
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: March 19, 2012   Revised: April 11, 2012  Accepted: April 16, 2012

210 http://ijass.org   pISSN: 2093-274x    eISSN: 2093-2480

Technical Paper
Int’l J. of Aeronautical & Space Sci. 13(2), 210–220 (2012)
DOI:10.5139/IJASS.2012.13.2.210

A Continuous Robust Control Strategy for the Active Aeroelastic 
Vibration Suppression of Supersonic Lifting Surfaces 

K. Zhang* and Z. Wang**
Department of EECS at the University of Central Florida

A. Behal***
Department of  EECS and NanoScience Technology Center at the University of Central Florida

P. Marzocca****
Mechanical and Aeronautical Engineering at Clarkson University

Abstract

The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed 

regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression 

in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures 

that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the 

global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory 

Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance 

of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle 

oscillations.
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Nomenclature

A, G, Gd	 State and input matrices

Ac, Bc	� State and input matrices of transformed 

system

A*
c	 Matrix of the system zero dynamics

a∞, p∞, ρ∞ 	� Sound speed ,the pressure and air density 

of the undisturbed flow respectively

B	 Non-linear restoring moment 

C0, C1, C, C3 	� Constants used in the bounded neural 

network composite weight matrix

e, r	� Tracking error and filtered tracking error, 

respectively

F, G 	� Positive definite diagonal gain matrixes for 

update laws of Ŵ  and V 
g1, g2	 Auxiliary saturation gains

Kz, Kv, Γ, Zb, Kd	 Controller gains

La(t), Ma(t)	 lifting and aerodynamic moment

p(y, t)	 Unsteady pressure 

V	 Dimensionless flight speed

vz(t)	� Downwash velocity normal to the airfoil 

surface

W, V	� Ideal neural network interconnection 

weight matrices
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Ŵ, V̂	� Estimated neural network interconnection 

weight matrices

w(t)	 Transverse deflection

x, u	 System state and input, respectively

Z, ZB	� Ideal neural networks composite weight 

matrix and its bound

Ẑ, Z̄	� Estimated neural networks composite 

weight matrix and mismatch

β̄ 	 Auxiliary control input

ξ	� Dimensionless plunging displacement 

	 ξ = h / b
γ	� Isentropic gas coefficient (γ = 1.4 for dry-

air) 

τ	 Dimensionless time τ = Ut / b
λ	 Aerodynamic factor λ = M / M 2−1

η(t)	� Vector of system states for analysis of zero 

dynamics 

tr{∙}	� Trace of a square matrix defined as the 

sum of the elements on the matrix main 

diagonal

||∙||F	� F ro b e n i u s  n o r m  d e f i n e d  a s  | | A | | F  = 

tr{A*AT}

<A, B>	� Inner product of two matrix, defined as 

tr{B*A}

I. Introduction

In recent years, aeroelastic control and flutter suppression 

of flexible wings have been extensively investigated by 

numerous researchers. There are two basic problems 

associated with the aeroelastic instability of lifting surfaces 

– the determination of the flutter boundary and of its 

character, i.e., the identification of the presence of a stable 

or unstable Limit Cycle Oscillation (LCO) in the proximity of 

the flutter boundary. Classical flutter analysis is based on the 

linearized aeroelastic equations, while LCO analysis requires 

a nonlinear approach [1]. The goal of the control is to expand 

the flight envelope above the uncontrolled flutter instability 

speed without weight penalties and eventually convert the 

catastrophic nature of flutter, associated with an unstable 

LCO typical of a subcritical Hopf-bifurcation behavior, into 

benign flutter, which conversely is associated with a stable 

LCO typical of a supercritical Hopf-bifurcation. A great deal of 

research activity devoted to the aeroelastic active control and 

flutter suppression of flight vehicles has been accomplished, 

e.g., see [2]. The model nonlinearities can help to stabilize 

the LCO or be detrimental by destabilizing the LCO [3]. The 

nonlinearities to be included in the aeroelastic model can 

be structural [4] (i.e., arising from the kinematic equations); 

physical [5] (i.e., those involving the constitutive equations); 

or aerodynamic appearing in the unsteady aerodynamic 

equations [1][3][6]. This issue is discussed in the context of 

panel flutter in [1][6][7].

A plethora of techniques is available for dealing with 

the effect of non-linear structural stiffness in the context of 

subsonic flow; linear control theory, feedback linearizing 

techniques, adaptive, and robust control techniques have 

been employed to account for these nonlinearities, e.g., 

[8]-[19]. Recently, neural-network-based (i.e., model-free) 

control approaches have been proposed in [20] and [21] to 

stabilize a nonlinear aeroelastic wing section. However, there 

is very little work (e.g., [3],[22]) dealing with the aeroelastic 

vibration suppression for a supersonic wing section in the 

presence of both structural and aerodynamic nonlinearities.

Motivated by our previous work in [19][21] and [23]-[25], a 

novel neural network (NN) based robust controller has been 

designed to asymptotically stabilize a supersonic aeroelastic 

system with unstructured nonlinear uncertainties. The 

nonlinearity of the model depends on the plunging distance 

and pitching angle. If the nonlinearity is known and could 

be linearly parameterized, then adaptive control is often 

considered to be the method of choice. In this paper, we 

assume unstructured uncertainty in the sense that the 

structure of the system nonlinearity is considered to be 

unknown. In contrast to existing neural network-based 

controllers that only achieve practical stability, the novel 

continuous control design in this paper is able to achieve 

asymptotic stability of the origin. A three-layer neural 

network is implemented to approximate the unknown 

nonlinearity of the system. While adaptive control relies 

on linear parameterizability of the system nonlinearity 

and the determination of a regression matrix, the universal 

approximation property of the NN controller enables 

approximation of the unstructured nonlinear system in a 

more suitable way. To compensate for the inevitable NN 

functional approximation error, an integral of a sliding mode 

term is introduced. Through a Lyapunov analysis, global 

asymptotic stability can be obtained for the tracking error in 

the pitching degree of freedom. Then, based on the fact that 

the system is minimum phase, the asymptotic stability of the 

plunging degree of freedom is also guaranteed. Simulation 

results show that this NN-based robust continuous control 

design can rapidly suppress the flutter and limit cycle 

oscillations of the aeroelastic system.

The rest of the paper is organized as follows. In Section II, 

the aeroelastic system dynamics are introduced. In Section III, 

the control objective is stated explicitly while zero dynamics 

of the system is analyzed. The open-loop error system is 

developed in Section IV to facilitate the subsequent control 
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design while the closed-loop error system is developed in 

Section V. In Section VI, Lyapunov-based analysis of the 

stability of the closed-loop system is presented while the 

simulation results are shown in Section VII. Appropriate 

conclusions are drawn in Section VIII.

II. Model Development

The aeroelastic governing equations of a supersonic wing 

section with plunging and twisting degrees-of-freedom 

(graphically represented in Fig. 1), accounting for flap 

deflections, and constrained by a linear translational spring 

and a non-linear torsional spring, are given as follows

(1)

The dimensionless plunging distance (positive downward) 

is expressed as ξ(≡ h / b), while α is the pitch angle (positive 

nose up), α̇ and ξ̇ are derivatives with respect to dimensionless 

time τ = Ut / b, and V = U / bωα is the dimensionless flight speed. 

The parameter B represents the non-linear restoring moment 

and is defined as the ratio between the linear and non-linear 

stiffness coefficients, thus it measures of the degree of non-

linearity of the system; B > 0 corresponds to hard structural 

nonlinearities, B = 0 corresponds to a linear model, while B 

< 0 corresponds to soft structural nonlinearities. In addition, 

lα and mα represent the dimensionless aerodynamic lift and 

moment with respect to the elastic axis.

In order to account for flap deflections, some 

modifications need to be made to the non-linear Piston 

Theory Aerodynamics (PTA) which is used here to produce 

the aerodynamic loads on the lifting surface. To keep the 

paper self-contained, a short description of the PTA modified 

to account for the flap deflection is presented next. Within 

the PTA, the unsteady pressure can be defined as follows

(2)

where vz(t) and a∞ represent the downwash velocity 

normal to the airfoil surface and the undisturbed speed of 

sound respectively, and are defined as follows

(3)

In the definition of vz(t),  denotes the upper and lower 

surfaces, respectively, while U∞ denotes the air speed of 

the undisturbed flow. In the expression (3), a∞, p∞ and ρ∞ 

denote the pressure and air density of the undisturbed flow, 

respectively, while γ is the isentropic gas coefficient (γ = 

1.4 for dry-air). The transverse deflection w(t) in (3) can be 

expressed as [26]

(4)

where x0 and x1 denote the dimensionless location of 

the elastic axis and of the torsional spring of the flap from 

the leading edge respectively, while β(t) represents the 

flap displacement. In the binomial expansion of (PTA), the 

pressure formula for PTA in the third-order approximation 

can be obtained by retaining the terms up to and including ( 

vz / a∞) as follows [7], [27]-[29]

(5)

The aerodynamic correction factor, λ = M / M 2−1, is 

used to correct the PTA to better approximate the pressure 

at low supersonic flight speed regime. It is important to 

note that (2) and (5) are only applicable as long as the 

transformation through contraction and expansion can be 

consider isentropic, i.e., as long as the induced show losses 

are negligible (low-intensity waves). For more details, see [1]

[5][30]. PTA provides results in excellent accordance with 

those based on the Euler solution and the CFL3D code [31]. 

Considering that flow takes place on both the upper and 

lower surfaces of the airfoil, U +
∞ = U −

∞ = U; from (3)-(5), the 

aerodynamic pressure δp  p − p∞ difference can be expressed 

as

(6)

Notice that δp also accounts for the deflection of the flap 

β. Here, M = U∞ / α∞ is the undisturbed flight Mach number, 

while q∞ = ρ∞U 2
∞ / 2 is the undisturbed dynamic pressure 

as presented in [1] and [3]. The model can be simplified 
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Fig 1. Supersonic wing section with flap 

    The dimensionless plunging distance (positive downward) is expressed as ( / )h bξ ≡  , 

while α  is the pitch angle (positive nose up), α  and ξ  are derivatives with respect to 

dimensionless time /Ut bτ = , and /V U b αω=  is the dimensionless flight speed. The 

parameter B  represents the non-linear restoring moment and is defined as the ratio between the 

linear and non-linear stiffness coefficients, thus it measures of the degree of non-linearity of the 

system; 0B >  corresponds to hard structural nonlinearities, 0B =  corresponds to a linear 

model, while 0B <  corresponds to soft structural nonlinearities. In addition, lα  and mα  

represent the dimensionless aerodynamic lift and moment with respect to the elastic axis. 

In order to account for flap deflections, some modifications need to be made to the 

non-linear Piston Theory Aerodynamics (PTA) which is used here to produce the aerodynamic 

loads on the lifting surface. To keep the paper self-contained, a short description of the PTA 
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to account only for the nonlinearities associated with α 

and discarding those associated with β. Even though this 

is an approximation, the magnitude of the nonlinearities 

associated with β is much smaller than those associated 

with α and will thus be omitted in this paper. In addition, it 

is assumed in the following development that the nonlinear 

aerodynamic damping in (6), i.e., the terms w 3
t, w 2

t wx, and wt 

w 2
t  will be discarded and consequently, the cubic nonlinear 

aerodynamic term reduces to w 3
t only. Although nonlinear 

damping can be included in the model, this paper only 

considers linear damping and thus conservative estimates of 

the flutter speed are expected.

Finally, the nonlinear aerodynamic lifting and moment 

can be obtained from the integration of the difference of 

pressure on the upper and lower surfaces of the airfoil

(7)

(8)

where δp+x<bx1
 and δp+x<bx1

 are the aerodynamic pressure 

difference on the clean airfoil and on the flap. In the governing 

EOM presented in (1), la and ma denote the counterpart of 

(7) and (8), which are defined as 

(9)

(10)

Here, μ represent a the dimensionless mass ratio defined 

as m / 4ρb2. Given the definitions above, the governing EOM 

can be transformed into the following form

(11)

where  is a vector of systems 

states, β(t) is a flap deflection control input, while A, G(z), 

Gd(z), and Φ(y) are defined as follows

(12)

(12)

where the explicit definitions for the constants ci, ki, ∀i = 

1, …, 4 as well as p2 and p4 are reported in the Appendix.

III. Control Objective and Zero Dynamics

The explicit control objective of this paper is to design a 

model-free aeroelastic vibration suppression strategy to 

guarantee the asymptotic convergence of the pitch angle α 

using the flap deflection β as a control input. The secondary 

objective is to ensure that all system states remain bounded at 

all times during closed-loop operation. It is assumed that the 

measurable variables available for control implementation 

are the pitch angle α , pitch angle velocity α̇, plunging 

displacement ξ and plunging displacement velocity ξ̇.

Since the proposed control strategy is predicated on the 

assumption that the system of (12) is minimum phase, the 

stability of the zero dynamics of the system needs to be 

assured. For that purpose, the system of (11) is transformed 

into the following state-space form

(13)

where β̄  = U2β is an auxiliary control input, η(t) = [η1(t)  

η2(t)  η3(t)  η4(t)]T  is a new vector of system states, while 

Ac
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     [ ]
[ ( ) ]

1 0 0 0
c c
T
c

A y B
y C
η η β

η η
= + Φ +
= =

                        (13) 

where 2Uβ β=  is an auxiliary control input, ( ) ( ) ( ) ( ) ( ) 4
1 2 3 4

T
t t t t tη η η η η= ∈ℜ⎡ ⎤⎣ ⎦  is a 

new vector of system states, while cA 4 4×∈ℜ  and 4
cB ∈ℜ  are explicitly defined as follows  

1

2

3

4

0 1 0 0
0 0 1 0

,  
0 0 0 1
0 0 0 0

c cA B

θ
θ
θ
θ
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⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
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⎣ ⎦ ⎣ ⎦

                     (14) 

where iθ ∀ 1,2,3,4i =  are constants that are explicitly defined in the Appendix. In (13) above, 

4( )yΦ ∈ℜ  denotes a nonlinearity that encodes the nonlinear structural stiffness. It is to be noted 

here that (0) 0Φ = . The state-space system of (13) can be expanded into the following form 

1

1 2 1 1

2 3 2 2

3 4 3 3

4 4 4

( )
( )
( )

( )

y
y
y
y

y

η α
η η θ β
η η θ β
η η θ β
η θ β

= =
= +Φ +
= +Φ +
= +Φ +
= Φ +

                          (15) 

Here, the stability of the zero dynamics is studied for the case when the pitch displacement is  

regulated to the origin. Mathematically, this implies that 

10 0y y η≡ ⇒ = ≡  

which implies from the second equation of (15) that  

2

1

ηβ
θ

∗ = −                             (16) 

Since 1(0) 0Φ = . The zero dynamics of the system then reduce to the third order system given  

by 

 and Bc  are explicitly defined as follows 

(14)

where θi∀i = 1, 2, 3, 4 are constants that are explicitly 

defined in the Appendix. In (13) above, Φ(y)  denotes a 

nonlinearity that encodes the nonlinear structural stiffness. 

It is to be noted here that Φ(0) = 0. The state-space system of 

(13) can be expanded into the following form
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(15)

Here, the stability of the zero dynamics is studied for the 

case when the pitch displacement is 

regulated to the origin. Mathematically, this implies that

which implies from the second equation of (15) that 

(16)

Since Φ1(0) = 0. The zero dynamics of the system then 

reduce to the third order system given by

Substituting (16) into the above set of equations for β̄ *, we 

obtain the linear system of equations η̇ = A*
c η where η = [η 2  

η3  η4]T and A*
c is given by 

For the nominal system of (15), the eigenvalues of A*
c lie in 

the left half plane which implies that the zero dynamics of 

the system are asymptotically stable, i.e., this is a minimum 

phase system. This implies that asymptotic convergence of 

the pitching variable α assures the asymptotic convergence 

of the plunging variable z.

IV. Open-Loop Error System Development

Given the definitions of (13) and (14), α̈ can be expressed 

as follows

(17)

The tracking error e1  αd − α is defined where αd   

denotes the desired output vector which needs to be smooth 

in deference to the requirements of the subsequent control 

design. For the control objective, one can simply choose 

αd to be zero all the time or use another desirable smooth 

time-varying trajectory αd(t) along which the actual pitching 

variable α can be driven towards the origin. In order to 

facilitate the ensuing control design and stability analysis, 

we also define the tracking error e2(t)  and the filtered 

tracking error signal r(t)  as follows 

(18)

(19)

where λ1, λ2 are positive constants. By utilizing the 

definitions above, one can obtain

By substituting (17) for α̈ in the above expression, the 

open-loop dynamics for r can be obtained as follows 

(20)

After a convenient rearrangement of terms, the open-loop 

dynamics can be rewritten as follows 

(21)

In order to design a model-free controller, we define an 

auxiliary nonlinear signal N(·) as follows

(22)

By utilizing the definition of (22) above, the open-loop 

dynamics of the system can be compactly 

rewritten as follows

(23)

V. �Control Design and Closed-Loop Error 
System

Since the structure of the model is assumed to be 

unknown in the control design, standard adaptive control 

cannot be applied. In its lieu, a neural network feedforward 

compensator N̂ along with a robustifying term is proposed 

to compensate for the function N as defined above in (22). 
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By the universal function approximation property [32], the 

nonlinear function of the system N can be approximated as a 

three-layer network target function as follows

(24)

as long as N is a general smooth function from 

  14

(22). By the universal function approximation property [32], the nonlinear function of the system 

N  can be approximated as a three-layer network target function as follows 

( ) ( )1 1 1 1 2 3 4, , , , , , T T
d d dN x x x x x x x σ ε= +W V x                (24) 

as long as N  is a general smooth function from 7ℜ  to 1ℜ  and the set of inputs to the 

function is restricted to a compact set S  of 7ℜ  . In (24), [x = 1 dα  dα  dα  1x  2x  3x  

8 1
4 ]Tx ×∈ℜ  denotes the augmented input vector, vector T ∈V 10 8×ℜ  is the ideal first layer 

interconnection weight matrix between input layer and hidden layer, 11 1( )σ ×⋅ ∈ℜ  denotes the 

sigmoidal activation function, while TW ∈ 1 11×ℜ  denotes the ideal second layer interconnection 

weight matrix. In this work, the weight matrixes W  and V  are assumed to be constant and 

bounded as BF
≤W W  and BF

≤V V  , where BW  and BV  are positive constants. The 

approximation error is assumed to be bounded in compact set ε < Nε  where Nε  is an 

unknown positive constant related to the number of nodes in the hidden layer. 

     After substituting the approximation from (24) into (23), one can rewrite the open-loop 

dynamics as follows 

( ) ( )3
3

sgnT Tr g g
g

ε β β= + − −W V xσ                (25) 

where 1

3

gg
g

= . Motivated by the open-loop dynamics and the ensuing stability analysis, the 

control law is designed as follows 

( ) ( ) ( )3 3
ˆˆsgn sgn sgnv dg g g N K r v K rβ β ⎡ ⎤= − + + − +⎣ ⎦           (26) 

where vK , 0dK >  are constant control gains, N̂  is a typical three-level neural network 

compensator  for target function ( )N x , defined as follows 

 to 
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sigmoidal activation function, while TW ∈ 1 11×ℜ  denotes the ideal second layer interconnection 

weight matrix. In this work, the weight matrixes W  and V  are assumed to be constant and 

bounded as BF
≤W W  and BF

≤V V  , where BW  and BV  are positive constants. The 

approximation error is assumed to be bounded in compact set ε < Nε  where Nε  is an 

unknown positive constant related to the number of nodes in the hidden layer. 

     After substituting the approximation from (24) into (23), one can rewrite the open-loop 

dynamics as follows 

( ) ( )3
3

sgnT Tr g g
g

ε β β= + − −W V xσ                (25) 

where 1

3

gg
g

= . Motivated by the open-loop dynamics and the ensuing stability analysis, the 

control law is designed as follows 

( ) ( ) ( )3 3
ˆˆsgn sgn sgnv dg g g N K r v K rβ β ⎡ ⎤= − + + − +⎣ ⎦           (26) 

where vK , 0dK >  are constant control gains, N̂  is a typical three-level neural network 

compensator  for target function ( )N x , defined as follows 

8×1
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where Kv, Kd > 0 are constant control gains, N̂ is a typical 

three-level neural network compensator for target function 

N(x̄), defined as follows

(27)

v is a robustifying term which will be defined later while ĝ 

is an adaptive estimate for g. The dynamic update law for ĝ is 

designed as follows

(28)

where the parameter projection operator proj{·} is designed 

to bound ĝ in a known compact set Ω such that sgn(g3)ĝ(t) 

≥ ε > 0 for all time. The projection operator defined here is 

meaningul because the minimum-phase nature of the system 

ensures that sgn(g3)g(t)=g3
−1g1 is always positive. In (25), Ŵ 

and V̂ are estimates for the neural network interconnection 

weight matrices that are dynamically generated as follows

(29)

where , , F
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where 1
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where vK , 0dK >  are constant control gains, N̂  is a typical three-level neural network 

compensator  for target function ( )N x , defined as follows 

8×8
 are positive definite diagonal gain matrixes, 

while k > 0 is a scalar design parameter. By substituting the 

expression for the control law in (26) into the open-loop 

dynamics of (25) and conveniently rearranging the terms, 

one can obtain the closed-loop system dynamics as follows

where g̃  ĝ − g is a parameter estimation error. Also note 

that we can write

where the weight estimation errors are defined as W̃   W 

− Ŵ, Ṽ   V − V̂ while w is defined as follows

(30)

To facilitate the subsequent analysis, one can also obtain a 

compact form representation for ||w|| as follows

where C0, C1 and C2 are all positive constants while the 

ideal composite weight matrix Z, estimated composite 

weight matrix Ẑ , and the composite weight mismatch matrix 

Z̃   Z − Ẑ are given as follows

(31)

Per the boundedness property for ||W||F and ||V||F as 

described above, there exists a constant ZB such that ZB > 

||Z||F. Based on the definition of ZB, the robustifying term v 

can be designed as 

(32)

where Kz is a positive constant. Finally, it is noted that 

the functional reconstruction error ε(x̄) is assumed to be 

bounded. Thus, the closed-loop dynamics can be finally 

written as 
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VI. Stability Analysis

In this section, we provide the stability analysis for the 

proposed model-free controller. We begin by defining a non-

negative Lyapunov function candidate V2 as follows

(33)

After differentiating V2 along the closed-loop dynamics of 

r(t) as well as (28), one can obtain the following expression 

for V̇2 

(34)

(35)

After applying the neural network weight update laws 

designed in (29), canceling out the matched terms and 

utilizing the definitions of (31), (35) can be upperbounded 

as

(36)

By substituting (30) and (32) into (36), it is possible to 

further upperbound V̇2 as 

(37)

where the following relation has been used to derive 

(38)

Based on the fact that ||Ẑ|| + ZB > ||Z̃||F, one can choose Kz > 

C2 such that (37) can be cast as

(39)

By defining C3 = ZB + C1 / k and conveniently rearranging 

the terms, (40) yields

By choosing Kd > [C0 − kC 2
3 / 4], one can obtain the following 

upperbound on V̇2

(40)

From (34) and (40), it is easy to see that r ∈ L2 ∩ L∞ while 

ĝ, W̃, Ṽ  ∈ L∞. The boundedness of r implies that α, α̇ are 

bounded by virtue of the definitions of (18) and (19). Since 

the system is minimum phase and relative degree one, the 

boundedness of the output guarantees that any first order 

stable filtering of the input will remain bounded. This 

implies that all system states remain bounded in closed-

loop operation which further implies that N(x1d, ẋ1d, ẍ1d, x1, 

x2, x3, x4) stays bounded. Since (26) defines a stable filter 

acting on a bounded input, it is easy to see that β and β̇ stay 

bounded; furthermore, the flap deflection control input β is 

continuous at all times. The boundedness of β implies in turn 

that ṙ ∈ L∞ by virtue of the closed-loop dynamics of r. Thus, 

using previous assertions, one can utilize Barbalat's Lemma 

[33] to conclude that r → 0 as t → ∞ which further implies 

that e1, ė1 → 0 as t → ∞. From the asymptotic stability of the 

zero dynamics, we can further guarantee that x3, x4 → 0 as t 

→ ∞. Thus, both the pitching and plunging variables show 

asymptotic convergence to the origin.

VII. Simulation Results

In this section, simulation results are presented for an 

aeroelastic system controlled by the proposed continuous 

robust controller. The nonlinear aerodynamic model is 

simulated using the dynamics of (1), (7) and (10).The 

nominal model parameters are list as follows

Table 1 Controller Parameters
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The desired trajectory variables ,d dα α  and dα  are simply selected as zero. The initial 

conditions for pitching displacement ( )tα  and plunging displacement ( )tξ  are chosen as  

(0) 5.729degα = (about 0.1  radians )  and (0) 0ξ =  m, while all other state variables are 

initialized to zero. The initial parameter estimate ˆ(0)g  is set to be 1.20− , which is a 10%   

shift from its nominal value. The flap deflection ( )tβ  is constrained to vary between 15± deg. 

The effect of structural nonlinearities on LCO amplitude was analyzed before applying any 

control. As shown in [22], increase in structural stiffness factor denoted by B led to decrease in 

LCO amplitude provided the flutter speed remains constant. Furthermore, we also explored the  
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The desired trajectory variables ,d dα α  and dα  are simply selected as zero. The initial 

conditions for pitching displacement ( )tα  and plunging displacement ( )tξ  are chosen as  

(0) 5.729degα = (about 0.1  radians )  and (0) 0ξ =  m, while all other state variables are 

initialized to zero. The initial parameter estimate ˆ(0)g  is set to be 1.20− , which is a 10%   

shift from its nominal value. The flap deflection ( )tβ  is constrained to vary between 15± deg. 

The effect of structural nonlinearities on LCO amplitude was analyzed before applying any 

control. As shown in [22], increase in structural stiffness factor denoted by B led to decrease in 

LCO amplitude provided the flutter speed remains constant. Furthermore, we also explored the  

and the controller parameters are listed in Table 1.

The desired trajectory variables αd, α̇d and α̈d are simply 

selected as zero. The initial conditions for pitching 

displacement α(t) and plunging displacement ξ(t) are 

chosen as α(0) = 5.729deg(about 0.1 radians) and ξ(0) = 0 

m, while all other state variables are initialized to zero. The 

initial parameter estimate ĝ(0) is set to be −1.20, which is a 

10% shift from its nominal value. The flap deflection β(t) is 

constrained to vary between ±15 deg.

The effect of structural nonlinearities on LCO amplitude 

was analyzed before applying any control. As shown in 

[22], increase in structural stiffness factor denoted by B led 

to decrease in LCO amplitude provided the flutter speed 

remains constant. Furthermore, we also explored the effect 

of the location of the elastic axis from the leading edge. It 

was shown in [22] that a decrease in x0 leads to decrease in 
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Fig 2. Open-loop dynamics of the aeroelastic system at pre-flutter speed M=2<Mflutter  

effect of the location of the elastic axis from the leading edge. It was shown in [22] that a  

decrease in 0x  leads to decrease in LCO amplitude while the flutter speed increases. It was also 

shown that increasing the damping ratios hζ  and αζ  resulted in decrease of the amplitude of 

the LCO.  

Fig 2 shows the dynamics of open-loop pitching displacement α  and plunging displacement 

ξ  at pre-flutter speed. The simulation is carried out in subcritical flight speed regime, 2M = ,  

below the flutter speed of 2.15flutterM = .  

Fig 2. �Open-loop dynamics of the aeroelastic system at pre-flutter 
speed M=2<Mflutter
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Fig 3. Closed-loop plunging, pitching, control deflection and parameter estimation 

at pre-flutter speed, M=2<Mflutter  

    Without the controller, it is obvious that the oscillation of pitching degree-of-freedom α  

will converge within 3[s] while the plunging displacement is lightly damped and it takes over 3[s] 

to converge. In Fig 3, it is shown that the proposed robust controller suppresses the oscillation  
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Fig 4. Open-loop dynamics of the aeroelastic system 

at post-flutter speed M=3>Mflutter  

Fig 3. �Closed-loop plunging, pitching, control deflection and param-
eter estimation at pre-flutter speed, M=2<Mflutter
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Fig 4. Open-loop dynamics of the aeroelastic system 

at post-flutter speed M=3>Mflutter  

Fig 4. �Open-loop dynamics of the aeroelastic system at post-flutter 
speed M=3>Mflutter 
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of  α   in less than 1.5[s] while the plunging displacement ξ  is suppressed in 2.5[s]. The 

parameter estimate ĝ  is seen to converge to a constant value within less than 0.5[s]. 

Another set of simulations is run for post-flutter speed. As shown in Fig 4, when M is set to 

be 3, the system dynamics show sustained limit cycle oscillations in open-loop operation. Such 

LCOs is experienced due to the non-linear pitch stiffness and the aerodynamic nonlinearities. 
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satisfactory when it start to work at t=0. Next simulation is for delay open of control. In Fig 6, 

control was turned on at t=4[s] after the system had gone into an LCO. It is seen that the 
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respectively in 1.5[s] and 3[s], while in [13] convergence time of the two states are 1.5[s] and  
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LCO amplitude while the flutter speed increases. It was also 

shown that increasing the damping ratios ζh and ζα resulted 

in decrease of the amplitude of the LCO. 

Fig 2 shows the dynamics of open-loop pitching 

displacement α and plunging displacement ξ at pre-flutter 

speed. The simulation is carried out in subcritical flight speed 

regime, M = 2, below the flutter speed of Mflutter = 2.15. 

Without the controller, it is obvious that the oscillation of 

pitching degree-of-freedom α will converge within 3[s] while 

the plunging displacement is lightly damped and it takes over 

3[s] to converge. In Fig 3, it is shown that the proposed robust 

controller suppresses the oscillation of α in less than 1.5[s] 

while the plunging displacement ξ is suppressed in 2.5[s]. 

The parameter estimate g is seen to converge to a constant 

value within less than 0.5[s].

Another set of simulations is run for post-flutter speed. As 

shown in Fig 4, when M is set to be 3, the system dynamics 

show sustained limit cycle oscillations in open-loop 

operation. Such LCOs is experienced due to the non-linear 

pitch stiffness and the aerodynamic nonlinearities. After 

applying the control to the plant, from Fig 5, it is shown that 

when the control is turned on at t=0[s], the oscillation of α is 

suppressed within 1.5[s]. The dynamic oscillatory behavior of 

the plunging displacement ξ is suppressed within 2.5[s].The 

control performance is very satisfactory when it start to work 

at t=0. Next simulation is for delay open of control. In Fig 6, 

control was turned on at t=4[s] after the system had gone into 

an LCO. It is seen that the oscillations of the pitching degree 

α and plunging displacement ξ are suppressed respectively 

in 1.5[s] and 3[s], while in [13] convergence time of the two 

states are 1.5[s] and 4[s]. The parameter estimate ĝ also 

converges to a constant in less than 0.5[s]. 

These simulation results show that the proposed novel 

robust controller can effectively suppress the oscillation of 

both pitching and plunging degrees-of-freedom of the airfoil 

in both pre-flutter and post-flutter flight speed regimes.

VIII. Conclusions

A modular model-free continuous robust controller was 

proposed to suppress the aeroelastic vibration characteristics 

(including flutter and limit cycle oscillations in pre- and 

post-flutter 

condition) of a supersonic 2-DOF lifting surface with 

flap. Differently from traditional adaptive control strategies, 

which strictly require the linear parameterization of the 

system, no prior knowledge of the system model is required 

for the method presented in this paper. A Lyapunov method 

based analysis was provided to obtain the global asymptotic 

stability result. Finally, the simulation results showed that 

this control strategy can rapidly suppress any aeroelastic 

vibration 

in pre- and post-flutter flight speed regimes.
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α

α α

χ λ γ λ γ
μ μ

+ + −
= − +  

22
0

4 2 2

(1 )(1 )(1 )
12 12

M x BMp
d r d V d

α α

α

χ λ γ χλ γ
μ μ

+ −+
= − + +  

 

The elements iθ ∀ 1,2,3,4i =  introduced in (15) are explicitly defined as follows  

1 3gθ =  

[ ]1
2 3 4 3 3 3 4 4 3 1 4 3 3 3 3 4c c k g c c g c g c g k c g kθ −= − − − − +

]

1 2
3 3 4 3 1 3 1 3 4 2 4 5 3 3 4 4 3

4 1 3 4 3 3 4 3 4 4 4 3 1 4

c c k g c g c c g Dg c g k c g k

c g k c k g k c c g k c g k

θ − ⎡= − − − − + −⎣
− − + +

1 2
4 3 2 5 1 3 4 2 3 4 3 1 4 4 3 2 4c Dg c g k c g k c k g k c c g kθ − ⎡ ⎤= − − + − − +⎣ ⎦  

2
3 3 4 4 3 4 3D c c c k c c k= + − . 
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