
A Genetic Algorithm Approach to Focused
Software Usage Testing

Robert M. Patton, Annie S. Wu, and Gwendolyn H. Walton

University of Central Florida
School of Electrical Engineering and Computer Science

Orlando, FL, U.S.A.

ABSTRACT
Because software system testing typically consists of only a very

small sample from the set of possible scenarios of system use, it can be
difficult or impossible to generalize the test results from a limited amount of
testing based on high-level usage models. It can also be very difficult to
determine the nature and location of the errors that caused any failures
experienced during system testing (and therefore very difficult for the
developers to find and fix these errors). To address these issues, this paper
presents a Genetic Algorithm (GA) approach to focused software usage
testing. Based on the results of macro-level software system testing, a GA is
used to select additional test cases to focus on the behavior around the initial
test cases to assist in identifying and characterizing the types of test cases
that induce system failures (if any) and the types of test cases that do not
induce system failures. Whether or not any failures are experienced, this GA
approach supports increased test automation and provides increased evidence
to support reasoning about the overall quality of the software. When failures
are experienced, the approach can improve the efficiency of debugging
activities by providing information about similar, but different, test cases that
reveal faults in the software and about the input values that triggered the
faults to induce failures.

KEYWORDS:
Genetic algorithms, software usage testing, simulation testing,

debugging, system testing, black box testing

1. OVERVIEW
This work focuses on system level, model-based usage testing. The

software to be tested is viewed from the perspective of the user as a black
box system that operates in a specific environment, receives input, and
provides output. One or more state-based models of software use are
developed, using domain-specific knowledge to characterize the population
of uses of the software (or usage scenarios) and to describe test management

objectives and constraints. The usage models are used to assist with test
planning, to generate a sample of test cases that represent usage scenarios,
and to support reasoning about test results.

System-level usage testing approaches have proven to be successful
for supporting test case selection and reasoning about test results in a variety
of software projects. However, the system testing typically consists of only a
very small sample from the set of possible scenarios of system use. Thus, it
can be difficult or impossible to generalize the test results from a limited
amount of testing based on high-level usage models. It can also be very
difficult to determine the nature and location of the errors that caused any
failures experienced during system testing (and therefore very difficult for
the developers to find and fix these errors).

This paper presents a Genetic Algorithm (GA) approach to addresses
these issues. As illustrated in Figure 1 and described in detail in section 5,
the GA accepts input from two sources: (a) domain data generated by the
usage model to define a usage scenarios and (b) the results (pass/fail) of
system test. The initial population is defined as a set of test cases generated
from a usage model. Each individual in the population represents a single
test case. The individual is sent to the Tester to be processed and supplied to
the Software Under Test. The Software Under Test processes this input and
provides output that is analyzed for correctness by the Test Oracle. The Test
Oracle will determine if the output is correct or flawed or if the software
under test crashed. The Test Oracle informs the GA of the result: output is
correct, output is flawed, or Software Under Test crashed. The GA uses this
result along with the likelihood that it would occur as defined by the usage
model to help determine the overall fitness of the individual. The GA
outputs individual test cases that caused high intensity failures within the
high usage areas of the software, thus driving dynamic testing and system
analyses in a focused manner based on test objectives (as described by the
usage model) and previous test results.

Figure 1. GA Approach to Focused Software Usage Testing

Genetic
Algorithm

Tester

Test
Oracle

Software
Under Test

Input

Output

Input
Domain
Data

Failed Test Cases

Individual

Failure Intensity Evaluation

Result

The remainder of this paper is organized as follows. Section 2
provides a high-level introduction to Genetic Algorithms and pointers to
related work. Section 3 provides some background information about system
testing and debugging activities and challenges that motivate the GA
approach presented in this paper. Section 4 introduces the GA approach to
focused usage testing, and section 5 provides information about the internal
details of the GA. Section 6 provides an example to illustrate application of
this approach to drive focused testing of a military simulation system.
Conclusions are presented in section 7.

2. INTRODUCTION TO GENETIC ALGORITHMS
A genetic algorithm (GA) is a search algorithm based on principles

from natural selection and genetic reproduction [Holland 1975; Goldberg
1989]. GAs have been successfully applied to a wide range of applications,
[Haupt 1998; Karr 1999; Chambers 2000] including optimization,
scheduling, and design problems. Key features that distinguish GAs from
other search methods include:

• A population of individuals where each individual represents a

potential solution to the problem to be solved.
• A fitness function which evaluates the utility of each individual as a

solution.
• A selection function which selects individuals for reproduction based

on their fitness.
• Idealized genetic operators which alter selected individuals to create

new individuals for further testing. These operators, e.g. crossover
and mutation, attempt to explore the search space without completely
losing information (partial solutions) that is already found.

Figure 2 provides the basic steps of a GA. First the population is

initialized, either randomly or with user-defined individuals. The GA then
iterates thru an evaluate-select-reproduce cycle until either a user defined
stopping condition is satisfied or the maximum number of allowed
generations is exceeded.

Figure 2. Basic steps of a typical genetic algorithm

The use of a population allows the GA to perform parallel searches

into multiple regions of the solution space. Operators such as crossover
[Holland 1975; Goldberg 1989; Mitchell 1996] allow the GA to combine
discovered partial solutions into more complete solutions. As a result, the
GA is expected to search for small building blocks in parallel, and then
iteratively recombine small building blocks to form larger and larger building
blocks. In the process, the GA attempts to maintain a balance between
exploration for new information and exploitation of existing information.
Over time, the GA is able to evolve populations containing more fit
individuals or better solutions. For more information about GAs, the reader
is referred to [Holland 1975; Goldberg 1989; Mitchell 1996; Coley 2001].

While, the GA approach presented in this paper is unlike other
published approaches to the application of GA to support software testing or
software quality assessment, the “failure-pursuit sampling” work of
[Dickinson et al. 2001] and the “adaptive testing” work of [Schultz et al.
1992] are particularly noteworthy with respect to their motivation for the
work of this paper.

While [Dickinson et al. 2001] does not explicitly make use of a GA,
their concept of failure-pursuit sampling helped to provide a foundation for
the approach presented in this paper. In failure-pursuit sampling, some initial
sample of test cases is selected; the sample is evaluated and failures
recorded; and additional samples are then selected that are in the vicinity of
failures that occurred in the previous sample.

[Schultz et al. 1992] demonstrated the use of adaptive testing to test
intelligent controllers for autonomous vehicles by creating individuals in the
population that represented fault scenarios to be supplied to simulators of the
autonomous vehicles. A benefit of such testing was to provide more
information to the developers. According to [Schultz et al. 1992],

“In more of a qualitative affirmation of the
method, the original designer of the
AUTOACE intelligent controller was shown

procedure GA
{
 initialize population;
 while termination condition not satisfied do
 {

evaluate current population;
select parents;
apply genetic operators to parents to create children;
set current population equal to be the new child population;

 }
}

some of the interesting scenarios generated
by the GA, and acknowledges that they gave
insight into areas of the intelligent controller
that could be improved. In particular, the
scenarios as a group tend to indicate classes
of weaknesses, as opposed to only
highlighting single weaknesses. This allows
the controller designers to improve the
robustness of the controller over a class as
opposed to only patching very specific
instances of problems.”

3. TESTING AND DEBUGGING CHALLENGES
Reasoning about the overall quality of a system can be difficult. For

example, suppose a system accepts some data value X, and that the user
profile for this system specifies that user is likely to use values in the range
30 < X < 70. A usage model may generate two test cases that specify X as
40 and 60. If both of these test cases pass, it is not necessarily true that test
cases will pass for all values of X. Similarly, if both of these test cases fail, it
is not necessarily true that test cases will fail for all values of X. Additional
focused testing (using similar, but different, test cases to identify more
precisely the usage scenarios that induce failures and the scenarios that do
not induce failures) may be necessary to support reasoning about the overall
quality of the software.

In addition, in the situation when failures are observed during system
testing, more testing can be required in order to precisely determine nature
and location of the error(s) that caused the failures so the developers can find
and fix the error. This find-and-fix process is referred to as “debugging”.
According to [Myers 1979], “of all the software -development activities,
[debugging] is the most mentally taxing activity.” This statement is often
true today and can be the source of software quality problems. Test cases
that reveal failures are often dissimilar to each other, the test results often
provide little information concerning the cause of the failure and whether a
similar scenario would fail in a similar manner. Without additional
information, and with limited development resources, developers may be
tempted to apply a small patch to the software to work around the failure
rather than perform the analyses necessary to support complete
understanding and correction of the problems that caused the failures.

A competitive mentality of “developers versus testers” often exists
during testing. Because debugging requires additional information
concerning the usage of the system and performing additional testing, once
failures occur and the system must be corrected, this mentality should
transition to “developers and testers versus the system” to facilitate the
debugging effort. Developers often need the support of the testers during
debugging because the developers may not have the necessary testing

resources to do additional system level testing, or additional information
concerning the usage of the system. As described by [Zeller 2001],

“Testing is another way to gather knowledge
about a program because it helps weed out
the circumstances that aren’t relevant to a
particular failure. If testing reveals that only
three of 25 user actions are relevant, for
example, you can focus your search for the
failure’s root cause on the program parts
associated with these three actions. If you
can automate the search process, so much
the better.”

This description is consistent with the often-used induction approach
to debugging described by [Myers 1979]. The induction approach begins by
locating all relevant evidence concerning correct and incorrect system
performance. As noted by [Myers 1979], “valuable clues are provided by
similar, but different, test cases that do not cause the symptoms to appear. It
is also useful to identify similar, but different, test case that do cause the
symptoms to appear.

Similar to the notion of taking several “snapshots” of the evidence
from different angles and with different magnification to look for clues from
different perspectives, the debugging team needs to follow up on any failures
identified during testing by more finely partitioning the input domain
according to test results. This yields new evidence to be compared and
organized in an attempt to identify and characterize patterns in the system’s
behavior. The next step is to develop a hypothesis about the cause of an
observed failure by using the relationships among the observed evidence and
patterns. Analyses can then be performed to prove that the hypothesis
completely explains the observed evidence and patterns.

In practice, debugging can be very time-consuming, tedious, and
error-prone when system-level testing reveals failures. Success of the
debugging activity depends critically upon the first step in the process: the
collection of evidence concerning correct and incorrect system performance.
Assuming the total amount of evidence is manageable, an increase in useful
evidence about correct and incorrect system performance can make it easier
to identify patterns and develop and prove hypotheses. Thus, a mechanism is
needed to drive testing and system analyses in a focused manner based on
previous test results.

4. USING A GA FOR FOCUSED SOFTWARE USAGE TESTING
The genetic algorithm (GA) approach described in this paper drives

dynamic generation of test cases by focusing the testing on high usage
(frequency) and fault-prone (severity) areas of the software. This GA
approach can be described as analogous to the application of a microscope.
The microscope user first quickly examines an artifact at a macro-level to

locate any potential problems. Then the user increases the magnification to
isolate and characterize these problems.

Using the GA approach to focused software usage testing, the macro-
level examination of the software system is performed using the
organization’s traditional model-based usage testing methods. Based on the
results of this macro-level examination, a genetic algorithm is used to select
additional test cases to focus on the behavior around the initial test cases to
assist in identifying and characterizing the types of test cases that induce
system failures (if any) and the types of test cases that do not induce system
failures. If failures are identified, the genetic algorithm increases the
magnification by selecting certain test cases for further analysis of failures.
This supports isolation and characterization of any failure clusters that may
exist.

Whether or not any failures are experienced, this genetic algorithm
approach provides increased evidence for the testing team and managers to
support reasoning about the overall quality of the software. In the situation
where failures are experienced, the genetic algorithm approach yields
information about similar, but different, test cases that reveal faults in the
software and about the input values that triggered the faults to induce
failures. This information can assist the developer in identifying patterns in
the system’s behavior and in devising and proving a hypothesis concerning
the faults that caused the failures.

Because different software failures vary in severity to the user and in
frequency of occurrence under certain usage profiles, certain failures can be
more important than others. Factors such as the development team’s
uncertainty about particular requirements, complexity of particular sections
of the code, and varying skills of the software development team can result in
clusters of failure in certain partitions of the set of possible use of the
software. As discussed in section 5.4 and section 5.5.1, the genetic
algorithm’s fitness function and selection function can address this issue , and
help support the generation of test cases to identify failure clusters.

In the case of usage testing, highly fit individuals in the population
are those that maximize two objectives. The first objective is likelihood of
occurrence. Maximizing this objective means that the test case individual
represents a scenario that closely resembles what the user will do with the
system. The second objective is failure intensity (defined as a combination
of failure density and failure severity). Maximizing this objective means that
the test case individual has revealed spectacular failures in the system.
Highly fit individuals with respect to the rest of the population are those that
maximize both objectives as much as possible. To address this issue, a
multi-objective GA technique [Fonseca 1995; Deb 1999; Coello Coello et al.
2002] is needed. As described in section 5.4, this application makes use of a
nonlinear aggregating fitness combination [Coello Coello et al. 2002] to
handle multiple objectives.

Furthermore, the purpose of the GA in this application is not to find
a single dominant individual. This does not make sense from a testing
perspective. Instead, the purpose is to locate and maintain a group of
individuals that are highly fit. To do so, the GA for this application uses
niching [Holland 1975; Horn 1994; Mahfoud 1995]. A niche represents
some subpopulation of individuals who are similar, but different. As the GA
runs, the most dominant niches (not the most dominant individual) survive.
Niching used for this application is described in section 5.4.3.

The GA approach is applicable to testing many types of software.
For example, in section 6 illustrative examples are presented of the
application of a GA to support high-level usage testing of a military
simulation system. For this case study, the test cases for a military
simulation system consists of a variety of scenarios involving entities such as
tanks, aircraft, armored personnel carries, and soldiers. Each entity can
perform a variety of tasks. At a basic level, these scenarios involve some
primary actor performing a task that may or may not involve a secondary
actor, depending on the task. Each scenario is performed on a specific terrain
map. For example, a scenario may consist of using a terrain map of Fort
Knox with an M1A1 tank performing an Assault on a T-80 tank. In this
example, the M1A1 tank is the primary actor since it performs the task
(Assault), and it is the focus of the scenario. The T-80 tank is the secondary
actor.

5. GA APPROACH DETAILS
To implement the GA for this case study example, a number of

issues had to resolved, including the encoding of real world data, population
initialization, fitness evaluation, and the use and operation of genetic
operators. The following subsections discuss these issues and describe the
internal details of the genetic algorithm.

5.1 Input Domain Data
As illustrated in Figure 2, there are three sources for the Input

Domain Data that serves as input to the GA application shown in Figure 1.
First, there is data that represents the bounds of the input domain for the
software under test. This boundary data set does not necessarily specify all
possible data values; rather it could merely specify the extreme values. For
example, suppose the system accepts some data value X. Then the input
boundary data might specify 0 < X < 10. Second, there is data that represents
the user’s profile. This data defines what input data the user is likely to use
and, implicitly, what data the user is not likely to use. For the previous
example of the data value X, the user profile may specify 3 < X < 7. The
third source of input domain data is the set of test cases generated according
to the user profile. For example, there may be two test cases that specify X
as 4 and 6. The test cases and user profile data sets must be subsets of the
input boundary data set.

Figure 2. Input Domain Data

Each of these three sources of input domain data is used for a

specific purpose. The test cases are used to initialize the population. The
user profile data set is used to help evaluate the fitness of individuals,
specifically used to determine likelihood of occurrence. This causes the GA
to focus its search to a particular area of the input domain. The input
boundary data set is used to validate that new individuals are consistent with
what the software under test allows the user to do. If an individual is created
that lies outside of the defined input boundary data set, then that individual
will be discarded by the GA.

5.2 Encoding
The test cases generated by the usage model are converted to an

encoding based on real numbers for use in the GA population. This type of
encoding was used so that there is a one to one correspondence between the
gene and the variable it represents. In addition, it eliminates the problem of
Hamming cliffs [Goldberg 1990]. Table 1, Table 2, and Table 3 illustrate a
sample of the assigned identification numbers (IDs) for use in the GA.

Table 1. Terrain Identification Numbers

Terrain ID Number Terrain Map
1 NTC
2 Knox
3 Hunter
4 Itsec

Input Boundary

User Profile
Test Cases

Table 2. Entity Identification Numbers

Entity ID Number Simulation Entity
2 M1A1
6 T-80
9 M3A3
17 SA-9
27 UH-60

Table 3. Task Identification Numbers

Task ID Number Task
1 Move
3 Assault
7 Attack

11 Hover
15 Suppressive Fire

The individuals in the population of the GA consist of variations of

these IDs. There are ten genes in each individual. The genotype is shown in
Table 4.

Table 4. Genotype for individuals in the genetic algorithm

Gene Meaning Valid Value Range
1 Terrain Values 1 – 4
2 Primary Actor Values 1 – 37
3 Task Values 1 – 17
4 Secondary Actor Values 0 – 37
5 X1 Values greater than or equal to 0
6 Y1 Values greater than or equal to 0
7 Z1 Values greater than or equal to 0
8 X2 Values greater than or equal to 0
9 Y2 Values greater than or equal to 0
10 Z2 Values greater than or equal to 0

Each gene represents an input value that a user could supply to the

software being tested. The collection of ten genes represents a specific
simulation scenario that may be run by the user on the Software Under Test.
For example, Gene 1 represents the terrain map selected by the user. Gene 2
represents the primary actor selected by the user, such as a tank (i.e., M1A1,
T-80), plane, helicopter, etc. Gene 3 represents the task assigned by the user
to the primary actor, such as Move, Attack, Transport, etc. If the selected

task requires a secondary actor, the user selects another actor, such as an
enemy tank, enemy plane, friendly soldier, etc. Gene 4 represents the
selected secondary actor. If the selected task does not require a secondary
actor, Gene 4 is assigned a zero value. Genes 5 – 7 specify the location of
the primary actor on the terrain map. If there is a secondary actor involved,
then Genes 8 – 10 specify the location of the secondary actor on the terrain
map. If there is no secondary actor, then Genes 8 – 10 represent some
destination location that the primary actor must reach. An example of an
individual is shown in Figure 3. This individual represents a scenario with
an M1A1 tank assaulting a T-80 tank on the Fort Knox terrain map. The
values shown in the first 4 genes of the individual are taken from Table 1,
Table 2 and Table 3. The values for genes 5 – 10 are taken from the location
values specified by the test case.

Figure 3. Representation of test cases within the genetic algorithm

Invalid individuals are discarded. For example, because a tank

cannot attack an aircraft, an individual that represents this scenario would be
discarded. Other invalid scenarios are those that specify locations (Genes 5 –
10) that lie outside the bounds of the terrain map. In addition, land vehicles
cannot be assigned Z coordinate values greater than 0.

5.3 Population Initialization
To provide the GA with a semi-ideal starting position, individuals in

the GA are initialized according to the test cases generated by the usage
model. If the individuals in the GA were initialized randomly, the GA would
‘waste’ generation cycles looking for individuals located within the user
profile. Furthermore, with random initialization, it is possible that the GA
may not find the individuals located in the user profile, and the results will be
of little value. Because some of the individuals located in the user profile are
already known, initializing the population with these known individuals can
reduce the number of GA iterations.

Test Case
Terrain: Fort Knox
Primary Actor: M1A1 @ location: [400, 34, 0]
Task: Assault
Secondary Actor: T-80 @ location: [100, 60, 0]

Gene

Value 2 2 3 6 400 34 0 0 100 60

1 2 3 4 5 6 7 10 8 9

5.4 Fitness Evaluation
The fitness of individuals is based primarily on maximizing two

objectives, as graphically depicted in Figure 4. Optimal individuals are those
that have a high likelihood of occurring and that result in failures with high
failure intensity. Optimal individuals occur in zone 1. Inferior individuals
are those with a low likelihood of occurring and would be located in zone 6.

While the GA system strives to find optimal individuals, there are
two reasons that this is not always achievable. First, the software under test
may be of such high quality that optimal individuals simply do not exist.
Second, optimal individuals may exist outside of the defined user profile, but
not within it. If the GA finds such individuals, they will be in zone 6 if they
lie outside of the high usage areas of the software as defined by the usage
model. Note that the boundary between the optimal, sub-optimal, and
inferior zones is not necessarily a hard, distinct boundary. Since the user
profile is simply an approximation for what the user may do, inferior
individuals near the boundaries of the optimal and sub-optimal zones may
also be of interest.

Figure 4. Fitness of Individuals

The height of the optimal and sub-optimal zones is determined by the

uncertainty in the accuracy of the user profile. If the user profile is based on
historical evidence, or if the profile represents expert users, then the
uncertainty in the accuracy of the user profile will be lower, resulting in a
shorter height of the zones. However, if the user profile is based on
guesswork, or if it represents novice users, then the uncertainty in the user
profile accuracy will be higher, resulting in a taller height of the zones. The
width and number of the optimal and sub-optimal zones is chosen according
to the level of importance given to the GA concerning various levels of
failure intensity. For example, if each failure were of equal importance, there
would be only one optimal zone, no sub-optimal zones, and a width ranging
from the lowest intensity level to the highest.

Likelihood of
Occurrence

Failure Intensity

6

5 4 3 2 1 }
Optimal

User Profile
Uncertainty

Sub-optimal

Inferior

The overall fitness of an individual is based on likelihood of
occurrence, the failures intensity, and the similarity to other individuals in the
population. Each of these criteria is discussed in the following sections.

5.4.1 Likelihood of Occurrence
Individuals are first evaluated in terms of the likelihood they will be

used by the user. Individuals containing input data that is very likely to be
used by the user are very highly fit individuals for this particular objective.
Individuals that contain input data that is not likely to be used by the user are
very poorly fit individuals. This evaluation is based on the supplied user
profile data set. The likelihood of the input data is calculated by multiplying
the probability of occurrence of each input value that is used in the test case.
For example, suppose the probability distribution for the input data is as
shown in Table 5. The likelihood that the user would select Input Values 1
and 2 is 0.15. The likelihood that the user would select Input Values 1 and 3
is 0.0375. Consequently, a test case involving Input Values 1 and 2 would be
rated as being more highly fit than one involving Input Values 1 and 3. The
case study described in this paper only considers the first 4 genes in
determining the likelihood of occurrence. This is because genes 1 – 4
provide the basics of the test scenarios while genes 5 – 10 provide the details.
Likelihood of occurrence is based on the basics, not the details, of the
scenario.

Table 5. Input Data Probability Distribution.

Input Value 1 0.75
Input Value 2 0.20
Input Value 3 0.05

5.4.2 Failure Intensity
In addition to likelihood of use, the test team is also interested in test

case individuals that find failures. Consequently, the second objective to be
maximized is Failure Intensity, defined as a combination of failure density
and failure severity. For example, suppose some individual causes a single
failure that results in the crash of the software being tested. The Failure
Intensity consists of a low failure density (there is only 1 failure) and a high
failure severity (the system crashes). In contrast, suppose another individual
causes multiple failures that give erroneous output but do not crash the
software being tested. In this situation, the Failure Intensity consists of a
high failure density (there were multiple failures) and a low failure severity
(the system does not crash, but gives erroneous output). Both of these
individuals would be of interest, even though the composition of their Failure
Intensity is different.

Consider the situation where a test manager differentiates failure
severity according to five levels, with level 1 the lowest severity and level 5
the highest. For an individual test case that causes two level 3 failures, the
failure intensity could be computed to equal 6, the sum of the failure
severities. An individual that causes one level 5 failure would have failure
intensity equal to 5. However, this approach to calculating failure intensity
may not be satisfactory to the test manager. A single level 5 severity failure
may be more important than a test case that produces multiple failures of
lower severity. To handle this situation, a non-linear scoring method such as
that shown in Table 6 is recommended.

Table 6. Example Scoring Technique for Different Severity Levels

Severity Level Score
5 18
4 12
3 3
2 2
1 1

If this scoring technique were applied, an individual that caused two

level 3 failures would receive a failure intensity score of 6, and an individual
that caused a single level 5 failure would receive an intensity score of 18.
Similarly, an individual that caused three level 2 failures and two level 3
failures would receive an intensity score of 12. This yields a more useful
result to the test manager than a linear scoring method. Obviously, the
choice of scoring algorithm depends on the characteristics of the software
being tested and the test management objectives.

5.4.3 Niching
As a genetic algorithm runs, the population of individuals will

eventually converge to a single solution that dominates the population, and
the diversity of the population is ultimately lowered. When a GA is applied
to software usage testing, each individual represents a single test case.
Consequently, the genetic algorithm would eventually converge to some test
case that is both likely to occur and reveals failures of high intensity. To
avoid having a single individual dominate the population, a niching
technique [Holland 1975; Mahfoud 1995; Horn 1997] is used.

A niche represents some subpopulation of individuals who share
some commonality. To apply this technique to software usage testing, a
niche is formed for each unique combination of likelihood, failure intensity,
and genetic values for the genes 1 through 4. That is, individuals that share
the same likelihood, failure intensity, and genes 1 through 4 will occupy the
same niche, or subpopulation. For example, a niche would be represented by
a likelihood value of .07, a failure intensity value of 12, and genes values {2

2 3 6} for genes 1 through 4. In a population of 500, there may be 20
individuals who have these same values and would, consequently share this
same niche. Another niche would be represented by a likelihood value of
.05, a failure intensity of 10, and gene values {1 3 3 5} for genes 1 through 4.
This type of niching is based on both the phenotype and partial genotype of
the individuals. By implementing niches in the GA, the population will
converge not to a single dominant individual, but to multiple dominant
niches.

Specifically, niching is performed based on fitness sharing [Holland
1975]. Fitness sharing reduces the fitness values of individuals that are
similar to other individuals in some way (i.e., the various niches in the
population). This type of niching was used because of its success in prior
work [Mahfoud 1995]. For this application, an individual’s fitness value is
reduced by dividing its fitness by the number of individuals that share its
same niche.

5.4.4 Determining Overall Fitness
Highly fit individuals in the population are those maximize the

objectives of likelihood of occurrence and failure intensity. A nonlinear
aggregating fitness combination [Coello Coello et al. 2002] is used to
identify individuals based on these two objectives. Determining failure
intensity is already time consuming, therefore, this type of fitness
combination was selected for its simplicity and speed. In addition, it directly
addressed the needs of this particular case study.

Each individual i is given a combined fitness value that is based on
the likelihood of occurrence of individual i, the failure intensity revealed by
individual i, and the total number of individuals in the population p that also
occupy the same niche as individual i. The fitness function to calculate the
overall fitness value for an individual i is given as follows:

() ()()
()ipSizeNiche

iIntensityiLikelihood
iFitness

y

,
)(

×=

Equation 1. GA Fitness Function

The variable y represents a nonlinear scaling factor that can be

adjusted by the test team. This scaling factor is independent of the
individuals in the population. Using the microscope analogy, the y value is
analogous to the magnification level of the microscope. A higher y value
represents a higher magnification, and vice versa. The higher the value of y
used in the GA, the faster the population will converge to the most dominant
niches, and the less diversity there will be in the population. The lower the
value of y, the slower the population will converge and the more diversity

there will be in the population (assuming that there is no one individual that
is exceptionally fit).

If the scaling factor is not high enough, optimal individuals may not
be found, or would be lost in the process. This may occur in large
populations when weaker individuals may dramatically outnumber more
optimal individuals. A higher scaling factor will help optimal individuals
survive in a large mass of weaker individuals.

5.5 Genetic Operators
To create children from a given population, genetic operators such as

selection, crossover, and mutation operators are applied to the individuals.
Selection is first used to select parents from the population according to the
overall fitness value, as discussed in section 5.4. Strongly fit individuals
(higher fitness values) are more likely to be selected for reproduction than
weaker individuals (lower fitness values). Consequently, the average
population fitness should improve with each generation. Once parents are
selected, crossover and mutation operators are applied to the parents to create
children. The crossover and mutation operators provide the GA with the
ability to explore the search space for new individuals and to create diversity
in the population. The final result is a new population representing the next
generation.

5.5.1 Selection
The GA selection process used for this application is the Fitness

Proportional Selection [Holland 1975]. With this process, an individual’s
probability of being selected for reproduction is proportional to the
individual’s fitness with respect to the entire population. Each individual’s
fitness value is divided by the sum of the fitness values for all the individuals
in the population. The resulting fitness value is then used to select parents,
who then have the opportunity to pass on their genetic material (encoded
information) to the next generation. Highly fit individuals are therefore more
likely to reproduce. This helps to improve the quality of the population. An
example of fitness proportional values is shown in Table 7. As can be seen,
individual 4 is the most likely to be selected, and individual 2 is the least
likely to be selected. Since this process depends on an individual’s fitness
proportional to the population, the tester can easily influence the selection
process by altering the scaling factor of the fitness function, as discussed in
section 5.4.4.

Table 7. Example of fitness proportional values

Individual Original Fitness Value New Fitness Value
1 2 2 / 21 = .0952
2 1 1 / 21 = .0476
3 4 4 / 21 = .1904
4 9 9 / 21 = .4285
5 5 5 / 21 = .2381

Sum 21 .9998

5.5.2 Crossover
To create children, the GA for this application uses a single-point

crossover operator that takes two parent individuals as input and outputs two
children that are similar, but different, from the parents. This operator
randomly selects a point in the genetic code of two parents and then swaps
all genes between the parents that lie after the crossover point. When
crossover is allowed between parents from different niches, diversity is
encouraged. For this case study, every individual in each generation is
processed by the crossover operator, and, if a child represents an invalid
scenario, it is discarded from the population and replaced by its
corresponding parent. For example, if Child 1 were invalid, it would be
removed and replaced by Parent 1. The basic operation of crossover is
shown in Figure 5.

Figure 5. One-point crossover

Parent 1

Parent 2

Randomly Selected Crossover Point

Child 1

Child 2

Parent 1 Genes Parent 2 Genes

Parent 1 Genes Parent 2 Genes

2 2 3 6 400 34 0 0 100 60

4 1 3 5 10 94 0 0 300 94

4 1 3 6 400 34 0 0 100 60

2 2 3 5 10 94 0 0 300 94

5.5.3 Mutation
In addition to the crossover operator, the GA for this application uses

a single-point mutation operator that takes one individual as input, makes a
small, random change to the genetic code of this individual, and outputs one
mutant that is similar, but different, to the original individual. This operator
randomly selects a gene in the genetic code of an individual and mutates that
gene by randomly selecting some new value. For this case study, every
individual in each generation is processed by the mutation operator, and, if
the mutant represents an invalid scenario, it is discarded from the population
and replaced by the original individual. The basic operation is shown in
Figure 6.

Figure 6. One-point mutation

6. EXAMPLE
The application of the GA to software usage testing was based on a

military simulation system. The population of interest for the examples
included four terrain maps, thirty-seven primary and secondary actors, and
seventeen tasks that are available for use with OTB.

To focus on observing and understanding the behavior of the GA for
use in software testing, the Failure Intensity Evaluation portion of Figure 1
was simulated. Test cases were not actually performed on the military
simulation system. A set of simulated failures was developed for use in all
the examples. Simulated failures included problems with terrain maps,
problems with a specific entity or task regardless of terrain, actor, etc. These
simulated failures were representative of the types of problems seen in the
real system. Failure intensities greater than 12 represented system crashes.
Failure intensities less than 12 represented non-terminating failures. The
scoring system used is shown in Table 8. This is the same scoring technique
proposed in Table 6. Multiple failures per test case were also simulated. As
a result, a test case may reveal a failure intensity of 5, meaning that there
were two failures of with a score of 3 and 2, respectively.

Randomly Selected Mutation Point
Individual

Mutant

Randomly Selected Genetic Value

2 2 3 6 400 34 0 0 100 60

2 2 8 6 400 34 0 0 100 60

Table 8. Failure intensity scoring system

Score Meaning
18 Repeatable, terminating failure
12 Irregular, terminating failure
3 Repeatable, non-terminating failure
2 Irregular, non-terminating failure
1 No failures

Two similar, but slightly different, user profiles were developed to

examine the behavior of the GA when slight changes in a user profile occur.
Sample test cases were generated for each user profile. The GA was
initialized using each set of sample test cases, the corresponding user profile,
and the input boundary (as described in section 5.1). For all the GA runs, the
population size was 100 and the number of generations was 30.The results
for three examples of the GA are shown in Figure 7, Figure 8, Figure 9,
Figure 10, Figure 11 and Figure 12. Each point on the graphs represents a
niche in the population, not a single individual. The data supporting these
figures is shown in Table 9,

Table 10, Table 11, Table 12, Table 13, and Table 14, respectively.

These tables also show how many individuals occupy each niche.
In the first example, Figure 7 shows the niches that were formed

after the fitness evaluation of the first generation formed from test cases
generated according to User Profile 1. Figure 8 shows the niches that were
formed after the fitness evaluation of the thirtieth generation. Notice that
after 30 generations, the GA has converged to a few dominant niches. A
comparison of Figure 7 and Figure 8 indicates that the GA has found four
more niches that are very likely to occur and contain high failure intensities.
Weaker niches did not survive.

In the second example, Figure 9 shows the niches that were formed
after the fitness evaluation of the first generation formed from test cases that
were generated according to User Profile 2. Figure 10 shows the niches that
were formed after the fitness evaluation of the thirtieth generation. Notice
that after 30 generations, the population of the GA has not converged
sufficiently, but rather grew more divergent. This suggests that the fitness
function and selection process are not sufficiently countering the effects of
the crossover and mutation operators.

In the third example, the GA was reapplied using the same input data
as in the second example. However, the scaling factor of the fitness function
was increased from a value 1 to 2. This was done to increase the
convergence of the population, so that the final population does not grow
more divergent as in the second example. The initial niches for this example
of the GA, shown in Figure 11, were the same as for the second example
(i.e., Figure 11 is identical to Figure 9). However, as shown in Figure 12, the

results were much different from that of Figure 10. These results are very
similar to those shown in Figure 8. The GA has found four new niches that
are very likely to occur and contain high failure intensities. The weaker
niches did not survive.

The third example demonstrates a key aspect of the fitness function
of the GA. The scaling factor of the fitness function plays a critical and
delicate role in the finding and maintaining of optimal solutions. As
illustrated in the second example, if scaling factor is too low, optimal
solutions may not be found because the level of exploitation is diminished.
However, if the scaling factor is too high, diversity and exploration will be
diminished.

In the last two examples, the GA was able to overcome a less than
optimal initial population. Notice in Table 11 and Table 13 that the initial
populations were heavily biased towards the niche with the highest
likelihood and low failure intensity. Table 12 and Table 14 show that the
final populations are more balanced (in comparison to Table 11 and Table
13, respectively), and resulted in niches that are more interesting in terms of
high failure intensity, while also being very likely to occur.

Finally, in each example, the final populations consist of niches that
are:

1. Very likely to occur and resulted in a high failure intensity
2. Similar, but different. As described in [Myers 1979], similar, but

different, test cases help to identify the failure’s root cause.

Initial Test Case Niches

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 2 4 6 8 10 12 14 16 18 20 22 24

Fai lure Intensi ty

Li
ke

li
ho

od
 o

f O
cc

ur
re

nc
e

Figure 7. Test case niches for User Profile 1 after Generation 1.

Final Test Case Niches

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 2 4 6 8 10 12 14 16 18 20 22 24

Fai lure Intensi ty

Li
ke

li
ho

od
 o

f O
cc

ur
re

nc
e

Figure 8. Test case niches for User Profile 1 after Generation 30.

Table 9. Number of individuals for test case niches shown in Figure 7

Likelihood Failure
Intensity Terrain Primary

Actor Task Secondary
Actor

Niche
Size

0.0005 1 Itsec M16A2 Suppressive
Fire

AK47 6

0.0005 3 Itsec M16A2 Suppressive
Fire

AK47 1

0.0040 20 Hunter AH-64 Recon SA-9 1
0.0040 20 Hunter AH-64 Recon SA-15 7
0.0043 9 Itsec M16A2 Location

Fire
AK47 5

0.0043 12 Itsec M16A2 Location
Fire

AK47 1

0.0067 15 NTC M1A1 Assault BMP-2 7
0.0072 10 Itsec AH-64 Attack T-72 3
0.0072 13 Itsec AH-64 Attack T-72 3

0.0080 18 Itsec M3 Transport SAW
Gunner 5

0.0080 21 Itsec M3 Transport SAW
Gunner 1

0.0083 3 Knox M1A1 Assault SA-9 7
0.0111 1 Knox AC-130 Attack SA-15 6
0.0185 14 Knox AH-64 Recon BMP-2 6
0.0223 18 NTC M3 Transport DI-M224 7
0.0370 15 Knox AC-130 Ingress SA-15 7
0.0370 15 Knox AC-130 Ingress SA-9 7
0.0370 21 Knox AC-130 Ingress T-80 7
0.0603 11 NTC M1A1 Assault T-72 7
0.0750 9 Knox M1A1 Assault T-80 6

Table 10. Number of individuals for test case niches shown in Figure 8

Likelihood Failure
Intensity Terrain Primary

Actor Task Secondary
Actor

Niche
Size

0.0223 18 NTC M3 Transport SAW
Gunner 5

0.0223 18 NTC M3 Transport DI-M224 7
0.0370 15 Knox AC-130 Ingress SA-15 3
0.0370 15 Knox AC-130 Ingress SA-9 8
0.0370 21 Knox AC-130 Ingress T-80 8
0.0603 9 NTC M1A1 Assault T-80 6
0.0603 11 NTC M1A1 Assault T-72 5
0.0603 21 NTC M1A1 Assault T-80 19
0.0603 23 NTC M1A1 Assault T-72 13
0.0750 9 Knox M1A1 Assault T-80 11
0.0750 11 Knox M1A1 Assault T-72 15

Initial Test Case Niches

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0 2 4 6 8 10 12 14 16 18 20 22 24

Fai lure Intensi ty

Li
ke

li
ho

od
 o

f O
cc

ur
re

nc
e

Figure 9. Test Case Niches for User Profile 2 after Generation 1

Final Test Case Niches

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0 2 4 6 8 10 12 14 16 18 20 22 24

Fai lure Intensi ty

Li
ke

li
ho

od
 o

f O
cc

ur
re

nc
e

Figure 10. Test Case Niches for User Profile 2 after Generation 30

Table 11. Number of individuals for test case niches shown in Figure 9

Likelihood Failure
Intensity Terrain Primary

Actor Task Secondary
Actor

Niche
Size

0.0185 2 Knox AH-64 Recon SA-9 8

0.0223 18 NTC M3 Transport SAW
Gunner 8

0.0370 15 Knox AC-130 Ingress SA-15 7
0.0669 9 NTC M1A1 Assault T-80 8
0.0833 11 Knox M1A1 Assault T-72 8
0.0999 1 Knox AC-130 Attack SA-9 8
0.1499 2 Knox AH-64 Attack SA-9 53

Table 12. Number of individuals for test case niches shown in Figure 10

Likelihood Failure
Intensity

Terrain Primary
Actor

Task Secondary
Actor

Niche
Size

0.0223 12 NTC M3 Transport DI-M224 4
0.0223 18 NTC M3 Transport DI-M224 2
0.0321 20 Hunter AH-64 Attack SA-9 7
0.0370 15 Knox AC-130 Ingress SA-15 10
0.0370 15 Knox AC-130 Ingress SA-9 5
0.0370 21 Knox AC-130 Ingress T-80 4
0.0669 9 NTC M1A1 Assault T-80 9
0.0669 11 NTC M1A1 Assault T-72 8
0.0669 21 NTC M1A1 Assault T-80 18
0.0669 23 NTC M1A1 Assault T-72 13
0.0833 9 Knox M1A1 Assault T-80 5
0.0833 11 Knox M1A1 Assault T-72 9
0.1499 2 Knox AH-64 Attack SA-9 6

Initial Test Case Niches

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0 2 4 6 8 10 12 14 16 18 20 22 24

Fai lure Intensi ty

Li
ke

li
ho

od
 o

f O
cc

ur
re

nc
e

Figure 11. Test Case Niches for User Profile 2 after Generation 1 with

scaling factor of 2.

Final Test Case Niches

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0 2 4 6 8 10 12 14 16 18 20 22 24

Fai lure Intensi ty

Li
ke

li
ho

od
 o

f O
cc

ur
re

nc
e

Figure 12. Test Case Niches for User Profile 2 after Generation 30 with

scaling factor of 2.

Table 13. Number of individuals for test case niches shown in Figure 11

Likelihood Failure
Intensity Terrain Primary

Actor Task Secondary
Actor

Niche
Size

0.0185 2 Knox AH-64 Recon SA-9 8

0.0223 18 NTC M3 Transport SAW
Gunner 8

0.0370 15 Knox AC-130 Ingress SA-15 7
0.0669 9 NTC M1A1 Assault T-80 8
0.0833 11 Knox M1A1 Assault T-72 8
0.0999 1 Knox AC-130 Attack SA-9 8
0.1499 2 Knox AH-64 Attack SA-9 53

Table 14. Number of individuals for test case niches shown in Figure 12

Likelihood Failure
Intensity Terrain Primary

Actor Task Secondary
Actor

Niche
Size

0.0370 15 Knox AC-130 Ingress SA-15 5
0.0370 21 Knox AC-130 Ingress T-80 7
0.0669 9 NTC M1A1 Assault T-80 2
0.0669 11 NTC M1A1 Assault T-72 9
0.0669 21 NTC M1A1 Assault T-80 30
0.0669 23 NTC M1A1 Assault T-72 31
0.0833 9 Knox M1A1 Assault T-80 6
0.0833 11 Knox M1A1 Assault T-72 10

7. CONCLUSIONS
This paper introduces a genetic algorithm approach to software usage

testing that is used to explore the space of input data and identify and focus
on regions that cause failures. Analysis of the examples in this paper
demonstrates that genetic algorithms can be used as a tool to help a software
tester search, locate, and isolate failures in a software system. The use of
genetic algorithms supports automated testing and helps to identify those
failures that are most severe and likely to occur for the user.

The strategy presented in this paper relies on a technique that not
only helps the tester to isolate failure clusters, but also provides the developer
with more information concerning the faults in the software and the input
values that triggered them. The developer can then use this information to
search, locate, and isolate the faults that caused the failures. The result can
improve efficiency of both the testing and the development teams and can
support subsequent improvements in the software development process.

The examples discussed in this paper raise a number of new ideas
and issues for future consideration, such as the use of a global parallel
genetic algorithm, different representation scheme, restrictive mating, and
genetic algorithm parameter sensitivity to different user profiles. For
example, current testing practice involves several testers working on
different test cases at the same time. For the example application discussed
in this paper, the fitness evaluation lends itself readily to parallelism. A
global parallel genetic algorithm could take advantage of this parallelism.
Such an approach could provide automated support to the current testing
practice of distributed work effort. While each of these areas for future
consideration could be further investigated with respect to applicability for
software testing, as demonstrated by the examples of this paper, the simple
genetic algorithm approach presented in this paper provides in itself a useful
contribution to the selection of test cases and a focused examination of test
results. Thus, application of this approach can support reasoning about test
results to support quality system assessment and/or debugging activities.

ACKNOWLEDGEMENT
This work was funded in part by NAWC-TSD Contract N61339-01-

D-002.

REFERENCES

Chambers, L., Ed. (2000), The Practical Handbook of Genetic Algorithms:

Applications, Second Edition, Chapman & Hall / CRC.

Coello Coello, C.A., D.A.V. Veldhuizen, G.B. Lamont (2002), Evolutionary

Algorithms for Solving Multi-Objective Problems, Kluwer Academic
Publishers, New York, NY.

Coley, D. A. (2001), An Introduction to Genetic Algorithms for Scientists

and Engineers, World Scientific, River Edge, NJ.

Deb, K. (1999), “Multi -objective genetic algorithms: Problem difficulties

and construction of test problems”, Evolutionary Computation
Journal, 7,3, 205-230.

Dickinson, W., D. Leon, and A. Podgurski (2001), “Pursuing Fa ilure: The

Distribution of Program Failures in a Profile Space.” In Proceedings
of the 9th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pp. 246 – 255.

Drake, T (2000), “Testing Software Based Systems: The Final Frontier.”

Software Tech News, Vol. 3, No. 3.

Fonseca, C. M. and P. J. Fleming (1995), “An overview of evolutionary

algorithms in multiobjective optimization”, Evolutionary
Computation Journal, 3,1, 1-16.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley.

Goldberg, D.E. (1990), “Real -coded Genetic Algorithms, Virtual Alphabets,

and Blocking,” Illinois Genetic Algorithms Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois, Tech. Rep.90001.

Haupt, R. L., and S. E. Haupt (1998), Practical Genetic Algorithms John

Wiley & Sons, Inc. New York, NY.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems.

University of Michigan Press.

Horn, J. (1997), “The Nature of Niching: Genetic Algori thms and the

Evolution of Optimal, Cooperative Populations”, PhD Thesis,

Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

IEEE Std. 829-1998, IEEE Standard for Software Test Documentation.

Karr, C. L., and L. M. Freeman, Ed. (1999), Industrial Applications of

Genetic Algorithms, CRC Press, New York, NY.

Mahfoud, S. W. (1995), “Niching Methods for Genetic Algorithms.” PhD

Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois.

Mitchell, M. (1996), An Introduction to Genetic Algorithms, MIT Press.

Myers, G.J. (1976), Software Reliability, John Wiley & Sons, Inc., New

York.

Myers, G.J. (1979), The Art of Software Testing, John Wiley & Sons, Inc.,

New York.

Schultz, A. C., J. J. Grefenstette, and K. A. De Jong (1992), “Adaptive

testing of controllers for autonomous vehicles.” In Proceedings of
the 1992 Symposium on Autonomous Underwater Vehicle
Technology, pp. 158 – 164.

Zeller, A. (2001), “Automated Debugging : Are We Close?” IEEE

Computer, 34, 11, 26-31.

