
eHVAC: Wireless Modular

Multi-Zone HVAC Controller

Michael Trampler, Javier Arias, Ryan

Kastovich, and Genaro Moore

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The objective of this project is to design an
HVAC Control System with capabilities of creating schedules,
creating set points for zones, obtaining accurate readings for
temperature, CO2 and Humidity, and controlling the HVAC
system to specific zones. Multiple remote sensor modules
(RSM) will be implemented so the user will be able to control
temperature and humidity in certain zones through an
aesthetically pleasing interface. This system will also feature
internet connectivity for the convenience of control anywhere
there is internet access. The web interface will give the user
the control features of an RSM, while the user is away.

Index Terms — Centralized control, Data structures,
Microcontrollers, Radio Transceivers, Thermal sensors, Web
design, Wireless Communication

I. INTRODUCTION

 Today, there are an increasing number of households

running HVAC (heating, ventilation, and air-conditioning)

control systems 24/7. While many of these systems might

be designed to be as efficient as possible, it does not mean

that they are capable enough to accommodate the needs of

the user(s) in every possible usage scenario combination.

For example, not every room in a house needs to be set at

the same temperature at all times, especially once

everyone has gone to bed. So at night, there are usually no

occupants in the kitchen, living room, or dining room

which are still being cooled or heated. Then, a multi-zone

system was introduced to help fulfill the extra needs of

consumers. With this new innovative system, users were

given the ability to dictate individual temperatures to

different “zones,” whether they be bedrooms and living

rooms, or different floors of an office building. The user

could control the HVAC to cool and/or heat only the

room’s occupied, turning off the zones vacant through

installed dampeners to control air flow. To give an

example let’s say there are two zones for an HVAC

system, if one zone is vacant, then the user could turn one

zone off directing all the air flow to the occupied zone

which will then be cooled or heated faster. So with this

system installed, power consumption will decrease which

results in a cut in energy costs.

 HVAC systems are designed to maintain a desired

temperature set point. Unfortunately this system creates a

large temperature gradient between the inside of the

domicile and the natural weather. As per thermodynamics

the larger the temperature gradient between two areas the

quicker thermal energy transfers through the substrate

which separates them. For example in the summer, the

outside temperature can hit +90 degrees Fahrenheit while

the set point for most HVAC systems will usually be

between 65 and 80 degrees. This causes a large

temperature gradient and reduces the effectiveness of the

insulation provided by walls and purpose built insulation

material. If the temperature gradient were to be reduced to

a negligible value then thermal energy would stop flowing

into the domicile. Our system’s main goal is to reduce the

temperature gradient between the interior of the domicile

and the exterior during the hottest part of the day. This will

greatly reduce the amount of time the heat pump’s

compressor will run which in turn will greatly reduce the

energy it consumes. It is generally accepted that the heat

pump is one of the largest energy draws in a domicile;

therefore reducing its energy draw should be one of the

easiest ways to reduce energy waste.

 To reinforce this projects energy saving applications,

here’s another example of how this system will help. On a

regular day in typical households worldwide, people have

air conditioning units that run throughout the day while no

one is home. If consideration is taken on how much energy

is being wasted on a vacant house, the reality is that on a

yearly basis this amount is astronomical. The advantage of

the HVAC system would be the ability to shutdown the

main system when no one is home. It would accomplish

this task with a schedule created by the user to set only

when they are not home. If by chance the user isn't home,

the system could be shut off and start back up when they

return. This in itself would save tons of energy and would

lower the cost of running a system in a consumer’s

home/zone.

This system will be designed such that a consumer will

be able to utilize the multi-zone controllers all while

keeping the power consumption low. Although the power

consumption will be low, there won’t be any drop off in

precision levels, customizability, or aesthetics. Multiple

remote sensor modules (RSM) will be implemented so the

user will be able to control temperature and humidity in

certain zones through an aesthetically pleasing interface.

The web app will come with preset modes with which a

user can employ to run throughout the day to further

decrease power consumption. But if those preset modes

do not adequately meet the requirements of the user,

he/she will be able to program the RSM to meet his/her

own needs. This system will also feature internet

connectivity for the convenience of control anywhere

there's internet access. The web interface will give the user

the control features of an RSM, while the user is away. An

illustration of the HVAC system can be seen in Figure 1.

II. SYSTEM COMPONENTS

The eHVAC Control System is comprised of many

components working together to carry out the total

functionality of an HVAC system with little worry by the

user of its accuracy and ability to perform.

A. Main Control Unit (MCU)

 The Main Control Unit will be responsible for

controlling the various components of an HVAC system

such as the heat pump, the fan or air handler, and all of the

dampers throughout duct work. It will also be responsible

for bridging the gap between the web application and the

Remote Sensor Modules. TI's LM3S8962 Stellaris®

ARM® Cortex™-M was chosen for the MCU and was

divided into two parts: hardware and software.

i. Hardware

 The MCU will communicate to the RSM’s via a

wireless module on the Main PCB. It will also control the

supply voltage to the physical components of the HVAC

system which requires 24VAC for operation according to

industry standards. A standard heat pump consists of a

compressor, reverse valve, and emergency heating coils

and sits outside the house. The air handler or fan is

usually somewhere inside the house and circulates the air

throughout the home. The MCU will also control up to 8

normally-open dampers which splits a household into

multiple zones. If a particular zone requests for cool air

while another zone does not need the air, the zone that

does not require the air will have its damper closed

therefore directing all the cool air to the zone that

requested it. The MCU will also have Ethernet

connectivity for communication to and from the web

application.

 The MCU will drive the plant portion of the

system via two 74HC595 8-bit shift registers which will

then connect to 16 different MAC97 Triacs. The shift

registers will be daisy chained together so that only three

inputs are required: a data input, a clock, and a latch

which can be seen in figure 2 on the next page. The triacs

will be connected to a 24VAC supply voltage which will

drive each component. The MCU will send two hex

values to shift out where each bit is responsible for a single

component. So if a components’ respective bit goes high,

then that component will turn on via a triggering of the

triac it is connected to. LED’s simulate each component

turning on and turning off. Since the dampers are

normally-open by default, their respective LEDs will turn

on to simulate the damper closing

There will also be a MSP430G2553 on the main

PCB which the Stellaris will communicate with using a

UART connection. This MSP430 will be connected to a

Fig. 1: End to End Connectivity of the HVAC
System

CC1101 wireless transceiver via a SPI connection. This is

the wireless module that will communicate with the RSMs

which also have a wireless module.

ii. Software

The Stellaris chip has plenty of built in software

functions that are advantageous to use. There are many

UART functions for use including receiving and

transmitting functions [1]. These functions will help

tremendously with parsing through the data received either

from the RSM or the web application and will be coded

using the C programming language. The RSM will only

be able to send data if the MCU requests it. The request to

poll the RSM will first be sent from the web application.

So the MCU software will be able to respond to a series of

commands from the web application, execute the

corresponding command, and send confirmation back to

the web application.

 Each command sent from the web application

will have identifier values that correspond to one of the

RSMs or the plant. Once this id is deciphered, the

command will then be executed, whether it is requesting

data from the RSMs, sending new data to the RSMs,

updating the state of the plant either from a scheduled

event or fluctuation in temperature readings.

 If the web application requests data from the

RSMs, the data sent via the wireless module will first be

stored and parsed on the Stellaris chip, then a string of

data will be prepared and sent immediately to the web

application. The web application sends requests and

commands with the Stellaris through CGI calls, but the

Stellaris will prepare the data to send back in JSON string

format for the web application to decipher in Python. This

implementation was chosen because there was source code

for JSON parsers available for both the web application

and the Stellaris but the parser was too large to fit onto the

Stellaris so the CGI implementation was chosen.

B. Remote Sensor Modules (RSM)

The Remote Sensor Module (RSM) acts as the main

data input for the HVAC controller. The RSM has several

responsibilities; it must gather data concerning the

environment in which the RSM is placed, it must act as an

input for the HVAC controller, and it must display real

time data for the user.

To accomplish these goals the RSM has a 1.8" TFT

color display, several momentary pushbuttons, a Telaire

T6004 carbon dioxide sensor, Honeywell's HIH-6130

humidity and temperature hybrid sensor, and to control it

all, a MSP430G2553 MCU, which communicates with the

HVAC MCU via the wireless module. The T6004 is a

Non-Dispersive Inferred sensor (NDIR). NDIR sensors

are typified by very great accuracy, low power, and high

cost, and the T6004 is all of these. The T6004 carbon

dioxide sensor was chosen because of its incredibly high

accuracy (40ppm CO2) and because it is no longer in

production, which means it is available for a small fraction

of its retail price (100US) [2]. The T6004 draws 15mA at

5VDC when sampling (every 2 seconds) and under 1mA

when not. Unfortunately the T6004 has a custom serial

peripheral interface (SPI) which means a custom SPI

protocol had to be written to interface with this sensor.

This protocol requires the use of an ACK acknowledge,

which causes the RSM MCU to pause communications

until the CO2 sensor is ready to receive the next byte of

information. The protocol also requires that the sensor

operate at a frequency of at least 1 MHz transmission. yet

it must only send one byte at a time. The protocol requires

that multiple and variable number of bytes be sent during

one transmission session. When receiving data from the

T6004, the protocol requires that differing lengths of

messages be received. In the first 3 bytes the T6004 will

send the length of the message being sent and the receiver

must receive only that number of messages. If the RSM

MCU sends an unexpected value, or receives in an

improper manner the T6004 will lock up and reset. If the

T6004 resets it will be unavailable for one minute while it

warms up and does internal checks.

Honeywell's HIH-6130 is a very accurate temperature

and humidity sensor designed specifically for HVAC

systems. The HIH-6130 has a temperature accuracy of

±0.25ºC and a humidity accuracy of ±4% [3]. It offers

custom firmware which compensates for sensor drift over

time which is built directly into the sensor, eliminating the

need for external compensation. The HIH-6130

communicates using a custom SPI protocol, and a set of

custom SPI functions was written to interface with it. This

Fig. 2: Shift Register Schematic

protocol requires that the RSM MCU receives and stores

four bytes at once. There is no minimum frequency for the

HIH-6130 communication protocol, and the HIH-6130

will easily handle improper communications by simply not

returning anything and waiting for the RSM MCU to

perform another measurement request and read the

updated measurements. The HIH-6130 provides status

information in addition to measurement data. The custom

protocol will take this data into account and re-poll the

HIH-6130 if necessary to receive updated and accurate

information.

Figure 3 depicts the daughter boards used to interface

with the HIH-6130. This board contains all the support

components requires to power and operate the sensor. The

daughter board provides easy access to power, ground, SPI

clock, SPI chip-select and SPI master-in-slave-out

(MOSI). This chip has no input, only using the chip-select

and clock pins to drive it.

The 1.8"TFT display is a low cost display which

communicates over a traditional SPI bus, but the hardware

SPI bus of the RSM MCU is used for UART. Thus the

custom protocol written for the HIH-6130 was adapted for

use with this display.

The MSP430G2553 was chosen to drive the RSM

because of its very low cost, its ease of prototyping, and its

large flash memory (16Kb). The RSM MCU

communicates with all of the sensors, the display, and the

wireless module. The RSM is in low power mode 0

(LPM0) when not processing an interrupt. Figure 4

describes the program response to an interrupt. The

interrupt can be a request for a status update which

originates in the HVAC MCU, a measurement request

which originates in the HVAC MCU, or a timer interrupt

which originates in the RSM MCU. regardless of the

interrupt type, once the interrupt is has been fully

processes the RSM MCU returns to LPM0.

C. Wireless Module

The Wireless Module is the communication bridge

between the RSMs and the HVAC MCU. The module

consists of a CC110L transceiver, and a MSP430G2553.

The CC110L operates at ~900MHz. The output power of

the CC110L can be modified such that the range will vary

between ~2 and 50 meters, which allows the user to

reduce power consumption if the range requirements are

small. The CC110L communicates via a traditional SPI

bus, and requires a few external general purpose input

output (GPIO) pins for interrupts. The MSP430G2553

acts as a controller and buffer for the CC110L. It

initializes the CC110L, handles its interrupts, and

communicates to the host hardware(either the HVAC

MCU or a RSM) via UART. The wireless module will

take an input from the host hardware via UART and then

broadcast that message to any listening wireless module.

In the same manner, when the module receives a wireless

transmission, it will transmit the message via UART to the

host hardware.

Figure 5 shows the schematic view of the Wireless

Module. The MSP430G2553 drives the module. SV3 and

SV4 interfaces with the support hardware, and contains

power and ground, a reset pin which needs to be help high,

and UART TX and RX pins. These five lines connect

directly to the MSP430G2553 without any further

abstraction. The two other headers SV1 and SV2,

interface with the CC110L, and they include power,

ground, SPI connections (clock, chip-select, master-out-

slave-in(MOSI), MISO), and two GPIOs used for

interrupts. One line allows the CC110L to drive the

MSP430G2553 into a receive interrupt, the other allows

Fig. 4: Flowchart for Program Response to
an Interrupt

Fig. 3: HIH-6130 Daughter Board

the MSP430G2553 to drive the CC110L into an internal

transmit interrupt.

Figure 6 describes the interrupt handlers for the wireless

Module. If the interrupt is a byte which needs to be

transmitted, the module will switch the CC110L into

transmit mode (the amplifier will be in line to the antenna,

while the receiver will be switched out of line) and the

radio will transmit the byte after which, the radio will go

into listen mode (the amplifier is switched out of line, and

the receiver is switched inline) and the MSP430G2553

will go into LMP0. If the interrupt is a receive type the

radio will store the received byte in its RX buffer and the

MSP430G2553 will read from this buffer. Once the byte

is read, the MSP430 will transmit it to the host hardware

via the UART lines and then go into LPM0.

D. Web Application

The web application is comprised of three main

subsections: the User Interface, the Google App Engine

and MCU Connectivity.

i. User Interface

The User Interface of the eHVAC system refers to the

web application the user will use to control all aspects of

the system. The web application was created using jQuery

Mobile, which is a Javascript library made mostly for use

in mobile devices such as smartphones and tablets. This

will allow the user to control the system from almost any

device with an internet connection and a browser with a

clean looking interface. Also, the web application was

coded using HTML5 and CSS3 styling for the web pages.

The jinja2 templating engine will also be used in python

handlers which will be discussed later. This templating

engine takes care of preparing the HTML responses with

the appropriate information for the user.

The system has access control in place, so a user needs

the appropriate login information to gain access. The

access control system only allows users control of zones

and settings the administrator has granted access to. Along

with being secure, the web applications allows the creation

of new zones, schedules for each zone, and customize

settings for set point, fan modes and system mode.

The web application has a dropdown menu and has

options for settings that are mainly used for the

Administrator. These settings include giving the

Administrator the ability to create other users, edit users

zone accessibilities, change users passwords and allow the

Administrator to change the HVAC configuration settings

which enables this HVAC controller to be compatible with

any existing HVAC system. One asset of our web

application that was quite important to implement was the

readings portion. The user will be able to choose a specific

zone in their system and will be able to see the most recent

readings for temperature, CO2 and humidity in a very well

designed graph structure. A depiction of the User

Interface can be seen in Figure 7.

Fig. 6: Flowchart for Interrupt Handlers for
the Wireless Module

Fig. 5: Wireless Module Schematic

 Fig. 7: GUI Design

ii. Google App Engine

The Google App Engine (GAE) is a large asset to the

working structure of the eHVAC system. It provides a

development environment with its own datastore, web

server, and web related services. It allows for development

of applications in Go, Python, or Java. The datastore has

an object-oriented nature which allowed for modeling of

data using classes. The GAE datastore and python

capabilities allow for rapid execution and information

processing in the application with minimal complications.

Webapp2, which is the lightweight framework built-in to

the Google App Engine, allows for a clean and simple to

understand application architecture design, with exception

handling.

The webapp2 application was coded with a Web Server

Gateway Interface (WSGI) setup for routing requests.

Python handlers were created to handle the different

activities in the application and effectively creating a

sandbox for the different actions and operations in the

application. When a page is requested the WSGI router

dispatches the appropriate handler. The most current

information will be displayed to the user, based on their

access level. The templating engine discussed earlier in the

User Interface section was Jinja2. Jinja2 is a templating

system that accounts for dynamically generated portions of

HTML and will also allow for embedding special

placeholders in the HTML files to indicate where the

generated content should be placed.

One of the biggest portions of the eHVAC control

system is the database. After much research, it was

decided that the Google App Engine Datastore would be

used for the database. The Datastore is a quite simplistic

form of database which consists of creating models for our

database from a python file. The Datastore "is a

schemaless object datastore providing robust, scalable

storage for your web application" [4]. The Datastore has a

good hierarchical system which allows for creating classes

that share the same parent and will allow for queries in the

database to extract only specific data needed to display to

the user when requested. The transactions that will occur

from the web application and the MCU will make the

database a large proponent in getting all the aspects of the

project working. The database will take requests from the

users via the web application if they change any settings.

The values that will change will be placed into the

database and if needed will then be sent to the MCU to

change any settings that the microcontroller's need to

operate (fan mode, system mode, and set point). The

flowchart in Figure 8 shows an example of how the system

handles a request to change the Fan mode in a zone.

The main models in the database include: Plant, Zone,

User and Schedule. The Plant and zone models are very

important because they house all of the needed

components for each plant and zone in the system. If a

user was to add a new zone to their system, they would

need to use the Zone model to create this and have it place

all of its values in the corresponding Plant. The User

model controls all the properties for when a user has been

created to giving a user access to zones and setting

administrative access. Finally, the Schedule model is

needed for the user to be able to create special times for

when their system will be in the mode of their decision

along with choosing a set point. The Schedule is also very

important when using the Cron handlers needed to have

the system pull the most recent set schedule from the

database and to have the system run it at the correct time.

iii. MCU Connectivity

Communications with the MCU is done via a

combination of web technologies and standards. The

application in the Google App Engine contains a Cron

daemon which executes a python script called pollSystem

at a specific frequency of once every two (2) minutes. The

flow of this script is represented in Figure 9. The script

first polls the MCU by executing a method called

getSystem. This method sends a command via the MCUs

CGI (Common Gateway Interface) requesting all plant and

RSM data. The expected response from the MCU is a

JSON string with the most up-to-date information about

the plant and RSMs. After obtaining the JSON response

the pollSystem method parses through the RSM

information in the JSON, and updates the zone readings

accordingly. Once all readings have been parsed and

processed the method sends a command over CGI to the

MCU with the newest zone settings from the web

application, ensuring that all RSMs are also up-to-date

with the desired set point, system mode, and fan mode for

each zone. Here is where the scheduler information comes

into play.

The script will try and query the Datastore for the

schedule that should be running (if applicable) in each

zone. This schedule is dependent on the day of the week,

start time and whether or not it is enabled. This start time

cannot be greater than the current time so as to avoid

executing schedules ahead of time. If there is no schedule

to be executed, pollSystem will default to the main zone

settings for each zone. The expected response for each of

these CGI commands is a simple acknowledgement in the

form of a JSON string with the same settings that were

sent in the command. This allows pollSystem to verify that

the MCU received the correct information. Last but not

least the script will prepare the appropriate plant output

according to current zone settings and readings. This

output is represented by two 2-digit hex numbers. One

number contains the plant operation settings, while the

other contains the settings for the system dampers for

controlling air-flow. Once these two numbers are ready,

pollSystem will send them to the MCU via another CGI

call. The expected response of the MCU to the CGI call is

a JSON string with the information it received. If the

response is valid then it will update the plant information

in the Datastore with the new plant output values. In case

the response is not as expected it will finish the method.

Regardless of response, the Cron daemon will execute the

pollSystem method in another 120 seconds.

Fig. 8: Flowchart for Fan Mode Change
Request in the System

Fig. 9: Flowchart for a Cron-Handled
Request in the System

III. CONCLUSION

The eHVAC project was a good learning experience for

all members of the group. It not only tested the knowledge

and skills we had prior to taking Senior Design, it also

utilized our patience and well-being to put forth the effort

needed to succeed. Many issues lingered throughout

testing of the project including the intermittent Stellaris

microcontroller and its lack of help and support. We felt as

though we accomplished much more because we managed

to pull through the hard issues and created our own work-

a-rounds for completing this project. We hope to work

with this project in the future and possibly expand on it.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of Dr. Samuel Richie, Dr. Elena Flitsiyan, Dr.

Zakhia Abichar, Dr. Saeed Lotfifard, Dr. Mainak Chatterje

and the rest of the UCF EE/CPE Department.

BIOGRAPHY

Michael Trampler will be

graduating UCF in the Fall

of 2012 with his B.S. in

Electrical Engineering. He

will pursue his master's and

Phd in Electromagnetics

and Optics with Dr. Gong.

After earning his PhD,

Michael intends on pursuing

a job in the field of

Microwave Engineering.

Javier Arias will be

graduating from the

University of Central

Florida with a B.S in

Electrical Engineering.

After graduation, he will

look into the fields of

communications, power

electronics and power

engineering. Javier intends

on pursuing a master's

degree in Power System's or

Optic Engineering.

Ryan Kastovich will

be graduating the

University of

Central Florida with

his BS in Electrical

Engineering in the

Fall of 2012. He

will continue his

work at his job at

LiveTV as a fleet

engineering intern until he has a full time position. Ryan

plans to pursue a career in the aviation industry working as

an electrical engineer. He plans to further his career with a

Master's degree in Digital Signal Processing.

Genaro Moore is an

electrical engineering major

graduating this December.

After graduation he will

accept a full-time offer from

either LCEC in Fort Myers

or Crunchy Logistics here in

Orlando. Genaro intends on

pursuing a master's degree in

Business Administration and

a Bachelor's in music later

on in his career.

REFERENCES

 [1] Stellaris Peripheral Driver Library. Dallas, Texas: Texas
Instruments Incorporated, 5 Sept. 2012. PDF.

 [2] Telaire 6004 CO2 Module. General Electric, 2006.. PDF.

 [3] Honeywell HumidIcon Digital Humidity/Temperature

Sensors: HIH6130/6131 and HIH6120/6121 Series. Golden
Valley, Minnesota: Honeywell, July 2012. PDF.

 [4] "Datastore Overview- Google App Engine." Google

Developers. N.p., n.d. Web. 21 Apr. 2012.<
https://developers.google.com/appengine/docs/python/datas
tore/overview/>.

