ------ 0.7(V+) ------ 6.0 Volt

VIL ------ -.05 ------ 0.3(V+) V

IIN 0V<Vin<6V ------ ------ 1 μA

Output logic:

VOL SDA Iol = 3mA 0 0.15 0.4 V

VOL ALERT Iol = 4mA 0 0.15 0.4 V

Resolution Selectable ------ 9 to 12 ------ Bits

Conv. Time 9 - Bit ------ 40 75 ms

 10 - Bit ------ 80 150 ms

 11 - Bit ------ 160 300 ms

 12 - Bit ------ 320 600 ms

Conv. Rate 9 - Bit ------ 25 ------ s/s

 10 - Bit ------ 12 ------ s/s

 11 - Bit ------ 6 ------ s/s

 12 - Bit ------ 3 ------ s/s

Table 20: Input-Output Characteristics of the Temperature Sensor
Courtesy Texas Instruments

The power supply requirements for the TMP100 are listed below in Table 21. The
voltage supplied will need to be in the range of 2.7 to 5.5 volts, the power will be
supplied from the MCU. Because of the low current rating, it can be attached
directly to a microcontroller.

57

Power Supply

Parameter Test Condition Minimum Typical Maximum Unit

Operating
Range

 2.7 ------ 5.5 V

Quiescent
current: Iq

Serial Bus Inactive ----- 45 75 μA

 SBA, SCL freq=400kHz ----- 70 ----- μA

 SBA, SCL freq=3.4MHz ----- 150 ----- μA

Shutdown
Current: Isd

Serial Bus Inactive ----- 0.1 1 μA

 SBA, SCL freq=400kHz ----- 20 ----- μA

 SBA, SCL freq=3.4MHz ----- 100 ----- μA

Table 21: Power Supply Requirements for the TMP100

Courtesy Texas Instruments

This thermo sensor has a temperature range as shown below in Table 22. The
accuracy of the sensor is affected by the range of the temperature applied, the
greater the range the less accurate the temperature sensor is capable of
measuring. Due to the maximum operational temp of some of the other sensor,
this design will be capable of staying in the tighter accuracy range.

Temperature Range

Parameter Accuracy Test Condition Min Typical Max Unit

 ±2.0°C -25 +85 °C

Specified
Range

±3.0°C ------ -55 ------ +125 °C

Storage Range ------ -60 ------ +150 °C

Thermal
Resistance θJA

 SOT23-6 SM ------ 200 ------ °C/
W

Table 22: Thermo Sensor Temperature Range

Courtesy Texas Instruments

The format of the digital output is represented in a 12 bit binary and is capable of
logging data from -25°C to +128°C in binary as 1110 0111 0000 and 0111 1111
1111 respectively. The output is also given in hexadecimal format from 7FF to

58

E70 respectively as well. The various temperatures and their respective output
are more detailed show below (Table 23).

Temperature Data Format

Temperature (°C) Digital Output (Binary) HEX

128 0111 1111 1111 7FF

127.9375 0111 1111 1111 7FF

100 0110 0100 0000 640

80 0101 0000 0000 500

75 0100 1011 0000 4B0

50 0011 0010 0000 320

25 0001 1001 0000 190

0.25 0000 0000 0100 004

0.0 0000 0000 0000 000

-0.25 1111 1111 1100 FFC

-25 1110 0111 0000 E70

-55 1100 1001 0000 C90

-128 1000 0000 0000 800

Table 23: Various Temperatures and their Respective Output

Courtesy Texas Instruments

The next series of drawings (Figure 26) illustrate the physical characteristics of
the TMP100 sensor. This sensor will ultimately be surface mounted to a board
with three other sensors. This information will be necessary when designing the
layout for the sensor PCB. This physical package information is also required to
create a library file for this sensory, should one not currently exist.

59

Figure 26: Physical Characteristics of the TMP100 Sensor

Courtesy Texas Instruments

5.1.4 FLASH/PHOTODIODES

The Light detection sensor chosen for this design is the TSL14S-LF light to
voltage converter. This Photodiode sensor is manufactured by Texas Advance
Optoelectronic Solutions. The team is currently attempting to acquire this diode
from one of several venders, namely Net Semi and Mouser Electronics. Mouser
Electronics have a nine-week lead-time for ordering at a cost of 1.26 per diode.
In an effort to avoid this wait time I looked at Net Semi, they appear to have the
sensor in stock without the wait time but they required a minimum order of
$50.00. Being we are self funded, I have emailed requested to the company to
authorize an order for an order of 6 to 10 diodes at $1.99 per sensor.

The manufacture has described the sensor as: “cost-optimized, highly integrated
light-to-voltage optical sensors, each combining a photodiode and a
transimpedance amplifier (feedback resistor = 80 MΩ, 20 MΩ, and 5 MΩ,
respectively) on a single monolithic integrated circuit.”[29] This is an analog
sensor that outputs a voltage with respect to the light intensity. The output
voltage is linear with respect to the intensity of the light. This is Ideal for our
design, as we will pass this sensor though an AD converter before connecting it
to a MCU. The linear aspect will allow for consistent voltages reading for a
multitude of light intensities. The wavelengths the photodiode are capable of
responding to are in the range of 320nm to 1050nm. This should be more than
wide enough to respond to and lighting conditions which will be chosen for
testing.

60

Below is Table 24 which shows the Dynamic Characteristics of the photodiode.
This table gives the various delay, rise and fall times for the photodiode. It is
important to the system design to be able to detect a change in light and have it
reported to the MCU very quickly. This will be useful so we can understand what
sorts of time we can expect from the diode as it reports to the MCU.

Dynamic Characteristics

Parameter Test Conditions Typical Unit

Output pulse delay time for
rising edge (0%-10%): tdr

Min Vo = 0 V; Peak Vo =2V 0.9 µs

Min Vo = 0.5 V; Peak Vo =2V 0.6 µs

Output pulse rise time
(10% to 90%) :tt

Min Vo = 0 V; Peak Vo =2V 2.6 µs

Min Vo = 0.5 V; Peak Vo =2V 2.9 µs

Output pulse delay time foe
falling edge (100% to 90%):
tdf

Min Vo = 0 V; Peak Vo =2V 0.8 µs

Min Vo = 0.5 V; Peak Vo =2V 0.7 µs

Output pulse fall time (90%
to 10%): tf

Min Vo = 0 V; Peak Vo =2V 2.9 µs

Min Vo = 0.5 V; Peak Vo =2V 2.8 µs

*VDD = 5V, TA = 25°C, λP =640nm, RL 10KΩ

Table 24: Dynamic Characteristics of the Photodiode

The three terminals on the photodiode are as listed below in Table 25 along with
the diagram (Figure 27). This information will be needed when mounting to the
PCB to ensure the component is mounted correctly. The typical width of the
terminals is 0.47mm by 0.74mm with a tolerance of + 0.25mm.

Terminal Functions

Number Name Type Description

1 GND ------ Power supply ground
(substrate).

2 OUT O Output voltage.

3 VDD ------ Supply voltage.

Table 25: Three Terminals on the Photodiode

61

Figure 27: Three Terminals on the Photodiode

Below (Table 26) are the suggested operating ranges for the diode. This will
need to be noted in the test procedure that the heat source cannot exceed 70°C.
Our test procedure will likely call for a heat gun so the threshold for the temp will
need to be set lower than 70°C. This will be more than adequate for our design to
meet our test procedures and system goals.

Recommended Operating Conditions

 MIN MAX UNIT

Supply Voltage, VDD 1.7 5.5 V

Operating free-air temperature, TA 0 70 °C

Table 26: Suggested Operating Ranges for the Diode

5.1.5 SENSOR PCB

The three sensors: accelerometer, photodiode and thermo sensor will be place
on a PCB, which we will call the sensor module. It is anticipated that we will be
able to place all three sensors on a two inch by two inch two layer PCB, this
should comfortably be able to hold all three sensor and their additional
components such as capacitors and pull up resistors.

We have chosen to use EAGLE software to create the schematics and board
design layouts. For the sensors, in particular the accelerometer and the
photodiode, we will need to create a library .lbr file to incorporate these into the
design using the EAGLE software, as one does not publicly exist. In order to do
this a package and symbol file must be created, then merged together to create a
device. The data sheets are referenced in order to achieve the most accurate
measurements of the footprint of the IC and relative location of the pads.

62

Below is schematic diagram of sensor module (Figure 28). This should
demonstrate a basic schematic layout of the sensor board. This shows a
complete lay out of the sensor and all of their respective hardware components,
which will need to be included into the circuit design. This schematic was created
using the EAGLE software and will also be used in the creation of the PCB
during the prototype construction of this system.

Figure 28: Schematic Layout of the Sensor Board

5.1.6 SENSOR MODULE DESIGN REVISIONS

In the initial design of the sensor module an accelerometer was called for; which
was to be placed on the sensor board along with a temp sensor and photodiode.
However, during the construction of the prototype the team had difficulties
interfacing the BMA 220 accelerometer to the sensor microcontroller. This led to
a discussion by the team in which it was realized we had to replaced our
gyroscope with a Freescale accelerometer. It was then decided to have the TUV-
ADDS run off of a single accelerometer located in a centralized location of the
host vehicle. Further justification for this, if we were to implement this system
(beyond the scope of our prototype) it would call for several of these sensor
boards modules to be placed around the perimeter of the vehicle. For the temp
IC and photodiode this still made sense; however, for the accelerometer this was
not the case. To our understanding the vehicle is a ridged structure and the

63

whole vehicle would experience an external force of an explosion with relative
uniformity, therefore it seemed redundant and unnecessary to have multiple
accelerometers. With this modification the TUV-ADDS system was capable of
meeting our original design specifications.

With all this in consideration the team happened to have a second accelerometer

which we implemented in the design of the TUV-ADDS. This accelerometer was

produce by Freescale of and was the MMA7260QT. This unit was more costly to

the group at $46.00 but successful implementation the component deemed it

worth the cost. This accelerometer is a three axis accelerometer, as we still felt it

was important to have this capability in the system. The MMA7260QT was an

analog sensor and not a digital as compared to the BMA220. The Freescale

accelerometer is a low g sensor, which is acceptable as our testing procedure

will only call for low g forces to be applied to the host vehicle. This Freescale

accelerometer is to be placed in the with the main control module which in turn

was placed under the “front hood” of the power wheels vehicle.

5.2 MODULE B – MAIN CONTROL UNIT

5.2.1 MAIN PROCESSOR

Atmel lists several basic requirements that are needed to maintain stability with
the ATmega. These include (but may not be limited to) decoupling on all voltage
in and ground by using capacitors. Atmel also describes the use of an external
16MHz crystal buffered with two capacitors. The Main Control Unit must be
flexible to allow any updates. The processor will be accessible through a JTAG
line connect to an RS232, which links to a USB connector. The circuit seen in
Figure 29 is the design linking a USB to the ATmega. It is also vitally important
to maintain a stable voltage source (Figure 30). An entire subsection of the TUV-
ADDS is dedicated completely to power supply. The processor will connect
directly to the Power Supply System to draw a steady five volt supply. Figure 31
shows the port mapping of all of the devices that will communicate with the
processor. This Figure also shows the requirements for both supply voltage
decoupling as well as external crystal oscillator.

64

Figure 29: Design Linking a USB to the ATmega

Figure 30: Stable Voltage Source

65

Figure 31: Port Mapping of all of the Devices that will Communicate with
the Processor

5.2.2 COMMUNICATION

The XBee module has been proven to be an excellent product. There are a few
draw backs in hardware designs that need to be addressed. A major issue is that
the module is susceptible to burn out from a high (relatively speaking) signals. If
there were to be a large spike in a signal that was slightly higher than five volts,
the module could burn out. This situation can be easily avoided by using a five
volt compliant buffer. The buffer will take a signal based around a five volt
average and shift it down to 3.3 volts. This will prevent any spikes in signals to
reach a dangerous level. The buffer is embedded in the schematic (Figure 32
seen below) of the XBee adapter as IC2(A-D). The output from the adapter will

66

connect directly to one set of Transmit/Receive (Tx/Rx) ports that are designated
through software.

Figure 32: Buffer is Embedded in the Schematic of the XBee adapter as
IC2(A-D)

(Printed with permission from Adafruit Industries, Inc.)

5.2.3 CAN BUS CONNECTION

It was decided early on to use a CAN bus between the Main Control Unit and the
sensor modules. The Main Control Unit will implement a CAN 2.0 A/B system to
communicate to the sensor modules. The CAN module will require an interrupt
output pin and one SPI or I2C USART serial line. A SPI line can be easily
connected to the processor by following the pin set up seen below in figure 33.

67

Figure 33: SPI line easily connected to the processor by this pin set up

5.2.4 GPS

Many of the GPS units that were researched had similar hardware configuration
considerations. Some of these include a decoupled supply voltage as well as
inductor near the RF antenna. With the particular GPS unit that the system will
utilize it requires that there be a difference between the circuit common ground
and the RF ground. All components connected and/or near the RF component
will be connected to the RF ground (see Figure 34). Other than this RF
requirement, the rest of the circuit is mostly devoted to stable communication
interface.

68

Figure 34: Components Connected to the RF Ground

5.2.5 GYROSCOPE

The gyroscope circuit requires a decoupled supply voltage. This is accomplished
by putting a resistor and capacitor in parallel between the input voltage and the
supply voltage of the unit. It is highly recommended that SPI communication lines
have and attached voltage line as seen in Figure 35. This consideration
facilitates the SPI communication protocol. The gyro circuit will also have both an
interrupt input and interrupt output. The interrupt output will send a message to
the microcontroller that the gyro is ready to send the data while the interrupt input
will receive a message when the microcontroller is requesting data.

69

Figure 35: SPI communication lines have an attached voltage line

5.2.6 MCU DESIGN REVISIONS

The final TUV-ADDS system utilizes an Atmel ATmega 328P instead of the
originally designed ATmega 2560. A mostly function Main Control Unit was
realized on a PCB (see Figure 36 below) including the ATmega2560, which is a
surface mounted device. After initial testing, we realized that we could not access
the 2560 using our simple In-System Programmer (ISP). The access the JTAG
lines on the chip, we needed to use a High-Voltage ISP to burn out the JTAG
fuse which we did not have access to. To overcome this issue we decided to
rebuild the entire Main Control Unit of a Perforated Board (PerfBoard) using the
328P. This device is a PDIP package which eases debugging and connection
errors. A picture of the Main Control Unit built on the PerfBoard can be seen
below in Figure 37. As will be explained in section 6.3, CAN communications was
replaced with a falling edge triggered interrupt over pin 6 of the 9 pin D-SUB port.

70

Figure 36: Main Control Unit PCB with ATmega2560

Figure 37: Final Main Control Unit with ATmega328P

Another design change to the Main Control Unit is the use of an accelerometer to
detect Rollover instead of a gyroscope. During component level testing of the
gyroscope (a picture of the gyro acquired can be seen below in Figure 38), we
quickly realized that the gyroscope does not detect the desired change in angle
relative to an origin. The gyro does so change in motion which could be
potentially used to detect IED strikes but it most maintain its change relative to an
origin to detect Rollover. Once we acquired the accelerometer (pictured below in

71

Figure 39) we were able to test the component using simple software to check
that it could detect changes in motion as desired.

Figure 38: Original Gyroscope Acquired

Figure 39: Accelerometer used in the Final System

The USB and Power circuit seen in Figures 29 and 30 do not exist in the final
Main Control Unit design. For the USB interface, the final design utilizes a FTDI
cable with an embedded RS232 chip. The RS232 chip interfaces directly to the

72

Figure 40: Final Schematic of the Main Control Unit

Rx/Tx lines of the Atmega chip. Above in Figure 40 is the final schematic of the
Main Control Unit. This design utilizes break-out boards for the GPW and
Wireless that connect to the PCB via headers.

5.3 MODULE C – CAN

The CAN controller is not programmed like a common microcontroller. It instead
has a set run routine and its functionality is dictated by values written into various
registers via SPI communications. Due to this, no software routines will be written
for this chip specifically but rather it will be interfaced with the sensor
microcontroller and functions will be written for the ATmega which will serve to
operate the MCP2515 via SPI.

There are 18 pinouts of the PDIP package of the MCP2515. Table 27 contains
the description of these pins as well as if they will be used in this project.

73

Pin Name Function

1 TXCAN CAN-bus Transmit, connected pin 4 MCP2551

2 RXCAN CAN-bus Receive, connected pin 4 MCP2551

3 CLKOT/SOF Clock output, Unused

4 TX0RTS Transmit buffer 0 request to send, Unused

5 TX1RTS Transmit buffer 1 request to send, Unused

6 TX2RTS Transmit buffer 2 request to send, Unused

7 OSC2 Oscillator Output, Connected 16Mhz Osc

8 OSC1 Oscillator Input, Connected 16 Mhz Osc

9 Vss Ground

10 RX1BF Receive buffer 1 interrupt pin, Unused

11 RX0BF Receive buffer 2 interrupt pin, Unused

12 INT Interrupt pin, connected pin 4 4043

13 SCK SPI clock input, connected SCK Atmega

14 SI SPI data input, connected MOSI Atmega

15 SO SPI data output, connected MISO Atmega

16 CS SPI select line, connected digital I/O Atmega

17 RESET Connected high to prevent reset

18 Vdd 5v input

Table 27: MCP2515 Pinouts

The transmit flow based upon registers set via SPI will show the registers needed
to be altered by the ATmega328P in order to send messages over the CAN-bus.
The first function needed is to fill the desired transmit registers with the message
ID, message data, whether or not to request receipt of message confirmation, or
if the message is a remote transmit request. Once this has been done the sensor
MCU sets the TXBnCTRL.TxREQ bit to 1. The MCP2515 than knows that the
user has requested to send a message and it clears bits related to the previous
transmit cycle. The CAN controller than checks the bus for a node currently
transmitting if the bus is currently occupied it than waits for an opening and
checks to see if the user cancels the message by either setting the
CANCTRL.ABT bit to 1 or if the TxBnCTRL.TXREQ bit is set to zero. If the bus
becomes available and the message has not been canceled it checks the
TXBnCTRL.TXP field of the message id in buffers zero and one (if two messages
have been loaded into the different buffers) and determines which one is the
highest priority. It than attempts to transmit the message over the BUS engaging
in arbitration with any other nodes currently attempting to transmit as described

74

in section 4.4. If the message is sent successfully the device sets the
TxBnCTRL.TXREQ bit to zero. For the purposes of this project there is no need
for an interrupt once a message has been successfully transmitted so
CANINTE.TXnIE will always be zero. Finally the device will set CANINTE.TXnIF
and return to normal operation. If however when the message is transmitted
there was an error due to lost arbitration the device will set TxBnCTRL.MLOA
and attempt to retransmit the message so long as the TXBnCTRL.TXREQ bit is
still set. If however the reason the device failed to transmit due to a message
error the controller first sets TxBnCTRL.TXERR than determines if the
CANINTE.MEERE is set. For this project an interrupt will not be generated when
a message error occurs, therefore the CANINTE.MEERE will always be zero.
Lastly the device will set CANTINF.MERRF and return to normal operations.

When receiving a message the controller goes through a very similar process as
to when it transmits. When the receiver detects the start of a message it beings
loading it into a buffer called the message assembly buffer or MAB. After the
receiver detects the termination bits it ensures the message was valued. If the
message is invalid it generates an error frame. If the message is instead valid it
checks against a filters preloaded into the RXB0 register. If the message is
passed by the filter the controller checks to see if the CANINTF.RX0IF is set.
When zero, this indicates that the receive register is capable of receiving the
message. If one the controller checks to see if it is allowed to store the message
in the RXB1 register via the RXB0CTRL.BUKT. If this is not allowed then it
generates a buffer overflow error and sets the EFLG.RX0OVR bit. The controller
then checks to see if an interrupt should be generated by observing the status of
the CANINTE.ERRIE bit. This project will not utilize this interrupt so the bit will be
set to zero in the initialization of the CAN controller at the startup of the sensor
MCU. If earlier the RXBO register was empty the message will be moved into the
RXB0 register, CANINTF.RXOIF bit is set and RXBOCTRL.FILHIT is changed to
reflect which filter passed the message. It will then check CANINTE.RX0IE bit.
This bit controls weather an interrupt is sent when a message is successfully
received this will be utilized for this project so it will always be 1. In this case an
interrupt will be generated on the INT pin of the CAN controller; this will be stored
on an external memory device to enable the microcontroller to quickly assess
whether a message is waiting to be retrieved from the CAN controller. After this
interrupt is generated it then sets the CANSTAT bits to determine which receive
register the message is located in and then checks the BFPCTRL.B0BFM and
BF1CTRL.BOBFE bits are set and if so it sets the RXBF0 bit low and if not it
returns to start to await receiving a message. If in the beginning the RXBO filters
rejected the message the controller checks to see if it meets one of the RXB1if
not the controller returns to start to await another message. If however the
message passed one of the RXB1 filters or was rolled over from RXB0 receive

75

buffer the CAN controller checks if the register is full via the CANINT.RX1IF. If
the bit is set meaning the register is full an overflow error is generated and it
once again checks to see if an interrupt should be generated, which will not be
done for this application. If the register is empty and the CANINT.RX1IF is set
low then the message is moved into the RXB1 register and CANINTF.RX1IF is
set high. The RXVOCTRL.FILHIT bits are set to inform the microcontroller which
filter passed the message and it checks the CANINTE.RX1IE bit. This bit governs
interrupts for successful receipt of messages in the RXB1 register this will also
be used in this project and will utilize the same interrupt storage as the RXB0
register once it is generated by the controller on the INT pin. After the interrupt
the CANTAT bits are set to inform the microcontroller that the RXB1 register
received the message that generated the interrupt. The CAN controller then
checks if BFPCTRL.B1BFM and BF1CTRL.B1BFE are set high and if so it sets
RXBF1 low and returns to start. If the bits are zero than the CAN controller
returns to start to await another message.

The MCP2515 is only able to generate CAN protocol messages, it however is not
intended to be the physical layer link to the CAN-bus. For this purpose Microchip
the makers of the MCP2515 recommend the MCP2551 CAN transceiver. This
chip will take the formatted CAN compatible messages sent to it from the
MCP2515 and allow it to safely connect to the CAN-bus. This will regulate the
transmission and receive voltages and allow the system to operate within the ISO
11898-2 guidelines for both message protocols as well as the physical layer.
Below, Table 28, show the pinouts and the usage of the MCP2551 for this
project.

Pin Name Function

1 TXD CAN transmit (from controller)
Connected to pin 1 MCP2515

2 Vss Connect to ground

3 Vdd Supply voltage, 5v

4 RXD CAN receive (to controller)
Connected to pin 2 MCP2515

5 Vref Reference CAN output voltage, unconnected

6 CANL Low voltage CAN-bus Connection

7 CANH High voltage CAN-bus Connection

8 Rs Slope control resistor used to select transmit modes.
10K resistance for High speed

Table 28: Pin Definitions and Connections MCP2551

76

The Milcan A specifications require the MIL-C D38999/ffeA98zN Series 3
connector with shell size A and series 9 (3 pin). The cable for such a system is
defined to be any ISO 11898-2 compatible line. For this S CB 626 from SAB
North America is one of the few products for this purpose offered in the United
States.

5.3.1 CAN REVISIONS

The CAN connection shown was designed and tested with the system; however
the code required to run the module, delayed sensor sampling to an
unacceptable level. It was determined that the CAN communications module
could be substituted with a single interrupt line connecting both of the
processors. In order to make CAN communications with this module a viable
option a more powerful processor would have to be chosen. The interrupt is
falling edge triggered and the signal is carried over pin 6 of the 9 pin D-sub
connector.

5.4 MODULE D – POWER CONTROL SYSTEM

The power control system will consist of the LM2940CT-5, LM1117T-1.8 and
LM1117T-3.3 low dropout voltage regulators for 5v, 1.8v and 3.3v supply
voltages. Due to the existence of a 6v DC battery on the vehicle the connection
to the voltage regulators can be direct. Figure 41 below shows the TO-220
package and pinout for the LM2940, and Figure 42 shows the package and
pinout for the LM1117. Both images are front view.

Figure 41: LM2940 Pinout
(Permission from National Semiconductor needed)

77

Figure 42: LM1117 Pinout
(Permission from National Semiconductor needed)

Schematic (Figure 43) shows the 5v and 3.3v regulators that will be used for to
power the sensor units and main processor. While only one 5v connection to the
sensor unit is shown for every additional sensor unit another 5v regulator must
be added to power it.

Figure 43: Power System Schematic

78

5.4.1 POWER CONTROL SYSTEM REVISIONS

The power system was revised to use a separate 9 volt 1.6 amp hour battery due
to noise caused by the power-wheels motors on the on-board 6 volt battery. We
also utilized only one 5v regulator and one 1.8 volt regulator as it was found that
the X-bee module can provide the needed 3.3 volts. As can be seen in the
revised sensor MCU schematic (Figure 40) the 1.8 volt regulator was moved to
the sensor MCU board.

5.5 MODULE E – SOFTWARE
The TUV-ADDS system will exclusively utilize Atmel processors, all of which can
be developed in the Arduino Integrated Development Environment. The Arduino
language is a C language derivative blended with aspects of Object-Oriented
Programming. The language it not designed to interact with classes per se, but it
can work with many different types of generic objects, such as Strings. All of the
control statements and data types match the equivalent statements from the C
programming language. The software flow must follow a three step process
which can be seen below in Figure 44.

Figure 44: Three Step Process Software Flow

5.5.1 MAIN PROCESSOR

Each vehicle that contains the TUV-ADDS system will be assigned a unique
serial number which will be embedded during construction. This serial number
cannot be changed without a direct re-programming of the processor. This serial
number will allow the command center to differentiate between all of the different
vehicles and their specific properties. Originally the plan was to assign specific
characteristics of a certain vehicle a pattern in the serial number. For example, if
a vehicle would always be a lead in the convoy then the serial number would
have a „01‟ in the sequence. It was then decided to change this so that any
enemy interference would not be able to decode and recognize any patterns. The
serial number will be assigned to a non-volatile integer data type as a global
variable definition. The serial number will also be stored in each of the sensor

79

module so that in the case that a vehicle is mostly destroyed, there is a chance
that one of the systems containing the serial number will survive.

The preprocessor of the main body of the software will contain a large set of
globally defined variables (see Table 29) as well as the structures that are used
in many of the methods. This setup of having all methods potentially able to
access all variable fields and structures reduces the complexity of the methods.
All of the structures will actually be pointers to structures; this will also greatly
decrease complexity by only having to pass the pointer address instead of a
series of variables or an array. This setup will also help with making vital decision
on whether or not the system is detecting distress. Some of the sensors offer
more than just the basics, which methods not associated with that component
can utilize. Also defined in the preprocessor of the program are all of the libraries
used as well as any constant definitions. Figure 45 below shows a basic
preprocessor coded in the Arduino IDE.

Variable Definition Purpose

int gpsTime Stores the time of satellite fix.

char gpsValidity Stores whether or not the position is valid, or
there is a warning

float gpsLat Stores latitude position as degrees and minutes

char gpsNS Stores „N‟ for North or „S‟ for south

float gpsLong Stores longitude position as degrees and minutes

char gpsEW Stores „E‟ for East or „W‟ for West

float gpsSpeed Stores speed over the ground

int gpsDate Stores the date when signal was fixed

int gyro Stores the gyroscope x-position

int gyroY Stores the gyroscope y-position

int gyroTime; Stores the time at which a reading was taken

Table 29: List of All Globally Defined Variables

80

Figure 45: Basic Preprocessor Coded in the Arduino IDE

The Arduino IDE is a copyright of Arduino. Permission under Fair Use.
The purpose of the next section of software is to start connections, initialize, and
do any other tasks before going in to the main part of the code. The software will
first start all serial connections to components including the wireless, CAN
module, and the gyroscope. From there it will configure all components by
sending a response request. Once the software receives the response, it will
move to the next component. A simple diagram of this process can be seen
below in Figure 46. This processes not only checks that all systems are running
properly, but it will also fulfill another tasks required to be performed in the setup
stage. This requirement is that all initial senor and position reading will be taken
and stored as global variable. These values will be what is referenced later to
check if a new value is caused by a distress characteristic. Once all of the initial
values are stored, the setup section will then send to the command center the
serial number and the current position on the vehicle.

81

Figure 46: Configure all Components by Sending a Response Request

The main part of the software is the Loop section. This section will run non-stop
unless told to do otherwise. It is possible to leave the loop and re-run the Setup
section, and in fact our software will do so. In general the loop will check data
sent from the various sensors and check them against previous values. Each
section will be required to send current values then the software will compare
those with previous values. If the data only changes by a small amount (below
distress threshold or no change) then the software will update these as the new
„standard‟ to compare to. The other possible situation is that the incoming data is
much higher than threshold, which may show characteristics of distress. This
does not necessarily mean that distress is occurring. Only the situation where
multiple data readings, such as both the accelerometer and the temp sensor,
shows increases above threshold will the system go into distress mode. Distress
mode will shut of all subsystem and send the distress signal to the command
center. A detailed display of the grab and check process for the TUV-ADDS
system can be seen below in Figure 47. Each of the squares represents a
function that will be called from the main of the software.

Figure 47: Display of the Grab and Check Process

82

All Method Prototypes:
int acquireGPS(struct gps* mainGPS);
void updateGyro(struct* gyro);
int commDistress(struct* vehicle, int distress);
int commGPS(struct* vehicle);
int compare(int oldValue, int newValue);
void distressMode(void);

5.5.1.1 WIRELESS

Wireless Method Prototype: int comm(struct* vehicle);

The basic design of the TUV-ADDS system will require a unidirectional
communication service, meaning that the command center cannot send any
information to the vehicle. If time permits, there are several features that could be
added to the command center that would require a bidirectional communication
system. The hardware design for the communication system is flexible enough to
allow the expansion to include such features. From this point, the design of the
software will only consider the unidirectional system.

During the setup stage of the software, the XBee device has to be calibrated and
a network has to be defined. The device is calibrated by sending a request
through the device line. After a few seconds the device will return a character,
letting the software know that it is in command mode. Once in command mode,
the software will set the Personal Area Network Identification (PAN ID) number.
This is achieved by sending the XBee “ATID3330” where the 3330 is the PAN ID.
This value can be anything between 0x0 and 0xFFFE in hexadecimal. Next step
is to set the Destination High to „0‟ which selescts 16-bit addressing mode. The
Destination Low, which is the 16-bit address, can be anything between 0x0 and
0xFFFE in hexadecimal. Last the software will send a „ATCN‟ to the XBee which
will exit Command Mode. The device will return a character to signify that it has
exited command mode.

void setup () {
 Serial.begin(9600);

 Serial.print("X"); // This clears buffer
delay(1100);

 Serial.print("+++");
 delay(1100);

83

 if (returnedOK() == 'T') {
 // if an OK was received then continue
 }
 else {
 setup(); // otherwise go back and try setup again
 }

 Serial.print("ATID3330,");
 Serial.print("DH0,");
 Serial.print("DL1,");
 Serial.println("CN");

 if (returnedOK() == 'T') {
 // if an OK was received then continue
 }
 else {
 setup(); // otherwise go back and try setup again
 }
}

This method will require the pointer to the vehicle structure as an argument. This
requirement allows the method access to all of the vital information without
having to passes every individual variable in as an argument. Once the method is
called it will create a temporary packet buffer (see Table 30) by dynamically
allocating memory. It will then run through the vehicle structure and call a
toString() function on the variable contents. This toString() function will take any
generic data type and turn it into a string data type. After all of the elements of
the buffer are converted to a string, then the buffer becomes the message
packet. This packet can be sent using the Serial.write(buffer) command. Once
the message has been sent, the method will free all of the dynamic memory
allocation, and will return a „1‟ indicating that the message has been sent, then
terminate.

Variable Definition

Purpose

struct* vehicle
messageBuffer

Allows data packaging for wireless
transmission

Table 30: Wireless Communication Variables

84

5.5.1.2 GPS

GPS Method Prototype: int acquireGPS(struct gps* mainGPS);

The GPS module can send several different messages varying only by the
protocol desired. The Helical GPS antennae by AGH Technology Co. Ltd. can
send messages in all major protocols including $GPRMC (recommended
minimum specific GNSS data). Included in the message is time, status, latitude,
longitude, speed over ground, and date. All of these parameters are desired for
use in the system. Figure 48 below is a sample of a message and how it can be
broken down.

Figure 48: Sample of a Message
(Printed with permission from Arduino)

The method is defined to have an integer return data type. This is simply to notify
that the whether or not the GPS acquisition was successful. If a „1‟ is returned
then the acquisition was successful, while a return of „0‟ means the processes
was unsuccessful. The method will also require, as an argument, a pointer to a
single global variable with a GPS structure data type. Once the method is called
it will then request a message from the GPS unit. It will wait until the GPS unit
sends a message back. At that point, it will check that the GPS reading is valid. If
it is not, the method will exit returning an error. A valid message will be parsed
and stored into the correct temporary variable (see Table 31). The method will
then compare all temporary variables against the global GPS variables. This
check will make sure of any extraneous errors. Once the check is complete the
global variables will be updated, and then the method will return a „1‟ meaning no
error has occurred.

85

Variable Definition Purpose

int tempGpsTime Stores the time of satellite fix.

char tempGpsValidity Stores whether or not the position is valid, or
there is a warning.

float tempGpsLat Stores latitude position as degrees and minutes

char tempGpsNS Stores „N‟ for North or „S‟ for south

float tempGpsLong Stores longitude position as degrees and minutes

char tempGpsEW Stores „E‟ for East or „W‟ for West

float tempGpsSpeed Stores speed over the ground

int tempGpsData Stores the date when signal was fixed

Table 31: List of Variables Utilized in the GPS Method

5.5.1.3 GYROSCOPE

Gyroscope Method Prototype: void updateGyro(struct* gyro);

This method will send a request to the on-board gyroscope and wait for the
response. A nice parameter that the gyroscope chip offers is that all position
fields have separate analog lines. The ATmega has ten analog-to-digital (A/D)
converts available for the set of analog pins (ten analog pins in total). The analog
signal sends the position as raw data. As is, the information is useless. It must be
converted to a readable angle then stored into the appropriate variable defined
for the method (see Table 32). This is done by referencing the initial reading and
comparing it to the offset, which is a constant for the device. This can all be
encapsulated into a single equation as seen below. The other aspect of the
method includes a timestamp of when the reading took place. This is simply done
by storing the value pulled from the globally defined time field. This feature is
vitally important for recognizing the characteristics of roll over.

 gyroX = ((analogRead(gyroXpin) * gyroVoltage) / 1023) –
gyroZeroVoltage) / gyroSensitivity;

Variable Definition Purpose

int tempGyroX Stores the gyroscope x-position

int tempGyroY Stores the gyroscope y-position

int tempGyroTime; Stores the time at which a reading was taken

Table 32: Gyroscope Method Variables

86

5.5.2 COMMAND CENTER

The command center software will be developed with Java so that any computer
with the Java Virtual Machine can run it. This is not the only advantage of this
decision. Java is also great for developing Graphical User Interfaces (GUI). Java
is also flexible with communicating with ports. The Command Center software
will have three separate classes, each of which will run an important function
described above by utilizing several of Java‟s built in libraries (see Table 33
below).

Library Description

java.io.* Contains all GUI components

javax.swing
.*

Help make GUI and adds flexibility to interfacing

java.io.* Contains streaming parameters

java.util.* Contains a large collection of random classes to
facilitate all types of situations

gnu.io.* Collection of serial and parallel comm under the GNU
LGPL licenses agreement

Table 33: Java’s Built in Libraries

The first class is will contain all of the structure involved with the software GUI.
This class will use many different fields (as seen in Table 34) to display and
control the vital data. The class will be sent all of the required data values from
the main function. All of the fields except for the JButton are just display fields, so
they have no control at all. The JButton will be programmed to disconnect the
software from the serial port and close the entire GUI. Once this class is called
from main with all of the vehicle data as arguments, the data will be checked
against previous values and if decided to change, the new values will be
displayed. A general GUI prototype can be seen below in Figure 49.

87

Field Name Description

JField
userName

Displays the User‟s Name

JField panID Displays the network Personal Area Network ID

JField date Displays the date of GPS acquisition

JField time Displays the time of GPS acquisition

Canvas
warning

A small square which will change colors with an
incoming distress signal

JField distress Display which kind of distress is happening

JField vehSN Displays the vehicles serial number

JField gpsLat Displays the up to date vehicle Latitude position

JField gpsNS Displays whether the Latitude position is „N‟orth or
„S‟outh

JField gpsLong Displays the up to date vehicle Longitude position

JField gpsEW Displays whether the Longitude position is „E‟ast or
„W‟est

JField
vehSpeed

Displays the most current vehicle speed relative to
ground

JButton exit Will exit the TUV-ADDS Command Center program

Table 34: Structure Involved with the Software GUI

Figure 49: GUI Prototype

88

As small feature that will be added to the Command Center software is a basic
username and password login prompt. This software was developed earlier as a
side project in Java class. The login class will prompt a window with a text field
available for both a username and a password (see Figure 50 below). If either of
the two are incorrect or missing, an error message will be prompt and both fields
will be erased (see Figure 51 below). Once both fields have the correct
username and password, the login class will call up the class involved with the
main Command Center.

Figure 50: Window for both a Username and a Password

Figure 51: Error Message

5.5.3 COMMAND CENTER MODEM

The command center modem is no more than a junction or gateway between the
vehicle and a computer. The software for the gateway will wait until there is an
incoming message from the vehicle. Once the message is received it will then
redirect the message to the port of the processor that is connected to the USB

89

adapter. The two serial set up utilize the New Soft Serial library for the Arduino
IDE. This library allows any port (excluding the analog ports) of the Atmel to
become a serial adapted port. The only requirement of the software created
serial port is that it must have the exact baud rate as the hardware designated
serial port. An example code below shows how a NewSoftSerial library code
could be used. The software will not change or convert any of the messages in
any way. It seems that the XBee wireless adapter could be directly connected to
the USB adapter but the XBee goes into stand-by mode after a short period of
time (this is to keep power consumption down). Once the software receives a
message it can trigger the XBee to warm up then send the message.

 #include <NewSoftwareSerial.h>

 NewSoftSerial usb = NewSoftSerial(4,3); // RxTx connect to pins 4 and 3

 void setup(){
 Serial.begin(9600); // Hardware designated serial ports
 usb.begin(9600); // Software designed serial ports
 }

 void loop(){
 if(Serial.available()){ //If there is an incoming message
 usb.write(Serial.read());
 }
 }

5.5.4 SENSOR MCU

Below in Figure 52 the MCU program flow is shown. Upon startup the
microcontroller must first initialize all of the variables to be used throughout the
program and initialize SPI communications as well as define the transmit speeds
for the various communications requirements. After all of the basic functions
have been started the controller must then select to communicate with the CAN
controller and program the bus speed into the controllers registers and send any
required messages to the main processor to ensure it is ready to receive data.
That ends the startup procedure. Now the program will arrive at the main loop
where most of the sensor units‟ functionality lies. The first task of the controller
will be to take sensor data and monitor it for abnormal values. If one is detected
the program will then devote all of its resources for three seconds to logging data
from all of the sensors to record the event as completely as possible. Once this is
done it will read the stored data for each sensor and determine if the event was

90

an obvious false alarm. If so it returns to the beginning of the loop. If the event is
determined to be legitimate than the device reports all relevant data to the main
processor and returns to the start of the main loop. If in the normal sensor read
function no event is detected than the program proceeds to check the CAN
controller for a received message. If none is detected it returns to the start of the
main loop. If there is a message on the bus it will receive it from the CAN
controller and decode what the message is asking for. The processor will then
service this request and then return to the beginning of the main loop.

Figure 52: Sensor Unit Program Flow

91

A function is needed to send timestamp requests to the main controller in the
event that the automated timer update message is missed. This function will take
the form of CANTimeUpdate() and will generate a RTR Frame to be sent over
the CAN-bus with a 1byte data field value of 00FF. This function will return the
current system timestamp.

In the event of a general microcontroller error that causes either the loss of data
logging or sensor input without triggering an event flag the controller needs a way
to report this to the main processor and will do so with the function
CANReportStatus(ErrorFlag). This function is input an error flag associated with
the specific controller issue by calling an error monitor function. If the monitor
function finds functionality returned it will call CANReportStatus(0000) which will
tell the main controller the sensor MCU is once again functional via the CAN-bus.

If an event is flagged during operation or a request for stored data is recived from
the CAN controller a function will be needed to generate the data frames
necessary to send all of the required data to the main controller for processing.
This function will take the form CANReportData(TimeX,TimeY,SensorFlag)
where it will send the data logged for TimeX to TimeY for all sensors. If the
special flag is set it will send the specific data requested be that the timestamp or
the data for a specific sensor. This function will return void.

When an event is flagged, a way to prepare the main processor to receive data is
needed. After an event is flagged and the data is logged the controller will use a
function taking the form of CANReportEvent(EventFlag,SysTime). This will send
a CAN data frame containing the time of the logged event so the main controller
can prepare to handle the data. This function will return void.

The controller needs a function to handle the requests made by the main
controller over the CAN-bus. This function will take the form CANRequest() and
will be called via an interrupt generated by the CAN controller or during the main
loop to monitor if any messages have arrived over the CAN-bus. This function
will interface with the CAN controller to see what data or request was sent, be it
an automatic system timer update or request for all of the flash sensor data for
the last two seconds. It will decode the message and call the necessary functions
based upon the nature of the CAN message and return void.

In the normal main loop a function to poll the sensor data, check to ensure that
an event has not occurred, and log the data in the external memory must exist.
This function will take the form of SensorReadNorm(). It will in turn pull data from
all of the external sensors and compare it with the stored SensorValX value. If
the sensor shows a higher than normal value the Event(EventFlag) function will

92

be called and it will indicate the sensor that caused the event in the EventFlag
field. If nothing is detected it will finish logging the data and return void.
When the SensorReadNorm() function detects abnormal values the
Event(EventFlag) function is called. This function will first call the
SensReadEvt(Time) function. Then it will then compare the average logged
flagged sensor values to SensorValX and if it still shows above normal values it
will compare the remaining sensors in turn and set the appropriate flags for
sensors with abnormal values. This function will then call the CANReportFlag()
function. Then it will call the CANReportData() function with TimeX to TimeY
being one second before the flagged event and three seconds after.

The SensReadEvt() function will be called in Event() it will record data to the
external memory device from the sensors with no pre-processing. It will do this
for three seconds to capture all relevant event data. When complete the function
will return void.

A function will be needed to interface with the external memory in order to write
sensor data to it. This function will be DataWrite(SensorValX,SensorXMem) and
will be called in SensorReadNorm() and SensReadEvt().

The DataRead(SensorXMem) function will also interface with the external
memory and read the data located at the location SensorXMem. This function will
be called by Event() and CANReportData().

In order to ensure that no old or random data stored in the external memory a
function will be needed to clear the data and prepare the memory space for
normal operations. The ResetMemory() function will be called to clear all the old
memory during startup and will perform these tasks.

Parameters:
CurrSensVal- A value used to temporarily store the initial data polled from the
sensor interface before it is categorized.
SysTime- The current system clock regularly updated via the CAN-bus
TimeX- A value used to flag the starting time value when reading data from the
external memory
TimeY- A value used to flag the ending time value when reading data from the
external memory
ErrorFlag- A byte used to log various possessor or CAN-bus errors when
transmitting this information for further use.
SensorFlag- A value used to determine which sensors will be used for a certain
process such as when sensor value is being read or which sensor values to
transmit over the CAN-bus

93

EventFlag- This byte is used to signal which sensors recorded a possible event
Sensor1Mem- This is the memory location being written to or read for sensor 1
Sensor2Mem- This is the memory location being written to or read for sensor 2
Sensor3Mem- This is the memory location being written to or read for sensor 3
Sensor4Mem- This is the memory location being written to or read for sensor 4
SensorVal1- This is the data being written to or read the memory space for
sensor1
SensorVal2- This is the data being written to or read the memory space for
sensor2
SensorVal3- This is the data being written to or read the memory space for
sensor3
SensorVal4- This is the data being written to or read the memory space for
sensor4
DeviceID- This byte will be unique to each node on the system and will be used
for fielding requests from the main processor.

5.5.5 CAN CONTROLLER

The can controller cannot be traditionally programmed; therefore all of the
functions dealing with CAN communications are located in the sensor
microcontroller or the main processor. However, there will need to be several
CAN message types in order to handle all of the functions required for this
project.

The first type of message will be from the main processor to the sensor MCU to
request the status of the sensor unit. It will be a request transmit return frame
with only one byte of data. It will be a low priority message though if it is
unsuccessful in transmit it will attempt to retransmit. For the purpose of this
design this message will be referred to as StatusRequest().

A message that reports the status of the sensor unit to the main processor will be
needed to not only reply to StatusRequest but also report if there is a possible
event. This message will have varying priorities based on the status of the unit at
the time. If an event is detected on more than one sensor or the device has
determined there is a system error than the message will have very high priority.
If an event is detected on only one sensor then the message will have medium
priority, and if the sensor has detected no events and is operating normally than
the message will have very low priority. The message will be a data frame with
two bytes, the first byte will denote the type of error and the second will indicate
the time of the error. This message will be referred to as

94

StatusReport(High,Med,Low). This will also prompt the main processor to be
ready to receive data.

The next type of message will be referred to as DataSend(). It will be used to
transmit sensor data as well as the timestamp for the data after the sensor MCU
reports an event. It will be a data frame consisting of 5 bytes the first will be the
timestamp for the data about to be sent, the second will contain the device ID.
The next three bytes will be the values recorded for the three individual sensors.
This message will have very high priority and will attempt to resend in the event
of transmit failure. There also will need to be a way to inform the main processor
that the data has finished sending so there will be a short message called
DataTerminate() that will be a data frame one byte long and will also have a very
high message priority. And will attempt to retransmit on message failure.

The main processor will also need a way to request various types of data from
the sensor controller. A message referred to as DataRequest () will handle this
function. It will be a data frame containing 4 bytes, the first will be the device ID it
is requesting the data from, the second will be the type of data being requested.
The third and fourth will contain the start and stop timestamps for the data
needed. This message will have moderate priority and will attempt to resend if it
fails to transmit.

Another message required will be one that allows all of the nodes to reset their
clocks to ensure accurate data collection. This will be referred to as
TimeUpdate(). Unlike the other messages this will be a series of messages
between the main processor and the sensor unit. The first will be sent from the
main processor telling the sensor units that it is ready to do a system wide time
update. This will be a data frame containing 1 byte telling the receiving unit this is
for time update, with low priority. It will then wait for all of the active sensor
microcontrollers to send a message that is a data frame with two bytes, one
being time update command byte and other is the device ID. Once all active
sensors have acknowledged they are ready to update the time the main
processor will then send out one final message that is one byte long containing
only the current system time. If the main processor dose not receive a reply from
all active nodes within a reasonable time of the first message it will instead
cancel the update and retry in a set amount of time. All messages after the first
will have moderate priorities.

The final message needed will be a command to reset the system memory. This
will be a low priority message that will resend in the event of transmission failure.
This message will be referred to as MemReset(). It will be a data frame two bytes

95

long, the first will contain the device ID to be wiped and the second will contain
the 8 bit reset command. This will have low priority.

Table 35 below shows the priority of the various messages sent over the CAN-
bus with respect to each other. This will determine the outcome of message
arbitration and the selection of message ID‟s.

Message: Priority:

StatusReport(high) 1

StatusRequest() 2

DataSend() 3

DataTerminate() 4

StatusReport(med) 5

TimeUpdate(Updating) 6

TimeUpdate(Initial) 7

StatusReport(low) 8

MemoryReset() 9

Table 35: Message Priority Table

5.5.6 SOFTWARE DESIGN REVISIONS

The original plan was to program the Graphical User Interface (GUI) using Java
in the Eclipse Integrated Development Environments (IDE). Some of the TUV-
ADDS Command Center was developed using Java but when the entire system
went through several design changes to simplify development, we switched to
the Processing language. Processing is an Object-Oriented Programming
language that the Arduino IDE was designed off of. Because Arduino is closely
tied to Processing, it offers Serial functionality with minimal amount software
development. The Command Center is simple in that it only displays (see Figure
53 below) the vehicle‟s status and the distress signal with the GPS location and
time. The software is available for Windows (32 and 64), Mac OsX, as well as
Linux on the Project Website. For demonstration purposes, we ran the software
in Windows on a laptop as seen in figure 54.

96

Figure 53: Screenshot of the TUV-ADDS Command Center GUI

Figure 54: TUV-ADDS Command Center with Modem

The sensor MCU code underwent major revisions to optimize for an acceptable

sensor sampling rate within the constraints of the Arduino boot-loader. The only

major alteration was removal of the software support for CAN communications. It

was with a simple digital output acting as an interrupt for the main processor.

This increased the sample rate 4 fold and while the originally desired sample rate

of 1ksps was not realized. Through further testing this sample rate was deemed

unnecessary for the detection of a simulated explosion. The major remaining

97

shortcoming of the system that prevented 1ksps from being realized is the

overhead caused by programming in the non native Arduino environment rather

than directly with C. If it was required for real life implementation the group is

confident with the proper code optimization that 1ksps could be easily realized on

the current hardware.

6 EXPLICIT DESIGN SUMMARY

Early in the development stage, the system was modulized in to separate sub-

system (see Figure 55). This was done to ease with development and expedite

the acquisition process. The schematics of the system can be seen with Figures

56 - 63 as well as 65. Figures 64 and 66 are software flow diagrams for the

system and Table 36-40 go into details about the software.

Figure 55: General Hardware Overview Diagram

98

Figure 56: Pin Mapping for the Main Control Unit Processor

99

Figure 57: Schematic for the USB Interface on the Main Control Unit

Figure 58: Power Stability Design for the ATmega on the Main Control Unit

100

Figure 59: XBee Adapter on the Main Control Unit

Figure 60: CAN interface on the Main Control Unit

101

Figure 61: GPS Unit Embedded on the Main Control Unit

Figure 62: Gyroscope Circuit on the Main Control Unit

102

Figure 63: Sensor MCU with CAN Interface

Figure 64: Main Processor Software Flow

103

Figure 65: Sensor Module

Figure 66: Sensor Software Flow

104

All Method Prototypes for the Main Processor software:
int acquireGPS(struct gps* mainGPS);
void updateGyro(struct* gyro);
int commDistress(struct* vehicle, int distress);
int commGPS(struct* vehicle);
int compare(int oldValue, int newValue);
void distressMode(void);
int comm(struct* vehicle);
int acquireGPS(struct gps* mainGPS);
void updateGyro(struct* gyro);

Variable Definition Purpose

int gpsTime Stores the time of satellite fix.

char gpsValidity Stores whether or not the position is valid, or
there is a warning

float gpsLat Stores latitude position as degrees and minutes

char gpsNS Stores „N‟ for North or „S‟ for south

float gpsLong Stores longitude position as degrees and minutes

char gpsEW Stores „E‟ for East or „W‟ for West

float gpsSpeed Stores speed over the ground

int gpsDate Stores the date when signal was fixed

int gyro Stores the gyroscope x-position

int gyroY Stores the gyroscope y-position

int gyroTime; Stores the time at which a reading was taken

Table 36: List of all Globally Defined Variables for the Main Processor

Software

Code Example for Configuring a XBee with Network Parameters:
void setup () {
 Serial.begin(9600);

 Serial.print("X"); // This clears buffer
delay(1100);

 Serial.print("+++");
 delay(1100);

105

 if (returnedOK() == 'T') {
 // if an OK was received then continue
 }
 else {
 setup(); // otherwise go back and try setup again
 }

 Serial.print("ATID3330,");
 Serial.print("DH0,");
 Serial.print("DL1,");
 Serial.println("CN");

 if (returnedOK() == 'T') {
 // if an OK was received then continue
 }
 else {
 setup(); // otherwise go back and try setup again
 }
}

Variable Definition Purpose

struct* vehicle
messageBuffer

Allows data packaging for wireless
transmission

Table 37: Variables used within Wireless Method

Variable Definition Purpose

int tempGpsTime Stores the time of satellite fix.

char tempGpsValidity Stores whether or not the position is valid, or
there is a warning.

float tempGpsLat Stores latitude position as degrees and minutes

char tempGpsNS Stores „N‟ for North or „S‟ for south

float tempGpsLong Stores longitude position as degrees and minutes

char tempGpsEW Stores „E‟ for East or „W‟ for West

float tempGpsSpeed Stores speed over the ground

int tempGpsData Stores the date when signal was fixed

Table 38: List of Variables used in GPS Method

106

Variable Defintion Purpose

int tempGyroX Stores the gyroscope x-position

int tempGyroY Stores the gyroscope y-position

int tempGyroTime; Stores the time at which a reading was taken

Table 39: List of Variables used in Accelerometer Method

Field Name Description

JField
userName

Displays the User‟s Name

JField panID Displays the network Personal Area Network ID

JField date Displays the date of GPS acquisition

JField time Displays the time of GPS acquisition

Canvas
warning

A small square which will change colors with an
incoming distress signal

JField distress Display which kind of distress is happening

JField vehSN Displays the vehicles serial number

JField gpsLat Displays the up to date vehicle Latitude position

JField gpsNS Displays whether the Latitude position is „N‟orth or
„S‟outh

JField gpsLong Displays the up to date vehicle Longitude position

JField gpsEW Displays whether the Longitude position is „E‟ast or
„W‟est

JField
vehSpeed

Displays the most current vehicle speed relative to
ground

JButton exit Will exit the TUV-ADDS Command Center program

Table 40: Components used in Command Center GUI

107

Figure 67: Command Center GUI

Code Sample utilizing the New Soft Serial Library
#include <NewSoftwareSerial.h>

 NewSoftSerial usb = NewSoftSerial(4,3); // RxTx connected to pins 4 and
3
 void setup(){
 Serial.begin(9600); // Hardware designated serial ports
 usb.begin(9600); // Software designed serial ports
 }

 void loop(){
 if(Serial.available()){ //If there is an incoming message
 usb.write(Serial.read()); //Read the message and send it to
USB
 }
 }

7 OPERATORS MANUAL

7.1 GENERAL OPERATION

TUV-ADDS is intended to be minimally invasive and operate unaided, once the

system is turned on, for the end user. The system will setup wireless

communication, acquire GPS signal and initialize the base line values for the

sensor processing without any intervention by the user.

108

The TUV-ADDS system can be activated by a single toggle switch (shown in

Figure 68) which provides power to the whole system. Three LED indicator lights

have been place on the host vehicles, next to the main system power switch, are

placed for the operator gratification to identify the system is working properly.

Figure 68: Power Switch and LEDs

The LED meanings are as follows:

 The red LED will indicate the overall system power. When the system is

function properly this LED should remain constant and always lit.

 The Yellow LED indicates the main processor is active and is functioning.

It is normal for the LED light to strobe a few times at start up, as elements

of the system are be initialized; it will then remain constant and always lit.

 The Green LED indicates the GPS is successfully receiving a GPS signal;

it‟s normal of this LED to strobe on and off while in operation. However, if

it remains unlit then the GPS is unable to acquire signal successfully.

To reset the system the main power switch can be switched to the off position for

a moment then returned to the on position. This will reset the system and allow it

to acquire new baseline values.

7.2 GENERAL CONSIDERATIONS FOR SUCCESSFUL
OPERATION

The system should be turned on turned on while on level ground. When the

system is powered on it will sample the accelerometer using this value to

109

initialize the system with a base line value; it will then compare all future values

against this baseline evaluating the difference to meet a predetermined

threshold.

The sensors are reset every thirty seconds; if the boards was recently exposed to

a heat source a false signal could be set if the photodiode receives an increase

of light. After 30 seconds the Temp sensor will acquired the temp of the board at

reset this value as the base line. This process, of updating, will continue as long

as the system is operational.

Once the system encounters a event which the system deems a distressing

event the system will enter an infinite loop, which will cause the system lock on

the warning message. This message and system can be reset using the main

power switch, to turn the system off briefly then restoring power to become

operational again..

As the system operates off an interrupt system; Electro-magnetic Interference

could be a potential source of a false distress signal. In order to minimize this

occurrence the default signal over the serial cable has been pulled high and will

be pull low once an event has been registered by the sensor MCU.

The SD memory card on the sensor MCU will record the raw data from the

sensor board. This is for external review at a later date if the user wished to do

so. The memory card will store data for about 1.6 thousand hours and keep

about 2.3x107 individual measurements. The format of the data will be presented

in the following format hour, minute, second, flash reading and temp reading. An

example of the data stored to the SD card is shown in Table 41.

110

Hr: 0 Min: 0 Sec: 0 Flsh: 589 Temp: 352
Hr: 0 Min: 0 Sec: 0 Flsh: 601 Temp: 352
Hr: 0 Min: 0 Sec: 0 Flsh: 596 Temp: 352
Hr: 0 Min: 0 Sec: 0 Flsh: 568 Temp: 352
Hr: 0 Min: 0 Sec: 1 Flsh: 537 Temp: 352
Hr: 0 Min: 0 Sec: 1 Flsh: 414 Temp: 352
Hr: 0 Min: 0 Sec: 1 Flsh: 416 Temp: 352
Hr: 0 Min: 0 Sec: 1 Flsh: 416 Temp: 352
Hr: 0 Min: 0 Sec: 2 Flsh: 414 Temp: 352
Hr: 0 Min: 0 Sec: 2 Flsh: 407 Temp: 352
Hr: 0 Min: 0 Sec: 2 Flsh: 403 Temp: 352
Hr: 0 Min: 0 Sec: 2 Flsh: 399 Temp: 352
Hr: 0 Min: 0 Sec: 3 Flsh: 393 Temp: 352
Hr: 0 Min: 0 Sec: 3 Flsh: 396 Temp: 352
Hr: 0 Min: 0 Sec: 3 Flsh: 401 Temp: 352
Hr: 0 Min: 0 Sec: 3 Flsh: 398 Temp: 352
Hr: 0 Min: 0 Sec: 4 Flsh: 397 Temp: 352
Hr: 0 Min: 0 Sec: 4 Flsh: 396 Temp: 352
Hr: 0 Min: 0 Sec: 4 Flsh: 393 Temp: 352
Hr: 0 Min: 0 Sec: 4 Flsh: 402 Temp: 352
Hr: 0 Min: 0 Sec: 5 Flsh: 395 Temp: 352
Hr: 0 Min: 0 Sec: 5 Flsh: 394 Temp: 352
Hr: 0 Min: 0 Sec: 5 Flsh: 396 Temp: 352
Hr: 0 Min: 0 Sec: 5 Flsh: 396 Temp: 352
Hr: 0 Min: 0 Sec: 6 Flsh: 397 Temp: 352
Hr: 0 Min: 0 Sec: 6 Flsh: 395 Temp: 352
Hr: 0 Min: 0 Sec: 6 Flsh: 393 Temp: 352
Hr: 0 Min: 0 Sec: 6 Flsh: 369 Temp: 352

Table 41: Data Format

8 PROTOTYPE CONSTRUCTION

TUV-ADDS will need to make use of several Printed Circuit Boards (PCB). These
will be modulated into four sections: The sensor MCU, the main control unit, the
power control system, and three sensor modules. The sensor MCU will contain
the Atmel micro controller and the CAN-bus. The main control unit will contain
the ATmega, Gyroscope and XBee-PRO. The power control unit will contain the
voltage regulators, and the three sensor modules will contain the accelerometer,
photodiode and temperature sensor.

111

One consideration was to design the layout of all the modules on one large
board, as in a pallet or array form. Then when the board from the manufacture
arrived, separate the board into its respective modules. The thought process
behind this comes about by the industry standard for pricing of boards. There
tends to be a base price per board then the cost go‟s up relative to the square
inches and layers used. ExspressPCB quoted a board with an area of eight by
ten inches, by their formula online: $55 + ($0.65 * # Of Boards * Board Area in
Inches2) + ($1.00 * # Of Boards) [30], which came out to about $118.00. Another
PCB manufacturing company, Advance Circuits, had a special program which
they called “$33 Each”, but this had some stipulations to it. One, there had to be
an order minimum of 4 boards placed, and two, a board could not go over 60
inches squared. This would put the cost at ($33.00 * 4) + $10(shipping) =
$142.00. [31]

Due to the industry standards it is likely the team will have to use a two layer
PCB design. While it is possible to get a one layer PCB the standard minimum
appears to be a 2 layer board, this will be more than sufficient to meet our design
needs. As far as grounding the PCB, it is suggested that we use an entire layer
as ground, which would be called a ground plane. “If you use a multilayer printed
circuit board with surface mount components, place control ground plane on an
inner layer so that it acts as a shield between the power and control circuits.” [32]
However, since a two-layer board will be required, the use of a ground rail that
would run around the board should be sufficient. By doing this it, it should
reduce any noise that could develop in the circuit and boards. “Keep power and
ground tracks running in close proximity to each other if possible, don‟t send
them in opposite directions around the board. This lowers the loop inductance of
your power system, and allows for effective bypassing.” [33]

The use of large traces to lower the impedance is also suggested. “Use copper,
and lots of it. The more copper you have in your ground path, the lower the
impedance. This is highly desirable for many electrical reasons. Use polygon fills
and planes where possible.” [33] It is advantageous to take these considerations
into account as most of the signals used by the MUC‟s and sensors are of
extremely low power. It is the objective of the team to attempt to maintain the
most truthful system and eliminate all possibilities for false positive signal being
relayed to the user.

It seems that having the PCB constructed by ExspressPCB will be the most cost
efficient for the team. This company tends to offer the most active support for the
cost. They offer the most cost effective solution between any of the PCB
manufactures we looked into. ExspressPCB also appears to have a reputable
turnaround time from submission to delivery of the final completed PCB‟s.

112

The software that will be implemented in the design of the PCB will be EAGLE
CAD. This software package includes a schematic editor that is used for the
design and layout of the board. This software also has the ability to produce
Gerber files which is typically what the industry will use to manufacture the. This
software also seems to be advantageous due to the fact that it is tremendously
popular; there are a plethora of tutorials of how to use the software and typical
design layout for common PCB‟s. EAGLE will also allow us to create schematic
diagrams of the circuits we will be construction during the design of TUV-ADDS.

While designing the PCB several aspects will need to be considered. Table 42
below gives general guidelines for the width of the tracks on a PCB. The design
should only call for low power sensors and shouldn‟t require anything wider that
the rating for one to two amps.

Track Width Table

Amps Width (1 oz.) Width (2 Oz) Milli Ω/Inch

1 10 5 52

2 30 15 17.2

3 50 25 10.3

4 80 40 6.4

Table 42: Guidelines for the Width of the Tracks on a PCB

[33]

It was also noted that the group would need to pay attention to the grounding
since our circuit is in a mobile vehicle and will have no form of external
grounding. We want to preserve the integrity of the signals therefore; we will want
to be conservative as possible in the layout of the PCB to avoid any unnecessary
noise in the signals and communication process.

As far as populating the PCBs, we are considering one of two options. The first
one is to mount the parts ourselves with the aid of the Armature Radio Club, as
they made available their services in class to help and train students on use of
common surface mount equipment and techniques. The second option is to
outsource the task for populating the board to an independent company or even
the Amateur Radio Club in place of a donation. As it stands now, the team will
attempt to populate the PCB ourselves. Most of the parts are likely going to

113

require the use of surface mount techniques. Most likely a reflow solder oven will
be used, assuming there is a working one available on the university which we
will have access to.

For our prototype we will be using a Power Wheels vehicle as a platform to host
our system. Upon inspection of the Power Wheels we noted there was quite a bit
of room in the “engine compartment.” This area would be the best place to
securely mount the hardware required for operation of the system. However, to
relate this to the original intention of the design we would ideally like to place the
unit in the passenger compartment of the vehicle. The physical volume of space
required for the boards is minimal, so it shouldn‟t interfere with any day-to-day
operations of the vehicle. It is also desirable that placement of the main
processor would be in a reinforced housing box to protect the processors form
any damage from either normal day to day operations or distress event, to allow
the system to remain operable and send out the necessary distress signals.
Implementing a graphical user interface system in this prototype is another
consideration of the group. This would be able to show the command center the
status of the system and the vehicles and the determination made by the
software. This would make the system very easy for the user to understand,
regardless of their background with respect to the system.

9 TEST PLAN

After the research was conducted, components were selected and ordering of
parts for the system began. The test plan consists of testing each component
individually to make sure they work correctly. After all the components of at
module were tested, the process of combining them into a working module
began. Testing all of the modules then took place to ensure that the module
works before integrating the modules into a complete system. After all the
modules were tested individually, they were all be combined into a system and
system verification testing then took place.

Module E, software, was tested differently than the other modules. The software
was tested and debugged as it was written. Then when the system was
integrated together, the system verification tests verified that the software
correctly worked with the hardware. Module D was only tested at a component
level because the module is simply several of the same components operating
separately.

When testing TUV-ADDS as a system, it was attached to a vehicle that will suite
its needs and it was put through simulated IED hits and a rollover event to see if

114

the system works correctly by communicating to the command center that it had
been in a distressful even. The system was also tested to make sure it was
accurate by having it go through events that simulate non-distress events that
should not set the system to alert for help such as rough terrain, as well as an
event simulating an unusually hot day. This gave the team proper assurance that
the system was working to the goals and objections desired.

9.1 TEST MATERIALS

To test the system as an entity, the team decided that mounting the system to a
Hummer Power Wheels vehicle (see Figure 69) would be the most accurate test.
This allowed for the team to test and demonstrate the system in a scaled down
but still realistic event. Through some research the team found a way to make
the Power Wheels drive by remote control. The team used a Wii Nunchuck
breakout adapter (see Figure 70) that connected directly to the microcontroller.
The microcontroller attached to the switches in the Power Wheels. This allowed
the team to drive the Power Wheels with the Wii Nunchuck. This allowed for
more accurate testing because a member was not needed to steer and
accelerate the Power Wheels vehicle manually. It was very simple to install and
was a helpful tool when it came to testing.

Figure 69: Hummer Power Wheels Vehicle

115

Figure 70: Wii Nunchuck Breakout Adapter

(Printed with Permission from Adafruit Industries)

For testing the system of the event of an IED blast, we quickly accelerated the
vehicle in the upward position while simulating the heat and the flash with a
lighter to see if the combination of these characteristics triggered a call to the
system for assistance as it should have. When testing the rollover aspect of the
system, we will simply manually cause the vehicle to turn completely on its side
in any direction and this should alert for assistance after the specified time
amount has been reached.

9.2 TESTING EVENTS PLAN

Component Level Testing Plan (Table 43) was broken down by component and
listed in order the procedures and expected results of each procedure of the test.
These were the events that the TUV-ADDS team tested to ensure that each
component was accurately working and if all the expected results were met, then
that would mean the system met sufficient criteria to move to module testing.

Step Procedure Expected Results
Actual
Result

Component: Sensor MCU

1 Program chip
The USBtinyISP AVR
Programmer busy light
should turn off.

Met/Not Met

2
Plug the chip into the
Arduino

Board should turn on. Met/Not Met

116

Should be able to open
up a serial terminal.

Met/Not Met

And the serial output
should be observed.

Met/Not Met

Component: Accelerometer Sensor

1
Connect sensor to the
microcontroller and a
power source

The sensor information
should show up on
serial terminal.

Met/Not Met

2
Cause significant
motion to the sensor

The MCU should
receive data that
reflects the motion
applied.

Met/Not Met

Component: Photodiode Sensor

1

Set the sensor up on a
breadboard and connect
to power and digital
multimeter.

There should be some
register of voltage.

Met/Not Met

2

Cause an event of great
radiance to the sensor
by shining a flashlight
on the sensor.

The multimeter should
reflect results that are a
significant jump in
voltage.

Met/Not Met

Component: Temperature Sensor

1
Connect sensor to the
microcontroller and a
power source

The sensor information
should show up on
serial terminal.

Met/Not Met

2

Cause an event of
significant temperature
increase to the sensor
by applying heat from a
hair dryer.

The MCU should
receive data the
reflects the temperature
increase applied

Met/Not Met

Component: GPS

1
Connect GPS to
microcontroller

117

2 Program microcontroller
Should see consistent
values.

Met/Not Met

3
Collect GPS locations to
test components against

4
Go to the locations that
data was collected from

Should result in the
microcontroller reading
the same GPS
locations that were
collected in research.

Met/Not Met

Component: XBee

1
Connect XBee to
microcontroller

Should see a green
blinking LED on the
XBee

Met/Not Met

2
Repeat for a second
and separate XBee
component

Should see a green
blinking LED on the
XBee

Met/Not Met

3
Configure PAN ID for
both

4
Program both
microcontrollers

5
Connect
microcontrollers to
different computers

6
User types message in
one computer

Should result in seeing
the message on the
other computer.

Met/Not Met

7
Repeat process in other
direction

Should result in seeing
the message on the
other computer.

Met/Not Met

Component: CAN Controller

1

Program the ATMega
with software that will
alter the appropriate
registers on the CAN
controller to toggle
various external pins

The USBtinyISP AVR
Programmer busy light
should turn off.

Met/Not Met

2
Property connect CAN
controller and ATMega
to power and each other

118

3
Measure Voltage on
toggle pins with a digital
multimeter

Observe high and low
voltage levels on toggle
pins.

Met/Not Met

Component: Voltage Regulator

1
Connect Regulator to
voltage source

2
Measure the voltage out
of the regulator with an
oscilloscope

Should result in rated
voltage output.

Met/Not Met

Table 43: Component Level Testing Plan

The Module Testing Plan (Table 44) was divided by module tested, which
occurred after all the components of the module had successfully completed
component level testing. The plan lays out the procedures that will be taken step
by step in order to verify that the components are integrated correctly as a
module. The expected results were the exit criteria that must be met for the
module to be able to be integrated into the system with confidence.

Step Procedure Expected Results Actual result

Module A: Sensor Module

1
Connect the Sensor PCB
to the Sensor MCU PCB
by a 10-pin jumper.

The Sensor MCU
should power the
sensor PCB.

Met/Not Met

2

Have a custom test
program programmed
onto the chip and monitor
the sensors.

3 Open a serial terminal
Should see data from
the sensors.

Met/Not Met

4
Cause a significant
motion event to the
sensor

The MCU should
receive data that
reflects the motion
applied

Met/Not Met

119

5

Cause an event of great
radiance to the sensor by
shining a flashlight on the
sensor.

The multimeter
should reflect results
that are a significant
jump in voltage.

Met/Not Met

6

Cause an event of
significant temperature
increase to the sensor by
applying heat from a hair
dryer.

The MCU should
receive data the
reflects the
temperature increase
applied

Met/Not Met

Module B: Main Control System Module

1
Interface the Main
Control PCB with the
computer via USB

Computer should
recognize a USB
compatible device

Met/Not Met

2
Open a serial monitor on
the computer

Should result in the
wireless network
being configured

Met/Not Met

Should be reading in
data from the GPS
and Gyroscope
components

Met/Not Met

3 Change locations
Should read different
GPS Values

Met/Not Met

4 Tilt PCB
Should read different
Gyroscope values

Met/Not Met

Module C: CAN Bus

1
Program the ATMega for
Loopback CAN Bus
messages

The USBtinyISP AVR
Programmer busy
light should turn off.

Met/Not Met

120

2
Connect the ATMega to
the CAN Bus
components

3 Open a serial terminal
Should output the
transmitted data from
ATMega

Met/Not Met

Table 44: Module Testing Plan

The System Testing Plan (Table 45) lays out the specific tests that were
performed on the system that verified whether the system was working
accurately and correctly. System Testing was completed once all the modules
complete module level testing and were integrated together as a system. This
included applying the developed software to the hardware. The plan then tested
to make sure the system did what it is supposed to do, but there were also tests
included in the plan to make sure system does not perform incorrect tasks. The
way the test plan had been laid out, it clearly states the procedures to run the test
while also stating what is expected to result at each point. After the system
successfully met all the expected results listed, the team then had confidence
that the system worked properly.

Step Procedures Expected Results Actual Results

Event 1: IED Reaction Verification

1
Drive the vehicle in
the forward direction.

2

Create an event that
will cause the vehicle
to increase its vertical
position by the
appropriate value
while simultaneously
increasing the heat by
the appropriate
percentage increase
and creating a flash of
appropriate
luminance.

This event should
cause an alert for
help to another TUV-
ADDS system within
30 seconds of the
event happening.

Met /Not Met

121

The TUV-ADDS
system should relay
the correct GPS
location of the
distressed vehicle to
the system that was
contacted for
assistance.

Met /Not Met

Event 2: False Alarm Test (Vertical Position Increase)

1
Drive the vehicle in
the forward direction.

2

Create an event that
will cause the vehicle
to increase its vertical
position by the
appropriate value but
do not increase the
heat or flash.

This event should
not cause an alert for
help to another TUV-
ADDS system.

Met /Not Met

Event 3: False Alarm Test (Flash Increase)

1

Create an event of
significant luminance
by the appropriate
value but do not
increase the heat or
position.

This event should
not cause an alert for
help to another TUV-
ADDS system.

Met /Not Met

Event 4: False Alarm Test (Temperature Increase)

1
Apply significant heat
increase to the
system

This event should
not cause an alert for
help to another TUV-
ADDS system.

Met /Not Met

Event 5: False Alarm Test (Multiple Characteristics Occur)

1
Drive the vehicle in
the forward direction.

2

Create an event of
significant luminance
and vertical position
by the appropriate
value but do not
increase the heat.

This event should
not cause an alert for
help to another TUV-
ADDS system.

Met /Not Met

Event 6: Rollover Reaction Verification

122

1
Drive the vehicle in
the forward direction.

2
Create an event that
will cause the vehicle
to flip on its side.

This event should
cause an alert for
help to another TUV-
ADDS system within
30 seconds of the
event happening.

Met /Not Met

The TUV-ADDS
system should relay
the correct GPS
location of the
distressed vehicle to
the system that was
contacted for
assistance.

Met /Not Met

3
Return the vehicle to
the upright position

4
Drive the vehicle in
the forward direction.

5

Create an event that
will cause the vehicle
to flip completely
upside down.

This event should
cause an alert for
help to another TUV-
ADDS system within
30 seconds of the
event happening.

Met /Not Met

The TUV-ADDS
system should relay
the correct GPS
location of the
distressed vehicle to
the system that was
contacted for
assistance.

Met /Not Met

Event 7: False Alarm Test (Incline increase)

1
Drive the vehicle in
the forward direction.

2

Drive the vehicle into
a ramp that elevates
two of the four wheels
at a non-alarming

This event should
not cause an alert for
help to another TUV-
ADDS system.

Met /Not Met

123

degree, for an
appropriate amount of
time.

Table 45: System Testing Plan

9.3 TEST EXPECTATIONS

It was the expectation of the team that TUV-ADDS perform to the specified goals
that had been laid out for the system. This means, that when the appropriate
characteristics of a rollover or IED hit are applied to the system, the result were
that the system relay to the command center that there was a vehicle in distress
and its accurate GPS location. These results ensured the team that the system
was performing its tasks correctly and the modules were working well together.

We also expected that the occupants of the vehicle in distress would not need to
interact with the system at all for it to relay these messages, it is automatic. One
of the goals of the system was to be as user friendly as possible, and ideally
require no interaction at all by the distressed vehicles occupants. The objective
was to allow the occupants to be free to take care of other important tasks if need
be, or operate automatically incase of situations where the occupants are unable
to interact with the system. This ensures that the system is user friendly and will
be out of the way in the event of a rollover or IED hit.

The false alarm testing events resulted in no communication from the system at
all. The system did not call for assistance when the vehicle was not placed
through all of the required characteristics for one of the distress events. This
guaranteed that the system was up to the accuracy expectations the team had
set to make sure that the system was not putting more people in danger by
sending people out for no reason.

10 SCHEDULING AND BUDGETING
10.1 PROJECT MILESTONES

The group made a milestone chart (shown in Figure 71) to keep a schedule for

the TUV-ADDS project. This was made in Microsoft Project and was advised

throughout the year as a guide to how far along we should be to finish the project

on time.

124

125

Figure 71: Milestone Chart

10.2 PROJECT BUDGET

TUV-ADDS was a student sponsored project, meaning the team had no
corporate or faculty sponsors. Therefore the budget for this project was limited to
what the team was able to afford. Through research of the parts needed to build
a prototype of the system, we perceived the budget being between 400 and 700
dollars with a potential overrun to approximately 1500 dollars as shown in Table
46. We were able to keep the expense of the project to just over 500 dollars total
as shown in Table 47.

When analyzing the itemized budget shown below, it is evident that the project
cost could have easily fallen to the lower end of the projected costs if enough
time is allowed to work with the components and not resulting in having to
purchase the more expensive but easier to use components. To cut down on
cost, the team attempted to source as much of the project from sample programs

126

offered by manufacturers. Funding of the project was achieved by splitting the
cost of the system between the four teammates.

Budget Low High Average Low Part High Part

Vehicle 30 350 180
Metal
Frame

Powerwheel
s

Power Control
Systems 10 25 15 SparkFun Jameco

CPU 17 50 25 Atmel ATMega TI Stellaris

Sensor MCU 4 6 5

Atmel
ATMega
328P-PU

Atmel
ATMega

Photodiode 1.26 3.08 2
TAOS
TSL145

TAOS
TSL145

Accelerometer 3.09 53.16 9

Bosch
Sensortec
BMA220

ADIS16240A
BCZ

Temperature
Sensor 0 3.5 3.5

TMP03FSZ
Analog
Devices

TMP03FSZ
Analog
Devices

GPS 50 90 55

Venus w/
SMA
connect

GS407
Helical

Window Motor 8 70 10

Ford 150
Window
Motor

BMW 325XI
Right
window
Motor

Engine Switch 0.99 17 3
Panasonic
Corp Tyco

Main
Communicatio
n (one end) 60 70 65 XBee XBee Pro

Gyroscope 7.53 25 17
L3G4200D
TR

Atmel ATMega
328P-PU

PCB
Fabrication 112 340 150

ExpressPC
B - Student
Program ExpressPCB

33% Misc.
Expenses 100.27 363.9042 178.035

Total 404.14 1466.644 717.535

Table 46: Estimated Budget Table

127

CURRENT EXPENDITURES

ITEM (quantity) PRICE

 Power Wheels $50

 Xbee Pro (2) $75

 Temp Sensors (10) FREE

Accelerometers (1) $46

 Photodiodes (8) $10

 FTDI Cable $20

 Relays (3) $6

 Atmel328 (3) $13

 16MHz Crystals (8) $8

 Flash Memory $10

 GPS $45

 CAN Module FREE

Components $80

 PCB Fabrication $150

 TOTAL: $513

Table 47: Actual Budget

128

11 CONCLUSION

11.1 POSSIBLE FUTURE IMPROVEMENTS

If time permits there are several system ideas that could be added to the TUV-
ADDS to improve it. These ideas were created during the initial brainstorming
session at the beginning of the semester. After looking deeper into what we
wanted to be the fundamental system characteristics, the team decided to put off
these features until more time permitted. To this day these ideas come up in
conversation, and if we have the time then we will create these features.

The first of these ideas is to have a „soldier presence‟ feature that would allow
the command center to know how many soldiers are still in the vehicle. The
original design of this feature included an RFID system local to a vehicle that
could detect the number of people within a given area. This could then connect to
the TUV-ADDS system, which would communicate this data to the command
center. Along with the RFID, the soldier would wear wireless heart-rate monitors.
In the case of distress, it would be good to let the higher authority to know the
heart-rates of the present soldiers. In the tragic case of a heart rate reading a
zero pulse, it could be assumed that the soldier is dead. This could save more
lives by allowing proper allocation of aid.

The team also decided to possibly add feature to help make other manufactures
interface their equipment to the TUV-ADDS. This would be accomplished by
adding two hardware configurations. First, an unused CAN line could be added to
the Main Control Unit to allow any sort of device to communicate with the main
processor. The other feature would allow the user to program the main processor
in the case of adding features or updating software. This could be done by
connecting to the on-board USB line that interfaces with the main processor. A
power configuration will prevent power to the main control unit from both the USB
line and the power control unit.

11.2 FEATURES LEFT OUT

The design originally had two features that were scrapped after a final initial
design review. There features will promote soldier safety so they did fit under the
general system characteristics. It was decided, however, that the features were
either too complex to fit in our time schedule, or not necessary. The first of these
two features was a Vehicle Health System (VHS). This system would connect
directly to the vehicle‟s on-board computer and gather appropriate data. The

129

main processor would then decide whether or not the vehicle was safe (or was
even able) to drive. After an initial review, it was decided that this feature would
be too difficult to accomplish in our time frame with available supply. The other
feature was a tire pressure system. This system would check the pressure, both
static and dynamic, and relay this information to the main processor. The
processor would then decide whether or not the tire was capable of continued
driving and send this information to the command center. After further research
into IED blasts, it was discovered that vehicles hit would in almost all cases loose
one of the tires. This fact would make the tire pressure system useless.

11.3 REFLECTIONS

TUV-ADDS was designed with the idea of helping the men and women of the
armed forces perform their duties with a convenient safety feature. With the
creation of this system, the need for reliable distress communication for these
men and women that face the obvious danger in the Middle East everyday was
kept in the minds of the team. The system design is a network of sensors and
the supporting hardware and software that will be integrated to meet this need.

This paper is a documentation of what the TUV-ADDS team has accomplished
as we researched, designed, and produced the prototype of the system.
Everything from defining the project to researching specifications and
components to our final design and prototype has been completed by the team
and has been included into this paper. After completing extensive research on
the project idea and components for the system design, the TUV-ADDS team
feels that our preparation allowed us to prepare the prototype more efficiently
and with fewer errors.

When conducting research for the system design, there were many changes and
design discussions about what parts and design would be the best for the
system. The team has did their best to finalize the design with every team
member‟s input and considering every angle of a design or component decision.
Even with this preparation, the team is aware that some design changes would
occur.

Throughout this semester, significant knowledge has been gained about design
and component choices as well as the military and Government relevance to our
project. The experience of gathering data about different parts and comparing
data sheets as well as collaborating with each other has been very beneficial to
the team as we prepare to enter the professional world of engineering.

130

In the upcoming semester the team will turn its attention to the building of the
TUV-ADDS prototype. This will take significant effort on the part of the team to
complete and we have prepared plans to assist the team as we move into this
next stage of the project. The team looks forward to utilizing the knowledge we
have all gained thus far to produce a system that will perform to the goals we
have set as well as gaining more professional experience through completing this
project.

During our final presentation to the review board we were able to demonstrate
the success of the system. The demonstration went through system start-up,
testing against false-alarms, as well as showing the system experiencing both an
IED hit as well as Rollover. All features worked as described in the Test Plan.

12 SOURCES/ COPYRIGHT PERMISSIONS

[1] Controller Area Network (CAN) Basics Microchip
[2] Xilinx.com
[3] http://arduino.cc/en/Guide/Environment
[4] http://focus.ti.com.cn/cn/lit/ug/slau144h/slau144h.pdf
[5] ATMega48PA/88PA/168PA/328P Atmel Datasheet
[6] MSP430G2x31/2x21 Texas Instruments Datasheet
[7] ATmega640V/1280V/1281V/2560V/2561V Atmel Datasheet
[8] MSP430F663x Texas Instruments Datasheet
[9] AT90CAN32/64/128 Atmel Datasheet
[10] ARM926EJ-S Technical Reference Manual Atmel
[11] MCP2515 Microchip Datasheet
[12] SJA1000 Phillips Datasheet
[13] http://code.google.com/p/canduino/
[14] MCP2551 Microchip Datasheet
[15] http://arduino.cc/en/Hacking/Bootloader?from=Main.Bootloader
[16] http://www.arduino.cc/en/Reference/SPI

[17] http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf
[18] http://zone.ni.com/devzone/cda/tut/p/id/2732
[19] http://ftp1.digi.com/support/documentation/90000982_B.pdf
[20]
http://eecs.ucf.edu/seniordesign/fa2009sp2010/g09/docs/Gp9FinalDocumentatio
n.pdf
[21] http://www.sparkfun.com/datasheets/GPS/Modules/D2523T%20V1.pdf
[22] MilCAN A Specification MWG-MILA-001Revision 3 Milcan Working Group

[23] ISO/CD 11898-2
[24] L4941 STMicroelectronics
[25] LM2940/LM2940C 1A Low Dropout Regulator National Semiconductors
[26] LM1117/LM1117I 800mA Low-Dropout Linear Regulator National Semiconductors

[27] http://arduino.cc/en/Reference/HomePage
[28] http://arduiniana.org/libraries/newsoftserial/
[29] TAOS DATA SHEETS for TSL14S-LF
[30] http://www.expresspcb.com/ExpressPCBHtm/SpecsStandard.htm
[31] https://www.my4pcb.com/net35/promotion/orderFileUpload.aspx
[32] http://www.smps.us/layout.html
[33] http://alternatezone.com/electronics/files/PCBDesignTutorialRevA.pdf

http://code.google.com/p/canduino/
http://arduino.cc/en/Hacking/Bootloader?from=Main.Bootloader

TABLE OF FIGURES

Figure 1: U.S. Marines MRAP; example of an up-armored wheeled tactical vehicle...................... 1

Figure 2: System Hardware Overview .. 4

Figure 3: U.S. Marines LVSR; examples of a vehicle rollover .. 11

Figure 4: Sensor MCU and CAN bus ... 17

Figure 5: MicroSD Card with dimensions ... 23

Figure 6: Chip Select SPI Connection .. 23

Figure 7: Main Controller Functional Diagram ... 28

Figure 8: Arduino Development Board .. 29

Figure 9: General TUV-ADDS Wireless System ... 31

Figure 10: XBee with Integrated Whip ... 32

Figure 11: XBee – PRO with Chip .. 33

Figure 12: XBee Adapter .. 33

Figure 13: Picture of the XCTU software .. 34

Figure 14: Global Positioning System (GPS) Component .. 35

Figure 15: Accelerometer Component ... 36

Figure 16: Blank Data Frame .. 38

Figure 17: Error Modes of the MCP2515.. 39

Figure 18: System Data Flow Diagram ... 41

Figure 19: Software Development Cycle .. 42

Figure 20: Sensor Unit .. 47

Figure 21: Accelerometer Pin-out .. 49

Figure 22: Minimum Circuit Requirements .. 51

Figure 23: Accelerometer Pin Spacing .. 52

Figure 24: Temperature Sensor Pin and Function Diagram .. 53

Figure 25: Temperature Sensor Minimum Circuit Requirements... 54

Figure 26: Physical Characteristics of the TMP100 Sensor ... 59

Figure 27: Three Terminals on the Photodiode .. 61

Figure 28: Schematic Layout of the Sensor Board .. 62

Figure 29: Design Linking a USB to the ATmega ... 64

Figure 30: Stable Voltage Source ... 64

Figure 31: Port Mapping of all of the Devices that will Communicate with the Processor 65

Figure 32: Buffer is Embedded in the Schematic of the XBee adapter as IC2(A-D) 66

Figure 33: SPI line easily connected to the processor by this pin set up 67

Figure 34: Components Connected to the RF Ground ... 68

Figure 35: SPI communication lines have an attached voltage line .. 69

Figure 36: Main Control Unit PCB with ATmega2560... 70

Figure 37: Final Main Control Unit with ATmega328P ... 70

Figure 38: Original Gyroscope Acquired ... 71

Figure 39: Accelerometer used in the Final System ... 71

Figure 40: Final Schematic of the Main Control Unit ... 72

Figure 41: LM2940 Pinout .. 76

Figure 42: LM1117 Pinout .. 77

Figure 43: Power System Schematic .. 77

Figure 44: Three Step Process Software Flow .. 78

Figure 45: Basic Preprocessor Coded in the Arduino IDE ... 80

Figure 46: Configure all Components by Sending a Response Request .. 81

Figure 47: Display of the Grab and Check Process ... 81

Figure 48: Sample of a Message ... 84

Figure 49: GUI Prototype ... 87

Figure 50: Window for both a Username and a Password ... 88

Figure 51: Error Message ... 88

Figure 52: Sensor Unit Program Flow ... 90

Figure 53: Screenshot of the TUV-ADDS Command Center GUI... 96

Figure 54: TUV-ADDS Command Center with Modem ... 96

Figure 55: General Hardware Overview Diagram ... 97

Figure 56: Pin Mapping for the Main Control Unit Processor .. 98

Figure 57: Schematic for the USB Interface on the Main Control Unit ... 99

Figure 58: Power Stability Design for the ATmega on the Main Control Unit 99

Figure 59: XBee Adapter on the Main Control Unit.. 100

Figure 60: CAN interface on the Main Control Unit ... 100

Figure 61: GPS Unit Embedded on the Main Control Unit ... 101

Figure 62: Gyroscope Circuit on the Main Control Unit ... 101

Figure 63: Sensor MCU with CAN Interface ... 102

Figure 64: Main Processor Software Flow .. 102

Figure 65: Sensor Module .. 103

Figure 66: Sensor Software Flow .. 103

Figure 67: Command Center GUI ... 107

Figure 68: Power Switch and LEDs ... 108

Figure 69: Hummer Power Wheels Vehicle .. 114

Figure 70: Wii Nunchuck Breakout Adapter ... 115

Figure 71: Milestone Chart... 125

TABLE OF TABLES

Table 1: Module A Specifications ... 6

Table 2: Module B Specifications ... 7

Table 3: Module C Specifications ... 8

Table 4: Module D Specifications ... 8

Table 5: Module E Specifications ... 9

Table 6: Main MCU Comparison Chart ... 18

Table 7: Sensor MCU Comparison Chart .. 19

Table 8: CAN Comparison Chart ... 20

Table 9: CAN Controller Comparison Chart .. 22

Table 10: MCU Comparison Chart .. 29

Table 11: Wireless Device Comparison Chart... 32

Table 12: 5v Low Dropout Regulators .. 40

Table 13: Atmel ATmega328P Pinout ... 46

Table 14: MicroSD pinout .. 47

Table 15: Accelerometer Scale and Resolution Table .. 48

Table 16: Pin Name with Respect to its Corresponding Interface Function 50

Table 17: SPI and I2C Chart .. 51

Table 18: Temperature Sensor Resolution Chart ... 54

Table 19: Temperature Sensor Temperature Characteristics... 55

Table 20: Input-Output Characteristics of the Temperature Sensor .. 56

Table 21: Power Supply Requirements for the TMP100 .. 57

Table 22: Thermo Sensor Temperature Range ... 57

Table 23: Various Temperatures and their Respective Output .. 58

Table 24: Dynamic Characteristics of the Photodiode ... 60

Table 25: Three Terminals on the Photodiode ... 60

Table 26: Suggested Operating Ranges for the Diode .. 61

Table 27: MCP2515 Pinouts ... 73

Table 28: Pin Definitions and Connections MCP2551 .. 75

Table 29: List of All Globally Defined Variables .. 79

Table 30: Wireless Communication Variables .. 83

Table 31: List of Variables Utilized in the GPS Method .. 85

Table 32: Gyroscope Method Variables ... 85

Table 33: Java’s Built in Libraries.. 86

Table 34: Structure Involved with the Software GUI .. 87

Table 35: Message Priority Table ... 95

Table 36: List of all Globally Defined Variables for the Main Processor Software 104

Table 37: Variables used within Wireless Method ... 105

Table 38: List of Variables used in GPS Method ... 105

Table 39: List of Variables used in Accelerometer Method .. 106

Table 40: Components used in Command Center GUI ... 106

Table 41: Data Format ... 110

Table 42: Guidelines for the Width of the Tracks on a PCB .. 112

Table 43: Component Level Testing Plan ... 118

Table 44: Module Testing Plan ... 120

Table 45: System Testing Plan .. 123

Table 46: Estimated Budget Table.. 126

Table 47: Actual Budget ... 127

Adafruit Industries

SparkFun

DigiKey, INC

Microchip

BOSCH SENSOR-SENSORTEC

Dear Sirs:

I am part of a team of students at the University of Central Florida working on our senior design
project. We have chosen to use one of your accelerometers, BMA220, in our design. I would
like to request permission to include some of the tables, figures and information from the data
sheet into our report. Of course we will site all information used, as to give due credit.

Respectfully,

Jason Skopek
University of Central Florida
Department of Electrical Engineering
Jason@jasonskopek.com

mailto:Jason@jasonskopek.com

Texas Instruments

Dear Sirs:

I am part of a team of students at the University of Central Florida working on our senior design
project. We have chosen to incorporate one of your temperature sensors, TMP100, in our
design. I would like to request permission to include some of the tables, figures and
information from the data sheet into our report. Of course we will site all information used, as
to give due credit.

Respectfully,

Jason Skopek
University of Central Florida
Department of Electrical Engineering
Jason@jasonskopek.com

Wahl Steven (BST/SNA)

To Jasonskopek@knights.ucf.edu

You can use...

-----Original Message-----

From: mailgenerator@de.bosch.com [mailto:mailgenerator@de.bosch.com]

Sent: Monday, November 21, 2011 12:51 PM

To: Wahl Steven (BST/SNA)

Subject: Request from Contact function: Permission

Permission

Title* : Mr.

Additional title :

First name : Jason

Name* : Skopek

Company : Student

Street* : 400 Central Florida BLVD

Postcode, Town* : 32816

Country* : USA

Your e-mail address* : Jasonskopek@knights.ucf.edu

Ref.* : Permission

Your Concern* :

I am a senior design student at University of Central Florida, I would

like to request permission to incorporate some information and figures

from the data sheets into our report. I am using an BMA220

mailto:Jason@jasonskopek.com
http://sn106w.snt106.mail.live.com/mail/

Accelerometer.

Thank you,

Jason Skopek

Request from page : http://www.bosch-

sensortec.com/content/language1/html/3313.htm###http://www.bosch-
sensortec.com/content/language1/html/index.htm

Selected options :

Parameter : Contact form - Contact function - Country: te

- language: en

This mail was generated by the Bosch contact window.

Please answer to the Reply-To address only.

Mail info:

_REPLY-TO : Jasonskopek@knights.ucf.edu

_SUBJECT : Permission

RE: Permission to use

11:08 PM

Bassuk, Larry

To jasonskopek@knights.ucf.edu

Thank you for your interest in Texas Instruments. We grant the permission you request in your
email below.

On each copy, please provide the following credit:

Courtesy Texas Instruments

Regards,

Larry Bassuk
Deputy General Patent Counsel &
Copyright Counsel
Texas Instruments Incorporated
214-479-1152

http://www.bosch-sensortec.com/content/language1/html/3313.htm
http://www.bosch-sensortec.com/content/language1/html/3313.htm
http://www.bosch-sensortec.com/content/language1/html/3313.htm
http://sn106w.snt106.mail.live.com/mail/
mailto:jasonskopek@knights.ucf.edu
http://sn106w.snt106.mail.live.com/mail/

From: jasonskopek@knights.ucf.edu [mailto:jasonskopek@knights.ucf.edu]

Sent: Tuesday, December 06, 2011 4:48 PM
To: Bassuk, Larry
Subject: Permission to use
Hello Mr. Bassuk,

I wanted to request permission to use some of the information from the data sheet of the

TMP100 temp sensor in our documentation for our senior design project at University of

Central Florida. I am interested in the material contained in the data sheet; which consist

mostly of the figures which show the pin layout and some of the tables, as well as an

artist rendering of the sensor.

http://www.ti.com/lit/ds/sbos231g/sbos231g.pdf

http://www.ti.com/graphics/folders/partimages/TMP100.jpg

Thank you,

Jason Skopek

