Chapter 6 — Single-Area OSPF

6.2.4.5 Lab – Configuring Basic Single-Area OSPFv2

Topology

Addressing Table

<table>
<thead>
<tr>
<th>Device</th>
<th>Interface</th>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Default Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>G0/0</td>
<td>192.168.1.1</td>
<td>255.255.255.0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/0 (DCE)</td>
<td>192.168.12.1</td>
<td>255.255.255.252</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/1</td>
<td>192.168.13.1</td>
<td>255.255.255.252</td>
<td>N/A</td>
</tr>
<tr>
<td>R2</td>
<td>G0/0</td>
<td>192.168.2.1</td>
<td>255.255.255.0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/0</td>
<td>192.168.12.2</td>
<td>255.255.255.252</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/1 (DCE)</td>
<td>192.168.23.1</td>
<td>255.255.255.252</td>
<td>N/A</td>
</tr>
<tr>
<td>R3</td>
<td>G0/0</td>
<td>192.168.3.1</td>
<td>255.255.255.0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/0 (DCE)</td>
<td>192.168.13.2</td>
<td>255.255.255.252</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/1</td>
<td>192.168.23.2</td>
<td>255.255.255.252</td>
<td>N/A</td>
</tr>
<tr>
<td>PC-A</td>
<td>NIC</td>
<td>192.168.1.3</td>
<td>255.255.255.0</td>
<td>192.168.1.1</td>
</tr>
<tr>
<td>PC-B</td>
<td>NIC</td>
<td>192.168.2.3</td>
<td>255.255.255.0</td>
<td>192.168.2.1</td>
</tr>
<tr>
<td>PC-C</td>
<td>NIC</td>
<td>192.168.3.3</td>
<td>255.255.255.0</td>
<td>192.168.3.1</td>
</tr>
</tbody>
</table>
Objectives

Part 1: Build the Network and Configure Basic Device Settings

Part 2: Configure and Verify OSPF Routing

Part 3: Change Router ID Assignments

Part 4: Configure OSPF Passive Interfaces

Part 5: Change OSPF Metrics

Background / Scenario

Open Shortest Path First (OSPF) is a link-state routing protocol for IP networks. OSPFv2 is defined for IPv4 networks, and OSPFv3 is defined for IPv6 networks. OSPF detects changes in the topology, such as link failures, and converges on a new loop-free routing structure very quickly. It computes each route using Dijkstra's algorithm, a shortest path first algorithm.

In this lab, you will configure the network topology with OSPFv2 routing, change the router ID assignments, configure passive interfaces, adjust OSPF metrics, and use a number of CLI commands to display and verify OSPF routing information.

Note: The routers used with CCNA hands-on labs are Cisco 1941 Integrated Services Routers (ISRs) with Cisco IOS Release 15.2(4)M3 (universalx9 image). Other routers and Cisco IOS versions can be used. Depending on the model and Cisco IOS version, the commands available and output produced might vary from what is shown in the labs. Refer to the Router Interface Summary Table at the end of this lab for the correct interface identifiers.

Note: Make sure that the routers have been erased and have no startup configurations. If you are unsure, contact your instructor.

Required Resources

- 3 Routers (Cisco 1941 with Cisco IOS Release 15.2(4)M3 universal image or comparable)
- 3 PCs (Windows 7, Vista, or XP with terminal emulation program, such as Tera Term)
- Console cables to configure the Cisco IOS devices via the console ports
- Ethernet and serial cables as shown in the topology

Part 1: Build the Network and Configure Basic Device Settings

In Part 1, you set up the network topology and configure basic settings on the PC hosts and routers.

Step 1: Cable the network as shown in the topology.

Step 2: Initialize and reload the routers as necessary.

Step 3: Configure basic settings for each router.

 a. Disable DNS lookup.

 b. Configure device name as shown in the topology.
c. Assign **class** as the privileged EXEC password.

d. Assign **cisco** as the console and vty passwords.

e. Configure a message of the day (MOTD) banner to warn users that unauthorized access is prohibited.

f. Configure **logging synchronous** for the console line.

g. Configure the IP address listed in the Addressing Table for all interfaces.

h. Set the clock rate for all DCE serial interfaces at **128000**.

i. Copy the running configuration to the startup configuration.

Step 4: **Configure PC hosts.**

Step 5: **Test connectivity.**

The routers should be able to ping one another, and each PC should be able to ping its default gateway. The PCs are unable to ping other PCs until OSPF routing is configured. Verify and troubleshoot if necessary.

Part 2: Configure and Verify OSPF Routing

In Part 2, you will configure OSPFv2 routing on all routers in the network and then verify that routing tables are updated correctly. After OSPF has been verified, you will configure OSPF authentication on the links for added security.

Step 1: **Configure OSPF on R1.**

a. Use the **router ospf** command in global configuration mode to enable OSPF on R1.

```markdown
R1(config)# router ospf 1
```

Note: The OSPF process id is kept locally and has no meaning to other routers on the network.

b. Configure the **network** statements for the networks on R1. Use an area ID of 0.

```markdown
R1(config-router)# network 192.168.1.0 0.0.0.255 area 0
R1(config-router)# network 192.168.12.0 0.0.0.3 area 0
R1(config-router)# network 192.168.13.0 0.0.0.3 area 0
```

Step 2: **Configure OSPF on R2 and R3.**

Use the **router ospf** command and add the **network** statements for the networks on R2 and R3. Neighbor adjacency messages display on R1 when OSPF routing is configured on R2 and R3.

```markdown
R1# 00:22:29: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.23.1 on Serial0/0/0 from LOADING to FULL, Loading Done
R1# 00:23:14: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.23.2 on Serial0/0/1 from LOADING to FULL, Loading Done
R1#
```
Step 3: Verify OSPF neighbors and routing information.

a. Issue the `show ip ospf neighbor` command to verify that each router lists the other routers in the network as neighbors.

```
R1# show ip ospf neighbor

Neighbor ID     Pri State    Dead Time  Address    Interface
192.168.23.2    0  FULL/ -   00:00:33  192.168.13.2  Serial0/0/1
192.168.23.1    0  FULL/ -   00:00:30  192.168.12.2  Serial0/0/0
```

b. Issue the `show ip route` command to verify that all networks display in the routing table on all routers.

```
R1# show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
 C  192.168.1.0/24 is directly connected, GigabitEthernet0/0
 L  192.168.1.1/32 is directly connected, GigabitEthernet0/0
 Q  192.168.2.0/24 [110/65] via 192.168.12.2, 00:32:33, Serial0/0/0
 Q  192.168.3.0/24 [110/65] via 192.168.13.2, 00:31:48, Serial0/0/1
 192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
 C  192.168.12.0/30 is directly connected, Serial0/0/0
 L  192.168.12.1/32 is directly connected, Serial0/0/0
 192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
 C  192.168.13.0/30 is directly connected, Serial0/0/1
 L  192.168.13.1/32 is directly connected, Serial0/0/1
 192.168.23.0/30 is subnetted, 1 subnets
 Q  192.168.23.0/30 [110/128] via 192.168.12.2, 00:31:38, Serial0/0/0
 Q  [110/128] via 192.168.13.2, 00:31:38, Serial0/0/1
```

What command would you use to only see the OSPF routes in the routing table?
Step 4: Verify OSPF protocol settings.

The show ip protocols command is a quick way to verify vital OSPF configuration information. This information includes the OSPF process ID, the router ID, networks the router is advertising, the neighbors the router is receiving updates from, and the default administrative distance, which is 110 for OSPF.

R1# show ip protocols

*** IP Routing is NSF aware ***

Routing Protocol is "ospf 1"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 192.168.13.1
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:

<table>
<thead>
<tr>
<th>Network</th>
<th>Distance</th>
<th>Last Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.0</td>
<td>110</td>
<td>00:19:16</td>
</tr>
<tr>
<td>192.168.12.0</td>
<td>110</td>
<td>00:20:03</td>
</tr>
</tbody>
</table>

Routing Information Sources:

Step 5: Verify OSPF process information.

Use the show ip ospf command to examine the OSPF process ID and router ID. This command displays the OSPF area information, as well as the last time the SPF algorithm was calculated.

R1# show ip ospf

Routing Process "ospf 1" with ID 192.168.13.1
Start time: 00:20:23.260, Time elapsed: 00:25:08.296
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Supports area transit capability'
Supports NSSA (compatible with RFC 3101)
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Router is not originating router-LSAs with maximum metric
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Number of areas transit capable is 0
External flood list length 0
IETF NSF helper support enabled
Cisco NSF helper support enabled
Reference bandwidth unit is 100 mbps

Area BACKBONE(0)

Number of interfaces in this area is 3
Area has no authentication

SPF algorithm last executed 00:22:53.756 ago
SPF algorithm executed 7 times
Area ranges are
Number of LSA 3. Checksum Sum 0x019A61
Number of opaque link LSA 0. Checksum Sum 0x000000
Number of DCbitless LSA 0
Number of indication LSA 0
Number of DoNotAge LSA 0
Flood list length 0

Step 6: Verify OSPF interface settings.

a. Issue the show ip ospf interface brief command to display a summary of OSPF-enabled interfaces.

R1# show ip ospf interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>PID</th>
<th>Area</th>
<th>IP Address/Mask</th>
<th>Cost</th>
<th>State</th>
<th>Nbrs</th>
<th>F/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se0/0/1</td>
<td>1</td>
<td>0</td>
<td>192.168.13.1/30</td>
<td>64</td>
<td>P2P</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Se0/0/0</td>
<td>1</td>
<td>0</td>
<td>192.168.12.1/30</td>
<td>64</td>
<td>P2P</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Gi0/0</td>
<td>1</td>
<td>0</td>
<td>192.168.11.24</td>
<td>1</td>
<td>DR</td>
<td>0/0</td>
<td></td>
</tr>
</tbody>
</table>

b. For a more detailed list of every OSPF-enabled interface, issue the show ip ospf interface command.

R1# show ip ospf interface

Serial0/0/1 is up, line protocol is up

Internet Address 192.168.13.1/30, Area 0, Attached via Network Statement
Process ID 1, Router ID 192.168.13.1, Network Type POINT_TO_POINT, Cost: 64

<table>
<thead>
<tr>
<th>Topology-MTID</th>
<th>Cost</th>
<th>Disabled</th>
<th>Shutdown</th>
<th>Topology Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>64</td>
<td>no</td>
<td>no</td>
<td>Base</td>
</tr>
</tbody>
</table>
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:01
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 3/3, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 192.168.23.2
Suppress hello for 0 neighbor(s)
Serial0/0/0 is up, line protocol is up
 Internet Address 192.168.12.1/30, Area 0, Attached via Network Statement
 Process ID 1, Router ID 192.168.13.1, Network Type POINT_TO_POINT, Cost: 64
 Topology-MTID Cost Disabled Shutdown Topology Name
 0 64 no no Base
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:03
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 2/2, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 192.168.23.1
Suppress hello for 0 neighbor(s)
GigabitEthernet0/0 is up, line protocol is up
 Internet Address 192.168.1.1/24, Area 0, Attached via Network Statement
 Process ID 1, Router ID 192.168.13.1, Network Type BROADCAST, Cost: 1
 Topology-MTID Cost Disabled Shutdown Topology Name
 0 1 no no Base
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 192.168.13.1, Interface address 192.168.1.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 cob-resync timeout 40
 Hello due in 00:00:01
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

Step 7: Verify end-to-end connectivity.

Each PC should be able to ping the other PCs in the topology. Verify and troubleshoot if necessary.

Note: It may be necessary to disable the PC firewall to ping between PCs.

Part 3: Change Router ID Assignments

The OSPF router ID is used to uniquely identify the router in the OSPF routing domain. Cisco routers derive
the router ID in one of three ways and with the following precedence:

1) IP address configured with the OSPF router-id command, if present
2) Highest IP address of any of the router’s loopback addresses, if present
3) Highest active IP address on any of the router’s physical interfaces

Because no router IDs or loopback interfaces have been configured on the three routers, the router ID for
each router is determined by the highest IP address of any active interface.

In Part 3, you will change the OSPF router ID assignment using loopback addresses. You will also use the
router-id command to change the router ID.

Step 1: Change router IDs using loopback addresses.

a. Assign an IP address to loopback 0 on R1.
 R1(config)# interface lo0
 R1(config-if)# ip address 1.1.1.1 255.255.255.255
 R1(config-if)# end

b. Assign IP addresses to Loopback 0 on R2 and R3. Use IP address 2.2.2.2/32 for R2 and 3.3.3.3/32 for
 R3.

c. Save the running configuration to the startup configuration on all three routers.

d. You must reload the routers in order to reset the router ID to the loopback address. Issue the reload com-
 mand on all three routers. Press Enter to confirm the reload.
e. After the router completes the reload process, issue the `show ip protocols` command to view the new router ID.

```
R1# show ip protocols
*** IP Routing is NSF aware ***

Routing Protocol is "ospf 1"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set

Router ID 1.1.1.1
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
  192.168.1.0 0.0.0.255 area 0
  192.168.12.0 0.0.0.3 area 0
  192.168.13.0 0.0.0.3 area 0
Routing Information Sources:

  Gateway    Distance  Last Update
  3.3.3.3     110       00:01:00
  2.2.2.2     110       00:01:14
Distance: (default is 110)
```

f. Issue the `show ip ospf neighbor` command to display the router ID changes for the neighboring routers.

```
R1# show ip ospf neighbor

Neighbor ID Pri State  Dead Time Address Interface
3.3.3.3   0 FULL/ -  00:00:35  192.168.13.2 Serial0/0/1
2.2.2.2   0 FULL/ -  00:00:32  192.168.12.2 Serial0/0/0

R1#
```

Step 2: Change the router ID on R1 using the router-id command.

The preferred method for setting the router ID is with the `router-id` command.

a. Issue the `router-id 11.11.11.11` command on R1 to reassign the router ID. Notice the informational message that appears when issuing the `router-id` command.

```
R1(config)# router ospf 1
R1(config-router)# router-id 11.11.11.11
Reload or use "clear ip ospf process" command, for this to take effect
R1(config)# end
```

b. You will receive an informational message telling you that you must either reload the router or use the `clear ip ospf process` command for the change to take effect. Issue the `clear ip ospf process` command on all three routers. Type `yes` to reply to the reset verification message, and press ENTER.
c. Set the router ID for R2 to 22.22.22.22 and the router ID for R3 to 33.33.33.33. Then use `clear ip ospf process` command to reset ospf routing process.

d. Issue the `show ip protocols` command to verify that the router ID changed on R1.

```
R1# show ip protocols
*** IP Routing is NSF aware ***

Routing Protocol is "ospf 1"
  Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
  Router ID 11.11.11.11
  Number of areas in this router is 1. 1 normal 0 stub 0 nssa
  Maximum path: 4
  Routing for Networks:
    192.168.1.0 0.0.0.255 area 0
    192.168.12.0 0.0.0.3 area 0
    192.168.13.0 0.0.0.3 area 0
  Passive Interface(s):
    GigabitEthernet0/1
  Routing Information Sources:
    Gateway     Distance  Last Update
    33.33.33.33  110     00:00:19
    22.22.22.22  110     00:00:31
    3.3.3.3      110     00:00:41
    2.2.2.2      110     00:00:41
  Distance: (default is 110)
```

e. Issue the `show ip ospf neighbor` command on R1 to verify that new router ID for R2 and R3 is listed.

```
R1# show ip ospf neighbor

Neighbor ID Pri State     Dead Time Address  Interface
33.33.33.33  0 FULL/ -    00:00:36  192.168.13.2 Serial0/0/1
22.22.22.22  0 FULL/ -    00:00:32  192.168.12.2 Serial0/0/0
```

Part 4: Configure OSPF Passive Interfaces

The `passive-interface` command prevents routing updates from being sent through the specified router interface. This is commonly done to reduce traffic on the LANs as they do not need to receive dynamic routing protocol communication. In Part 4, you will use the `passive-interface` command to configure a single interface as passive. You will also configure OSPF so that all interfaces on the router are passive by default, and then enable OSPF routing advertisements on selected interfaces.

Step 1: Configure a passive interface.

a. Issue the `show ip ospf interface g0/0` command on R1. Notice the timer indicating when the next Hello packet is expected. Hello packets are sent every 10 seconds and are used between OSPF routers to verify that their neighbors are up.
R1# show ip ospf interface g0/0

GigabitEthernet0/0 is up, line protocol is up
Internet Address 192.168.1.1/24, Area 0, Attached via Network Statement
Process ID 1, Router ID 11.11.11.1, Network Type BROADCAST, Cost: 1
Topology-MTID Cost Disabled Shutdown Topology Name
0 1 no no Base
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 11.11.11.1, Interface address 192.168.1.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:02
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

b. Issue the passive-interface command to change the G0/0 interface on R1 to passive.

 R1(config)# router ospf 1
 R1(config-router)# passive-interface g0/0

c. Re-issue the show ip ospf interface g0/0 command to verify that G0/0 is now passive.

R1# show ip ospf interface g0/0

GigabitEthernet0/0 is up, line protocol is up
Internet Address 192.168.1.1/24, Area 0, Attached via Network Statement
Process ID 1, Router ID 11.11.11.1, Network Type BROADCAST, Cost: 1
Topology-MTID Cost Disabled Shutdown Topology Name
0 1 no no Base
Transmit Delay is 1 sec, State BR, Priority 1
Designated Router (ID) 11.11.11.1, Interface address 192.168.1.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 No Hellos (Passive interface)
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

d. Issue the `show ip route` command on R2 and R3 to verify that a route to the 192.168.1.0/24 network is still available.

R2# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPP, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
 + - replicated route, % - next hop override

Gateway of last resort is not set

2.0.0.0/32 is subnetted, 1 subnets
C 2.2.2.2 is directly connected, Loopback0
O 192.168.1.0/24 [110/65] via 192.168.12.1, 00:58:32, Serial0/0/0
192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.2.0/24 is directly connected, GigabitEthernet0/0
L 192.168.2.1/32 is directly connected, GigabitEthernet0/0
O 192.168.3.0/24 [110/65] via 192.168.23.2, 00:58:19, Serial0/0/1
192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.12.0/30 is directly connected, Serial0/0/0
L 192.168.12.2/32 is directly connected, Serial0/0/0
192.168.13.0/30 is subnetted, 1 subnets
O 192.168.13.0 [110/128] via 192.168.23.2, 00:58:19, Serial0/0/1
192.168.23.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.23.0/30 is directly connected, Serial0/0/1
L 192.168.23.1/32 is directly connected, Serial0/0/1

Step 2: Set passive interface as the default on a router.

a. Issue the `show ip ospf neighbor` command on R1 to verify that R2 is listed as an OSPF neighbor.

R1# show ip ospf neighbor
b. Issue the `passive-interface default` command on R2 to set the default for all OSPF interfaces as passive.

```
R2(config)# router ospf 1
R2(config-router)# passive-interface default
```

```
Apr 3 00:03:00.979: %OSPF-5-ADJCHG: Process 1, Nbr 11.11.11.11 on Serial0/0/0 from
FULL to DOWN. Neighbor Down: Interface down or detached
```

```
Apr 3 00:03:00.979: %OSPF-5-ADJCHG: Process 1, Nbr 33.33.33.33 on Serial0/0/1 from
FULL to DOWN. Neighbor Down: Interface down or detached
```

c. Re-issue the `show ip ospf neighbor` command on R1. After the dead timer expires, R2 will no longer be listed as an OSPF neighbor.

```
R1# show ip ospf neighbor
```

```
Neighbor ID     Pri  State    Dead Time    Address     Interface
33.33.33.33     0    FULL/    00:00:34     192.168.13.2  Serial0/0/1
```

d. Issue the `show ip ospf interface S0/0/0` command on R2 to view the OSPF status of interface S0/0/0.

```
R2# show ip ospf interface s0/0/0
```

```
Serial0/0/0 is up, line protocol is up
Internet Address 192.168.12.2/30, Area 0, Attached via Network Statement
Process ID 1, Router ID 22.22.22.22, Network Type POINT_TO_POINT, Cost: 64
Topology-MTID Cost Disabled Shutdown Topology Name
0      64  no      no      Base
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
ddb-sync timeout 40

No Hellos (Passive interface)
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 2/2, flood queue length 0
```

```
Next 0x0(0)/0x0(0)
```

```
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
```

```
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
```

e. If all interfaces on R2 are passive, then no routing information is being advertised. In this case, R1 and R3 should no longer have a route to the 192.168.2.0/24 network. You can verify this by using the `show ip route` command.
f. On R2, issue the **no passive-interface** command so the router will send and receive OSPF routing updates. After entering this command, you will see an informational message that a neighbor adjacency has been established with R1.

```
R2 (config)# router ospf 1
R2 (config-router)# no passive-interface s0/0/0
R2 (config-router)#
```

*Apr 3 00:16:03.463: %OSPF-5-ADJCHG: Process 1, Nbr 11.11.11.11 on Serial0/0/0 from LOADING to FULL, Loading Done

```
g. Re-issue the **show ip route** and **show ipv6 ospf neighbor** commands on R1 and R3, and look for a route to the 192.168.2.0/24 network.

What interface is R3 using to route to the 192.168.2.0/24 network? ________

What is the accumulated cost metric for the 192.168.2.0/24 network on R3? ________

Does R2 show up as an OSPF neighbor on R1? ________

Does R2 show up as an OSPF neighbor on R3? ________

What does this information tell you? ________

```
h. Change interface S0/0/1 on R2 to allow it to advertise OSPF routes. Record the commands used below.

```
i. Re-issue the **show ip route** command on R3.

What interface is R3 using to route to the 192.168.2.0/24 network? ________

What is the accumulated cost metric for the 192.168.2.0/24 network on R3 now and how is this calculated?

```

Is R2 listed as an OSPF neighbor to R3? ________
Part 5: Change OSPF Metrics

In Part 5, you will change OSPF metrics using the `auto-cost reference-bandwidth` command, the `bandwidth` command, and the `ip ospf cost` command.

Note: All DCE interfaces should have been configured with a clocking rate of 128000 in Part 1.

Step 1: Change the reference bandwidth on the routers.

The default reference-bandwidth for OSPF is 100Mb/s (Fast Ethernet speed). However, most modern infrastructure devices have links that are faster than 100Mb/s. Because the OSPF cost metric must be an integer, all links with transmission speeds of 100Mb/s or higher have a cost of 1. This results in Fast Ethernet, Gigabit Ethernet and 10G Ethernet interfaces all having the same cost. Therefore, the reference-bandwidth must be changed to a higher value to accommodate networks with links faster than 100Mb/s.

a. Issue the `show interface` command on R1 to view the default bandwidth setting for the G0/0 interface.

 R1# show interface g0/0

 GigabitEthernet0/0 is up, line protocol is up
 Hardware is CN Gigabit Ethernet, address is c471.fe45.7520 (bia c471.fe45.7520)
 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 100 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Full Duplex, 100Mbps, media type is RJ45
 output flow-control is unsupported, input flow-control is unsupported
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input never, output 00:17:31, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 0 packets input, 0 bytes, 0 no buffer
 Received 0 broadcasts (0 IP multicasts)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdog, 0 multicast, 0 pause input
 279 packets output, 89865 bytes, 0 underruns
 0 output errors, 0 collisions, 1 interface resets
 0 unknown protocol drops
 0 babbles, 0 late collision, 0 deferred
 1 lost carrier, 0 no carrier, 0 pause output
 0 output buffer failures, 0 output buffers swapped out
b. Issue the `show ip route ospf` command on R1 to determine the route to the 192.168.3.0/24 network.

```
R1# show ip route ospf
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
       + - replicated route, % - next hop override

Gateway of last resort is not set

0     192.168.3.0/24 [110/65] via 192.168.13.2, 00:00:57, Serial0/0/1
192.168.23.0/30 is subnetted, 1 subnets
0     192.168.23.0 [110/128] via 192.168.13.2, 00:00:57, Serial0/0/1
       [110/128] via 192.168.12.2, 00:01:08, Serial0/0/0
```

Note: The accumulated cost to the 192.168.3.0/24 network from R1 is 65.

(c) Issue the `show ip ospf interface` command on R3 to determine the routing cost for G0/0.

```
R3# show ip ospf interface g0/0
GigabitEthernet0/0 is up, line protocol is up
         Internet Address 192.168.3.1/24, Area 0, Attached via Network Statement
         Process ID 1, Router ID 3.3.3.3, Network Type BROADCAST, Cost: 1
         Topology-MTID   Cost  Disabled  Shutdown  Topology Name
            0     1      no        no        Base
         Transmit Delay is 1 sec, State DR, Priority 1
         Designated Router (ID) 192.168.23.2, Interface address 192.168.3.1
         No backup designated router on this network
         Timer intervals configured, He110 10, Dead 40, Wait 40, Retransmit 5
               oob-resync timeout 40
               Hello due in 00:00:05
         Supports Link-local Signaling (LLS)
         Cisco NSF helper support enabled
         IETF NSF helper support enabled
         Index 1/1, flood queue length 0
         Next 0x0(0)/0x0(0)
         Last flood scan length is 0, maximum is 0
         Last flood scan time is 0 msec, maximum is 0 msec
```
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

d. Issue the `show ip ospf interface s0/0/1` command on R1 to view the routing cost for S0/0/1.

```
R1# show ip ospf interface s0/0/1
Serial0/0/1 is up, line protocol is up
    Internet Address 192.168.13.1/30, Area 0, Attached via Network Statement
    Process ID 1, Router ID 1.1.1.1, Network Type POINT_TO_POINT, Cost: 64
    Topology-MTID    Cost  Disabled  Shutdown  Topology Name
                     0     64      no       no          Base
    Transmit Delay is 1 sec, State POINT_TO_POINT
    Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    cbr-resync timeout 40
    Hello due in 00:00:04
    Supports Link-local Signaling (LLS)
    Cisco NSF helper support enabled
    IETF NSF helper support enabled
    Index 3/3, flood queue length 0
    Next 0x0(0)/0x0(0)
    Last flood scan length is 1, maximum is 1
    Last flood scan time is 0 msec, maximum is 0 msec
    Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 192.168.23.2
    Suppress hello for 0 neighbor(s)
```

The sum of the costs of these two interfaces is the accumulated cost for the route to the 192.168.3.0/24 network on R3 \((1 + 64 = 65)\), as can be seen in the output from the `show ip route` command.

e. Issue the `auto-cost reference-bandwidth 10000` command on R1 to change the default reference bandwidth setting. With this setting, 10Gb/s interfaces will have a cost of 1, 1 Gb/s interfaces will have a cost of 10, and 100Mb/s interfaces will have a cost of 100.

```
R1(config)# router ospf 1
R1(config-router)# auto-cost reference-bandwidth 10000
% OSPF: Reference bandwidth is changed.
    Please ensure reference bandwidth is consistent across all routers.
```

f. Issue the `auto-cost reference-bandwidth 10000` command on routers R2 and R3.

g. Re-issue the `show ip ospf interface` command to view the new cost of G0/0 on R3, and S0/0/1 on R1.

```
R3# show ip ospf interface g0/0
GigabitEthernet0/0 is up, line protocol is up
    Internet Address 192.168.3.1/24, Area 0, Attached via Network Statement
    Process ID 1, Router ID 3.3.3.3, Network Type BROADCAST, Cost: 10
    Topology-MTID    Cost  Disabled  Shutdown  Topology Name
                     0     10      no       no          Base
```
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 192.168.23.2, Interface address 192.168.3.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:02
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

Note: If the device connected to the G0/0 interface does not support Gigabit Ethernet speed, the cost will be different than the output display. For example, the cost will be 100 for Fast Ethernet speed (100Mb/s).

RI# show ip ospf interface s0/0/1
Serial0/0/1 is up, line protocol is up
 Internet Address 192.168.13.1/30, Area 0, Attached via Network Statement
 Process ID 1, Router ID 1.1.1.1, Network Type POINT_TO_POINT, Cost: 6476
 Topology-MTID Cost Disabled Shutdown Topology Name
 0 6476 no no no Base
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:05
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 3/3, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 192.168.23.2
Suppress hello for 0 neighbor(s)

h. Re-issue the show ip route ospf command to view the new accumulated cost for the 192.168.3.0/24 route (10 + 6476 = 6486).

Note: If the device connected to the G0/0 interface does not support Gigabit Ethernet speed, the total cost will be different than the output display. For example, the accumulated cost will be 6576 if G0/0 is operating at Fast Ethernet speed (100Mb/s).
R1# show ip route ospf
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
+ - replicated route, % - next hop override

Gateway of last resort is not set

0 192.168.2.0/24 [110/6486] via 192.168.12.2, 00:05:40, Serial0/0/0
0 192.168.3.0/24 [110/6486] via 192.168.13.2, 00:01:08, Serial0/0/1
192.168.23.0/30 is subnetted, 1 subnets
0 192.168.23.0 [110/12952] via 192.168.13.2, 00:05:17, Serial0/0/1
[110/12952] via 192.168.12.2, 00:05:17, Serial0/0/1

Note: Changing the default reference-bandwidth on the routers from 100 to 10,000 in effect changed the accumulated costs of all routes by a factor of 100, but the cost of each interface link and route is now more accurately reflected.

i. To reset the reference-bandwidth back to its default value, issue the auto-cost reference-bandwidth 100 command on all three routers.

R1(config)# router ospf 1
R1(config-router)# auto-cost reference-bandwidth 100
% OSPF: Reference bandwidth is changed.

Please ensure reference bandwidth is consistent across all routers.

Why would you want to change the OSPF default reference-bandwidth?

Step 2: Change the bandwidth for an interface.

On most serial links, the bandwidth metric will default to 1544 Kbits (that of a T1). If this is not the actual speed of the serial link, the bandwidth setting will need to be changed to match the actual speed to allow the route cost to be calculated correctly in OSPF. Use the bandwidth command to adjust the bandwidth setting on an interface.

Note: A common misconception is to assume that the bandwidth command will change the physical bandwidth, or speed, of the link. The command modifies the bandwidth metric used by OSPF to calculate routing costs, and does not modify the actual bandwidth (speed) of the link.
a. Issue the `show interface s0/0/0` command on R1 to view the current bandwidth setting on S0/0/0. Even though the clock rate, link speed on this interface was set to 128Kb/s, the bandwidth is still showing 1544Kb/s.

```
R1# show interface s0/0/0
Serial0/0/0 is up, line protocol is up
  Hardware is WIC MBRD Serial
  Internet address is 192.168.12.1/30
  MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
  reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation HDLC, loopback not set
  Keepalive set (10 sec)
  <Output omitted>
```

b. Issue the `show ip route ospf` command on R1 to view the accumulated cost for the route to network 192.168.23.0/24 using S0/0/0. Note that there are two equal-cost (128) routes to the 192.168.23.0/24 network, one via S0/0/0 and one via S0/0/1.

```
R1# show ip route ospf
Codes:  L - local,  C - connected,  S - static,  R - RIP,  M - mobile,  B - BGP
       D - EIGRP,  EX - EIGRP external,  O - OSPF,  IA - OSPF inter area
       N1 - OSPF NSSA external type 1,  N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1,  E2 - OSPF external type 2
       i - IS-IS,  su - IS-IS summary,  L1 - IS-IS level-1,  L2 - IS-IS level-2
       * - candidate default,  U - per-user static route
       o - ODR,  P - periodic downloaded static route,  H - NHRP,  l - LISP
       + - replicating route,  % - next hop override

Gateway of last resort is not set

O  192.168.3.0/24 [110/65] via 192.168.13.2, 00:00:26, Serial0/0/1
   192.168.23.0/30 is subnetted, 1 subnets
   O  192.168.23.0 [110/128] via 192.168.13.2, 00:00:26, Serial0/0/1
       [110/128] via 192.168.12.2, 00:00:42, Serial0/0/0
```

c. Issue the `bandwidth 128` command to set the bandwidth on S0/0/0 to 128Kb/s.

```
R1(config)# interface s0/0/0
R1(config-if)# bandwidth 128
```

d. Re-issue the `show ip route ospf` command. The routing table no longer displays the route to the 192.168.23.0/24 network over the S0/0/0 interface. This is because the best route, the one with the lowest cost, is now via S0/0/1.

```
R1# show ip route ospf
Codes:  L - local,  C - connected,  S - static,  R - RIP,  M - mobile,  B - BGP
       D - EIGRP,  EX - EIGRP external,  O - OSPF,  IA - OSPF inter area
       N1 - OSPF NSSA external type 1,  N2 - OSPF NSSA external type 2
```
Gateway of last resort is not set

0 192.168.3.0/24 [110/65] via 192.168.13.2, 00:04:51, Serial0/0/1
 192.168.23.0/30 is subnetted, 1 subnets
0 192.168.23.0 [110/128] via 192.168.13.2, 00:04:51, Serial0/0/1

e. Issue the `show ip ospf interface brief` command. The cost for S0/0/0 has changed from 64 to 781 which is an accurate cost representation of the link speed.

```
R1# show ip ospf interface brief
+-----------------+--------+---------+-------------+-----+------+
| Interface       | PID    | Area    | IP Address/| Cost| State Nbrs F/C |
|                 |        |         | Mask       |     |                |
+-----------------+--------+---------+-------------+-----+------+
| S0/0/1          | 1      | 0       | 192.168.13.1/30 | 64  | P2P 1/1        |
| S0/0/0          | 1      | 0       | 192.168.12.1/30 | 781 | P2P 1/1        |
| G0/0            | 1      | 0       | 192.168.1.1/24  | 1   | DR 0/0         |
+-----------------+--------+---------+-------------+-----+------+
```

f. Change the bandwidth for interface S0/0/1 to the same setting as S0/0/0 on R1.

g. Re-issue the `show ip route ospf` command to view the accumulated cost of both routes to the 192.168.23.0/24 network. Note that there are again two equal-cost (845) routes to the 192.168.23.0/24 network, one via S0/0/0 and one via S0/0/1.

```
R1# show ip route ospf
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2
    i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
    IA - IS-IS inter area, * - candidate default, U - per-user static route
    O - ODR, P - periodic downloaded static route, H - NHRP, L - LISP
    + - replicated route, % - next hop override

Gateway of last resort is not set

0 192.168.3.0/24 [110/782] via 192.168.13.2, 00:00:09, Serial0/0/1
    192.168.23.0/30 is subnetted, 1 subnets
0 192.168.23.0 [110/845] via 192.168.13.2, 00:00:09, Serial0/0/1
    [110/845] via 192.168.12.2, 00:00:09, Serial0/0/0
```
Explain how the costs to the 192.168.3.0/24 and 192.168.23.0/30 networks from R1 were calculated.

h. Issue the `show ip route ospf` command on R3. The accumulated cost of the 192.168.1.0/24 is still showing as 65. Unlike the `clock rate` command, the `bandwidth` command needs to be applied on each side of a serial link.

R3# show ip route ospf

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
 + - replicated route, % - next hop override

Gateway of last resort is not set

O 192.168.1.0/24 [110/65] via 192.168.13.1, 00:30:58, Serial0/0/0
192.168.12.0/30 is subnetted, 1 subnets
 O 192.168.12.0 [110/128] via 192.168.23.1, 00:30:58, Serial0/0/1
 [110/128] via 192.168.13.1, 00:30:58, Serial0/0/0

i. Issue the `bandwidth 128` command on all remaining serial interfaces in the topology.

What is the new accumulated cost to the 192.168.23.0/24 network on R1? Why?

Step 3: Change the route cost.

OSPF uses the bandwidth setting to calculate the cost for a link by default. However, you can override this calculation by manually setting the cost of a link using the `ip ospf cost` command. Like the `bandwidth` command, the `ip ospf cost` command only affects the side of the link where it was applied.

a. Issue the `show ip route ospf` on R1.

R1# show ip route ospf

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
Gateway of last resort is not set

0 192.168.2.0/24 [110/782] via 192.168.12.2, 00:00:26, Serial0/0/0
0 192.168.3.0/24 [110/782] via 192.168.13.2, 00:02:50, Serial0/0/1
192.168.23.0/30 is subnetted, 1 subnets
0 192.168.23.0 [110/1562] via 192.168.13.2, 00:02:40, Serial0/0/1
[110/1562] via 192.168.12.2, 00:02:40, Serial0/0/0

b. Apply the ip ospf cost 1565 command to the S0/0/1 interface on R1. A cost of 1565 is higher than the accumulated cost of the route through R2 which is 1562.

R1(config)# int s0/0/1
R1(config-if)# ip ospf cost 1565

c. Re-issue the show ip route ospf command on R1 to display the effect this change has made on the routing table. All OSPF routes for R1 are now being routed through R2.

R1# show ip route ospf

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
0 - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
+ - replicated route, % - next hop override

Gateway of last resort is not set

0 192.168.2.0/24 [110/782] via 192.168.12.2, 00:02:06, Serial0/0/0
0 192.168.3.0/24 [110/1563] via 192.168.12.2, 00:05:31, Serial0/0/0
192.168.23.0/30 is subnetted, 1 subnets
0 192.168.23.0 [110/1562] via 192.168.12.2, 01:14:02, Serial0/0/0

Note: Manipulating link costs using the ip ospf cost command is the easiest and preferred method for changing OSPF route costs. In addition to changing the cost based on bandwidth, a network administrator may have other reasons for changing the cost of a route, such as preference for a particular service provider or the actual monetary cost of a link or route.
Explain why the route to the 192.168.3.0/24 network on R1 is now going through R2?

Reflection

1. Why is it important to control the router ID assignment when using the OSPF protocol?

2. Why is the DR/BDR election process not a concern in this lab?

3. Why would you want to set an OSPF interface to passive?
Router Interface Summary Table

<table>
<thead>
<tr>
<th>Router Model</th>
<th>Ethernet Interface #1</th>
<th>Ethernet Interface #2</th>
<th>Serial Interface #1</th>
<th>Serial Interface #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>Fast Ethernet 0/0 (F0/0)</td>
<td>Fast Ethernet 0/1 (F0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
<tr>
<td>1900</td>
<td>Gigabit Ethernet 0/0 (G0/0)</td>
<td>Gigabit Ethernet 0/1 (G0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
<tr>
<td>2801</td>
<td>Fast Ethernet 0/0 (F0/0)</td>
<td>Fast Ethernet 0/1 (F0/1)</td>
<td>Serial 0/1/0 (S0/1/0)</td>
<td>Serial 0/1/1 (S0/1/1)</td>
</tr>
<tr>
<td>2811</td>
<td>Fast Ethernet 0/0 (F0/0)</td>
<td>Fast Ethernet 0/1 (F0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
<tr>
<td>2900</td>
<td>Gigabit Ethernet 0/0 (G0/0)</td>
<td>Gigabit Ethernet 0/1 (G0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
</tbody>
</table>

Note: To find out how the router is configured, look at the interfaces to identify the type of router and how many interfaces the router has. There is no way to effectively list all the combinations of configurations for each router class. This table includes identifiers for the possible combinations of Ethernet and Serial interfaces in the device. The table does not include any other type of interface, even though a specific router may contain one. An example of this might be an ISDN BRI interface. The string in parenthesis is the legal abbreviation that can be used in Cisco IOS commands to represent the interface.
6.3.3.6 Lab – Configuring Basic Single-Area OSPFv3

Topology
Addressing Table

<table>
<thead>
<tr>
<th>Device</th>
<th>Interface</th>
<th>IPv6 Address</th>
<th>Default Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>G0/0</td>
<td>2001:DB8:ACAD:A::1/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::1 link-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S0/0/0 (DCE)</td>
<td>2001:DB8:ACAD:12::1/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::1 link-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S0/0/1</td>
<td>2001:DB8:ACAD:13::1/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::1 link-local</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>G0/0</td>
<td>2001:DB8:ACAD:B::2/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::2 link-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S0/0/0</td>
<td>2001:DB8:ACAD:12::2/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::2 link-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S0/0/1 (DCE)</td>
<td>2001:DB8:ACAD:23::2/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::2 link-local</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>G0/0</td>
<td>2001:DB8:ACAD:C::3/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::3 link-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S0/0/0 (DCE)</td>
<td>2001:DB8:ACAD:13::3/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::3 link-local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S0/0/1</td>
<td>2001:DB8:ACAD:23::3/64</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::3 link-local</td>
<td></td>
</tr>
<tr>
<td>PC-A</td>
<td>NIC</td>
<td>2001:DB8:ACAD:A::A/64</td>
<td>FE80::1</td>
</tr>
<tr>
<td>PC-B</td>
<td>NIC</td>
<td>2001:DB8:ACAD:B::B/64</td>
<td>FE80::2</td>
</tr>
<tr>
<td>PC-C</td>
<td>NIC</td>
<td>2001:DB8:ACAD:C::C/64</td>
<td>FE80::3</td>
</tr>
</tbody>
</table>

Objectives

Part 1: Build the Network and Configure Basic Device Settings

Part 2: Configure and Verify OSPFv3 Routing

Part 3: Configure OSPFv3 Passive Interfaces

Background / Scenario

Open Shortest Path First (OSPF) is a link-state routing protocol for IP networks. OSPFv2 is defined for IPv4 networks, and OSPFv3 is defined for IPv6 networks.

In this lab, you will configure the network topology with OSPFv3 routing, assign router IDs, configure passive interfaces, and use a number of CLI commands to display and verify OSPFv3 routing information.

Note: The routers used with CCNA hands-on labs are Cisco 1941 Integrated Services Routers (ISRs) with Cisco IOS Release 15.2(4)M3 (universalk9 image). Other routers and Cisco IOS versions can be used. Depending on the model and Cisco IOS version, the commands available and output produced might vary from what is shown in the labs. Refer to the Router Interface Summary Table at the end of this lab for the correct interface identifiers.
Note: Make sure that the routers have been erased and have no startup configurations. If you are unsure, contact your instructor.

Required Resources

- 3 Routers (Cisco 1941 with Cisco IOS Release 15.2(4)M3 universal image or comparable)
- 3 PCs (Windows 7, Vista, or XP with terminal emulation program, such as Tera Term)
- Console cables to configure the Cisco IOS devices via the console ports
- Ethernet and serial cables as shown in the topology

Part 1: Build the Network and Configure Basic Device Settings

In Part 1, you will set up the network topology and configure basic settings on the PC hosts and routers.

Step 1: Cable the network as shown in the topology.

Step 2: Initialize and reload the routers as necessary.

Step 3: Configure basic settings for each router.
 a. Disable DNS lookup.
 b. Configure device name as shown in the topology.
 c. Assign class as the privileged EXEC password.
 d. Assign cisco as the vty password.
 e. Configure a MOTD banner to warn users that unauthorized access is prohibited.
 f. Configure logging synchronous for the console line.
 g. Encrypt plain text passwords.
 h. Configure the IPv6 unicast and link-local addresses listed in the Addressing Table for all interfaces.
 i. Enable IPv6 unicast routing on each router.
 j. Copy the running configuration to the startup configuration.

Step 4: Configure PC hosts.

Step 5: Test connectivity.

The routers should be able to ping one another, and each PC should be able to ping its default gateway. The PCs are unable to ping other PCs until OSPFv3 routing is configured. Verify and troubleshoot if necessary.

Part 2: Configure OSPFv3 Routing

In Part 2, you will configure OSPFv3 routing on all routers in the network and then verify that routing tables are updated correctly.
Step 1: Assign router IDs.

OSPFv3 continues to use a 32 bit address for the router ID. Because there are no IPv4 addresses configured on the routers, you will manually assign the router ID using the `router-id` command.

a. Issue the `ipv6 router ospf` command to start an OSPFv3 process to the router.

```
R1(config)# ipv6 router ospf 1
```

Note: The OSPF process ID is kept locally and has no meaning to other routers on the network.

b. Assign the OSPFv3 router ID 1.1.1.1 to the R1.

```
R1(config-rtr)# router-id 1.1.1.1
```

c. Start the OSPFv3 routing process and assign a router ID of 2.2.2.2 to R2 and a router ID of 3.3.3.3 to R3.

d. Issue the `show ipv6 ospf` command to verify the router IDs on all routers.

```
R2# show ipv6 ospf
Routing Process "ospfv3 1" with ID 2.2.2.2
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Router is not originating router-LSAs with maximum metric
<output omitted>
```

Step 2: Configure OSPFv6 on R1.

With IPv6, it is common to have multiple IPv6 addresses configured on an interface. The network statement has been eliminated in OSPFv3. OSPFv3 routing is enabled at the interface level instead.

a. Issue the `ipv6 ospf 1 area 0` command for each interface on R1 that is to participate in OSPFv3 routing.

```
R1(config)# interface g0/0
R1(config-if)# ipv6 ospf 1 area 0
R1(config-if)# interface s0/0/0
R1(config-if)# ipv6 ospf 1 area 0
R1(config-if)# interface s0/0/1
R1(config-if)# ipv6 ospf 1 area 0
```

Note: The process ID must match the process ID you used in Step 1a.

b. Assign the interfaces on R2 and R3 to OSPFv3 area 0. You should see neighbor adjacency messages display when adding the interfaces to area 0.

```
R1#
```

```
*Mar 19 22:14:43.251: %OSPFV3-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Serial0/0/0 from
LOADING to FULL, Loading Done
```

```
R1#
```

```
*Mar 19 22:14:46.763: %OSPFV3-5-ADJCHG: Process 1, Nbr 3.3.3.3 on Serial0/0/1 from
LOADING to FULL, Loading Done
```
Step 3: Verify OSPFv3 neighbors.

Issue the `show ipv6 ospf neighbor` command to verify that the router has formed an adjacency with its neighboring routers. If the router ID of the neighboring router is not displayed, or if its state does not show as FULL, the two routers have not formed an OSPF adjacency.

```
R1# show ipv6 ospf neighbor

OSPFv3 Router with ID (1.1.1.1) (Process ID 1)

Neighbor ID  Pri  State  Dead Time  Interface ID  Interface
3.3.3.3     0  FULL/  -  00:00:39  6  Serial0/0/1
2.2.2.2     0  FULL/  -  00:00:36  6  Serial0/0/0
```

Step 4: Verify OSPFv3 protocol settings.

The `show ipv6 protocols` command is a quick way to verify vital OSPFv3 configuration information, including the OSPF process ID, the router ID, and the interfaces enabled for OSPFv3.

```
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 1"

Router ID 1.1.1.1
Number of areas: 1 normal, 0 stub, 0 nssa
Interfaces (Area 0):
Serial0/0/1
Serial0/0/0
GigabitEthernet0/0

Redistribution:
None
```

Step 5: Verify OSPFv3 interfaces.

a. Issue the `show ipv6 ospf interface` command to display a detailed list for every OSPF-enabled interface.

```
R1# show ipv6 ospf interface

Serial0/0/1 is up, line protocol is up
Link Local Address FE80::1, Interface ID 7
Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
Network Type POINT_TO_POINT, Cost: 64
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:05
Graceful restart helper support enabled
Index 1/3/3, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
```
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 3.3.3.3
Suppress hello for 0 neighbor(s)

Serial0/0/0 is up, line protocol is up
Link Local Address FE80::1, Interface ID 6
Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
Network Type POINT_TO_POINT, Cost: 64
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:00
Graceful restart helper support enabled
Index 1/2/2, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 2
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 2.2.2.2
Suppress hello for 0 neighbor(s)

GigabitEthernet0/0 is up, line protocol is up
Link Local Address FE80::1, Interface ID 3
Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 1.1.1.1, local address FE80::1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:03
Graceful restart helper support enabled
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

b. To display a summary of OSPFv3-enabled interfaces, issue the `show ipv6 ospf interface brief` command.

```
RI# show ipv6 ospf interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>PID</th>
<th>Area</th>
<th>Intf ID</th>
<th>Cost</th>
<th>State</th>
<th>Nbrs</th>
<th>F/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se0/0/1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>64</td>
<td>P2P</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Se0/0/0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>64</td>
<td>P2P</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Gi0/0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>DR</td>
<td>0/0</td>
<td></td>
</tr>
</tbody>
</table>
```
Step 6: Verify the IPv6 routing table.

Issue the `show ipv6 route` command to verify that all networks are appearing in the routing table.

```
R2# show ipv6 route
IPv6 Routing Table - default - 10 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
       B - BGP, R - RIP, I1 - ISIS L1, I2 - ISIS L2
       IA - ISIS interarea, IS - ISIS summary, D - EIGRP, EX - EIGRP external
       N - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
       O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

O   2001:DB8:ACAD:A::/64 [110/65]
    via FE80::1, Serial0/0/0
C   2001:DB8:ACAD:B::/64 [0/0]
    via GigabitEthernet0/0, directly connected
L   2001:DB8:ACAD:B::2/128 [0/0]
    via GigabitEthernet0/0, receive
O   2001:DB8:ACAD:C::/64 [110/65]
    via FE80::3, Serial0/0/1
C   2001:DB8:ACAD:12::/64 [0/0]
    via Serial0/0/0, directly connected
L   2001:DB8:ACAD:12::2/128 [0/0]
    via Serial0/0/0, receive
O   2001:DB8:ACAD:13::/64 [110/128]
    via FE80::3, Serial0/0/1
    via FE80::1, Serial0/0/0
C   2001:DB8:ACAD:23::/64 [0/0]
    via Serial0/0/1, directly connected
L   2001:DB8:ACAD:23::2/128 [0/0]
    via Serial0/0/1, receive
L   FF00::/8 [0/0]
    via Null0, receive
```

What command would you use to only see the OSPF routes in the routing table?

Step 7: Verify end-to-end connectivity.

Each PC should be able to ping the other PCs in the topology. Verify and troubleshoot if necessary.

Note: It may be necessary to disable the PC firewall to ping between PCs.
Part 3: Configure OSPFv3 Passive Interfaces

The **passive-interface** command prevents routing updates from being sent through the specified router interface. This is commonly done to reduce traffic on the LANs as they do not need to receive dynamic routing protocol communication. In Part 3, you will use the **passive-interface** command to configure a single interface as passive. You will also configure OSPFv3 so that all interfaces on the router are passive by default, and then enable OSPF routing advertisements on selected interfaces.

Step 1: Configure a passive interface.

a. Issue the **show ipv6 ospf interface g0/0** command on R1. Notice the timer indicating when the next Hello packet is expected. Hello packets are sent every 10 seconds and are used between OSPF routers to verify that their neighbors are up.

```
R1# show ipv6 ospf interface g0/0
```

GigabitEthernet0/0 is up, line protocol is up
Link Local Address FE80::1, Interface ID 3
Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 1.1.1.1, local address FE80::1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
```
Hello due in 00:00:05
```
Graceful restart helper support enabled
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

b. Issue the **passive-interface** command to change the G0/0 interface on R1 to passive.

```
R1(config)# ipv6 router ospf 1
R1(config-rtr)# passive-interface g0/0
```

c. Re-issue the **show ipv6 ospf interface g0/0** command to verify that G0/0 is now passive.

```
R1# show ipv6 ospf interface g0/0
```

GigabitEthernet0/0 is up, line protocol is up
Link Local Address FE80::1, Interface ID 3
Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State WAITING, Priority 1
No designated router on this network
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
No Hellos (Passive interface)

Wait time before Designated router selection 00:00:34
Graceful restart helper support enabled
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

d. Issue the `show ipv6 route ospf` command on R2 and R3 to verify that a route to the 2001:DB8:ACAD:A::/64 network is still available.

R2# `show ipv6 route ospf`

IPv6 Routing Table - default - 10 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
 B - BGP, R - RIP, I1 - ISIS L1, I2 - ISIS L2
 IA - ISIS interarea, IS - ISIS summary, D - EIGRP, EX - EIGRP external
 ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
 O - OSPF Intra, OI - OSPF Inter, OEL - OSPF ext 1, OEW2 - OSPF ext 2
 ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

O 2001:DB8:ACAD:A::/64 [110/65]
 via FE80::1, Serial0/0/0

O 2001:DB8:ACAD:C::/64 [110/65]
 via FE80::3, Serial0/0/1

O 2001:DB8:ACAD:13::/64 [110/128]
 via FE80::3, Serial0/0/1
 via FE80::1, Serial0/0/0

Step 2: Set passive interface as the default on the router.

a. Issue the `passive-interface default` command on R2 to set the default for all OSPFv3 interfaces as passive.

R2(config)# `ipv6 router ospf 1`
R2(config-rtr)# `passive-interface default`

b. Issue the `show ipv6 ospf neighbor` command on R1. After the dead timer expires, R2 is no longer listed as an OSPF neighbor.

R1# `show ipv6 ospf neighbor`

OSPFv3 Router with ID (1.1.1.1) (Process ID 1)

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Interface ID</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.3</td>
<td>0</td>
<td>FULL/</td>
<td>00:00:37</td>
<td>6</td>
<td>Serial0/0/1</td>
</tr>
</tbody>
</table>

c. On R2, issue the `show ipv6 ospf interface s0/0/0` command to view the OSPF status of interface S0/0/0.
R2# show ipv6 ospf interface s0/0/0
Serial0/0/0 is up, line protocol is up
 Link Local Address FE80::2, Interface ID 6
 Area 0, Process ID 1, Instance ID 0, Router ID 2.2.2.2
 Network Type POINT_TO_POINT, Cost: 64
 Transmit Delay is 1 sec, State POINT_TO_POINT
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 No Hellos (Passive interface)
 Graceful restart helper support enabled
 Index 1/2/2, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 2, maximum is 3
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)

d. If all OSPFv3 interfaces on R2 are passive, then no routing information is being advertised. If this is the case, then R1 and R3 should no longer have a route to the 2001:DB8:ACAD:B::/64 network. You can verify this by using the `show ipv6 route` command.

e. Change S0/0/1 on R2 by issuing the `no passive-interface` command, so that it sends and receives OSPFv3 routing updates. After entering this command, an informational message displays stating that a neighbor adjacency has been established with R3.

 R2(config)# ipv6 router ospf 1
 R2(config-rtr)# no passive-interface s0/0/1

 *Apr 8 19:21:57.939: %OSPFV3-5-ADJCHG: Process 1, Nbr 3.3.3.3 on Serial0/0/1
 from LOADING to FULL, Loading Done

 f. Re-issue the `show ipv6 route` and `show ipv6 ospf neighbor` commands on R1 and R3, and look for a route to the 2001:DB8:ACAD:B::/64 network.

 What interface is R1 using to route to the 2001:DB8:ACAD:B::/64 network? ________

 What is the accumulated cost metric for the 2001:DB8:ACAD:B::/64 network on R1? ________

 Does R2 show up as an OSPFv3 neighbor on R1? ________

 Does R2 show up as an OSPFv3 neighbor on R3? ________

 What does this information tell you? ________

 __

 __

 __

 g. On R2, issue the `no passive-interface S0/0/0` command to allow OSPFv3 routing updates to be advertised on that interface.

 h. Verify that R1 and R2 are now OSPFv3 neighbors.
Reflection

1. If the OSPFv6 configuration for R1 had a process ID of 1, and the OSPFv3 configuration for R2 had a process ID of 2, can routing information be exchanged between the two routers? Why?

2. What may have been the reasoning for removing the network command in OSPFv3?

Router Interface Summary Table

<table>
<thead>
<tr>
<th>Router Model</th>
<th>Ethernet Interface #1</th>
<th>Ethernet Interface #2</th>
<th>Serial Interface #1</th>
<th>Serial Interface #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>Fast Ethernet 0/0 (F0/0)</td>
<td>Fast Ethernet 0/1 (F0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
<tr>
<td>1900</td>
<td>Gigabit Ethernet 0/0 (G0/0)</td>
<td>Gigabit Ethernet 0/1 (G0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
<tr>
<td>2801</td>
<td>Fast Ethernet 0/0 (F0/0)</td>
<td>Fast Ethernet 0/1 (F0/1)</td>
<td>Serial 0/1/0 (S0/1/0)</td>
<td>Serial 0/1/1 (S0/1/1)</td>
</tr>
<tr>
<td>2811</td>
<td>Fast Ethernet 0/0 (F0/0)</td>
<td>Fast Ethernet 0/1 (F0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
<tr>
<td>2900</td>
<td>Gigabit Ethernet 0/0 (G0/0)</td>
<td>Gigabit Ethernet 0/1 (G0/1)</td>
<td>Serial 0/0/0 (S0/0/0)</td>
<td>Serial 0/0/1 (S0/0/1)</td>
</tr>
</tbody>
</table>

Note: To find out how the router is configured, look at the interfaces to identify the type of router and how many interfaces the router has. There is no way to effectively list all the combinations of configurations for each router class. This table includes identifiers for the possible combinations of Ethernet and Serial interfaces in the device. The table does not include any other type of interface, even though a specific router may contain one. An example of this might be an ISDN BRI interface. The string in parenthesis is the legal abbreviation that can be used in Cisco IOS commands to represent the interface.
6.4.1.1 Class Activity – Stepping Through OSPFv3

Objectives

Explain the process by which link-state routers learn about other networks.

Scenario

This class activity is designed for groups of three students. The objective is to review the Shortest Path First (SPF) routing process.

You will design and address a network, communicate the network address scheme and operation of network links to your group members, and compute the SPF.

Complete the steps as shown on the PDF for this class activity. If you have time, share your network design and Open Shortest Path First (OSPF) process with another group.

Resources

In preparation of this activity, you will need two different IPv6 network and cost numbers. The IPv6 network numbers must be chosen with the following format: 2002:DB8:AAAA::/64, where A is a student-selected network number. You have two choices for cost – 10 (Fast Ethernet network), or 1 (Gigabit Ethernet network).

Bring your two IPv6 network and cost numbers to the group setting. One student in your group will act as the recorder, will draw three circles, and connect them on paper. Each circle will represent a student’s router and the connecting lines will represent the networks and links to be agreed upon.

Each group member should follow Steps 1 to 4 (below) in the order listed. As the group progresses through the activity, you should keep personal notes about your own router, including information about neighbor adjacency, link-state advertisements, topology table entries, and the SPF algorithm.

Directions

Step 1:

a. Speak to the classmate to your left. Compare network and cost numbers brought to the group. Agree upon an IPv6 network, links, and cost numbers you would like to use between your two routers. Remember, you may only use 1 (Gigabit Ethernet) or 10 (Fast Ethernet) for cost. When you have agreed upon your network, link numbers, and determined the cost of the route, record the information on the paper graphic created by the recorder.

b. Complete the same process with the classmate to your right.

c. After speaking with both of your direct neighbors, you have agreed upon two networks with link addresses and the cost of the route. Record the information you agreed upon on the paper graphic.

Step 2:

a. Each student will speak only to their direct neighbors. They will share all of their IPv6 network and link numbers and the cost of the networks to which they are connected. Almost immediately, everyone in the group will know about all networks, their links, and the cost of the individual networks between neighbors.

b. Check with the group members to ascertain all group members have the same information with which to work for Step 3.
Step 3:

a. On your own paper, create a table listing possible paths to all other networks. Use the formula supplied with this chapter $n(n - 1)/2$. You will have a total of four possible routes to list on your table.

b. On the table created in the Step 3 a., add a column with the headings, IPv6 Network Number and Cost.

c. Fill in the table with information you know about the networks on your group’s topology.

Step 4:

a. Go back to the table created in Step 3.

b. Place a star by the lowest-cost routes to all other routers.

When these four steps are complete, you have established neighbor adjacencies, exchanged link-state advertisements, built a topology table, and created a routing table with the best cost to all other networks within your group or area.

If you have the time, refer to your topology table and build the network on real equipment or Packet Tracer. Use some or all of the commands listed below to prove OSPF’s operation:

```
R1# show ipv6 interface brief
R1# show ipv6 protocols
R1# show ip protocols
R1# show ipv6 route
```

Reflection

1. Which OSPFv3 processing step is reviewed in Step 1 of this activity?

2. Which OSPFv3 processing step is reviewed in Step 2 of this activity?

3. Which process for OSPFv3 is reviewed in Step 3 of this activity?

4. Which process step for OSPFv3 is reviewed in Step 4 of this activity?