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Figure 1: Our new Carousel method is an in-VR assessment method that requires users to actively select the correct state for an
inspection point by controlling the breadth of possibilities with the left 3D carousel (e.g., color, material, shape, shininess, and
transparency) and the depth of possibilities with the right 3D carousel (e.g., which color).

ABSTRACT
Training simulations in virtual reality (VR) have become a focal
point of both research and development due to allowing users to
familiarize themselves with procedures and tasks without needing
physical objects to interact with or needing to be physically present.
However, the increasing popularity of VR training paradigms raises
the question: Are VR-based training assessments accurate? Many
VR training programs, particularly those focused on inspection
tasks, employ simple pass or fail assessments. However, these types
of assessments do not necessarily reflect the user’s knowledge.

In this paper, we present Carousel, a novel VR-based assessment
method that requires users to actively employ their training knowl-
edge by considering all relevant scenarios during assessments. We
also present a within-subject user study that compares the accuracy
of our new Carousel method to a conventional pass or fail method
for a series of virtual object inspection tasks involving shapes and
colors. The results of our study indicate that the Carousel method
affords significantly more-accurate assessments of a user’s knowl-
edge than the binary-choice method.
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1 INTRODUCTION
Inspection training is a crucial element in preparing individuals
taking on the role and responsibility of thoroughly understanding
and evaluating real-world systems and environments. Given this,
researchers have explored training inspection tasks in virtual re-
ality (VR) experiences to provide individuals with accessible and
inexpensive alternatives to learning such inspections within real-
world contexts. A few examples of such VR-based training solutions
include inspecting aircraft cargo bays for defects [10], construction
sites for hazards [19], and work zones for deficiencies [1].

In addition to training inspection tasks in VR, researchers have
also investigated assessing an individual’s knowledge of inspection
tasks in VR. Assessment methods in VR have included selecting
defects or hazards within the environment [8, 35], passing or failing
inspection points [7, 21], selecting the current state of a point from
a small set of options [2, 19], or some hybrid combination of these
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[27, 36]. However, while researchers have employed these various
methods for in-VR assessments of inspection tasks, there has been
little research into the accuracy or efficacy of these techniques.

In this paper, we present a new in-VR assessment method in-
spired by traditional carousel user interfaces [4, 13], which we
thereby call the “Carousel” method. Carousel is a novel VR-based
assessment method that presents users with the entire breadth and
depth of inspection possibilities. Unlike prior in-VR assessment
methods, which only require users to passively recognize the cor-
rect state from a small subset of possibilities, the Carousel method
requires users to actively recall the correct state from all relevant
inspection scenarios. Hence, the Carousel method should better
reflect users’ actual knowledge compared to the prior methods.

To evaluate the efficacy of our new method and to better under-
stand in-VR assessments of inspection tasks, we present a within-
subject study comparing our Carousel method to the binary-choice
method (i.e., passing or failing each point). To limit potential con-
founds due to varying degrees of prior context knowledge and to
afford tasks of equal difficulty for our within-subject design, we
employed a simple inspection task requiring the correct identifi-
cation of the color and shape of 10 sequential objects. The results
of our study (N = 30) indicate that the Carousel method affords
significantly more-accurate assessments of user knowledge than
the binary-choice method, which yields significantly higher (i.e.,
inflated) in-VR assessment scores. From our findings, we believe the
Carousel method is a novel in-VR assessment technique that pro-
vides a more-accurate measure of a user’s knowledge than a prior
binary method. In the subsequent sections, we discuss related work,
the design of Carousel, our comparison study, and its implications.

2 RELATEDWORK
To better understand related work, we conducted a traditional lit-
erature survey using Google Scholar to find examples of in-VR
assessments for inspection-based training tasks. Table 1 provides a
summary of the relevant publications that we found. In the follow-
ing sections, we discuss the four types of in-VR assessments that we
found: selection-based, binary-choice, multiple-choice, and hybrid
assessments. We also discuss examples of external assessments.

2.1 Selection-based Assessments
Selection-based assessments rely on the user to select areas or
objects to identify defects, deficiencies, or hazards in VR.

An early example of a VR training application employing the
selection-based assessment method is the aircraft inspection simu-
lation developed by Duchowski et al. [10]. The simulation included
a head-mounted display (HMD), a six-degree-of-freedom (6-DOF)
mouse for 3D interactions, and a video-based eye tracker for con-
ducting a virtual inspection of an aircraft cargo bay. During the
virtual inspection assessment, users used the 6-DOF mouse to point
at and select defects within the aircraft environment. This aircraft
inspection application and selection-based assessment were em-
ployed in numerous studies, including eye movement analysis [10],
investigating presence [35], comparison to a desktop-based aircraft
inspection simulator [34], evaluating display techniques for rep-
resenting the gaze of a virtual trainer [23], and investigating the
effects of feedforward training [31].

Table 1: Summary of related work pertaining to in-VR in-
spection assessments.

In-VR Assessment

Refs Context Selection Binary Multiple External
Assessment

[10] Aircraft
Inspection

[35] Aircraft
Inspection

[34] Aircraft
Inspection

[23] Aircraft
Inspection

[31] Aircraft
Inspection

[38] Construction
Hazards

[8] Work Zone
Deficiencies

[1] Work Zone
Deficiencies

[29] Fire Safety
Inspection

[7] Vehicle
Inspection

[2] Building
Inspection

[15] Mining
Hazards

[33] Tree
Identification

[19] Construction
Hazards

[25] Construction
Hazards

[11] Construction
Hazards

[20] Conveyor
Hazards

[22] Conveyor
Hazards

[36] Oil Depot
Hazards

[27] Construction
Hazards

[28] Construction
Hazards

[30] Construction
Hazards

[21] Haul Truck
Inspection

[22] Haul Truck
Inspection
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Another selection-based example is the assessment method em-
ployed by the construction safety simulation developed by Zhao
and Lucas [38]. In their desktop-based simulation, the user can
freely navigate a road construction site using first-person or third-
person perspective controls. In their VR-based assessment scenario,
the user is required to identify hazards by clicking on them. For a
similar training context, Chang et al. [8] developed an HMD-based
simulation for training how to inspect work zones. For their in-VR
assessment, users had to point out any deficiencies in temporary
traffic control and signage. This work zone training simulation was
eventually tested with Department of Transportation employees
[1]. In another HMD-based simulation, Pitana et al. [29] employed
a selection-based assessment method for a fire safety inspection
application, in which users must select firefighting equipment.

It is important to note that selection-based assessments, like
the aforementioned examples, rely on implicit decisions. While
users make explicit selections to identify issues that they are aware
of, any inspection points not selected are treated as if the user
passed the point, even if the user did not observe it during the
assessment. These implicit decisions make it difficult to determine
if an assessment error is due to the user cognitively deciding that
the point is passable or simply due to the user not observing the
relevant inspection point. While head tracking [24] or eye tracking
[10] can be used to determine whether an inspection point was
observable within the user’s field of view at some time, it is difficult
to determine whether the user mentally assessed the point.

Our newCarousel assessmentmethod is quite different compared
to selection-based assessments. First, selection-based assessments
function as binary assessments to implicitly pass or explicitly fail
each inspection point. On the other hand, our Carousel method
requires users to consider each inspection point and to choose
its correct state from the breadth and depth of possible scenarios.
Hence, our Carousel method affords explicit assessments of each
inspection point and requires users to know the correct state, as
opposed to potentially guessing whether to pass or fail it.

2.2 Binary-Choice Assessments
Binary-Choice asessments require the user to consider each inspec-
tion point and choose whether or not to pass or fail it. By this token,
the aforementioned selection-based assessments and binary-choice
assessments provide the ability for the user to guess whether to
pass or fail an inspection point with a 50% probability of success,
regardless of procedural knowledge. In contrast to the selection-
based assessments, which rely on implicit decision-making, binary-
choice assessments impose explicit decision-making on the user
side, which provides better insight into the user’s actual knowledge.

An example of the binary-choice assessment is the vehicle inspec-
tion simulation developed by Dukes et al. [7]. In their simulation,
users were required to evaluate each inspection point and then
decide whether to pass or fail a given inspection item. Similarly,
McMahan et al. [21] employed a binary choice approach to virtually
assessing user’s knowledge in a haul truck inspection task. At each
inspection point during their simulation, user’s were required to
denote whether a defect is detected.

Both the binary-choice assessment and our newCarousel method
are explicit approaches that require explicit decisions from the user.

As mentioned, the binary-choice approach affords a 50% probabil-
ity of correctly identifying an inspection point. Conversely, our
proposed Carousel method affords a much smaller correct selec-
tion probability that is dependent on the total number of possible
scenarios (i.e., 1/𝑁 ). Hence, Carousel method requires users to ac-
tively engage and recall the correct state and should provide a more
accurate reflection of the user’s knowledge.

2.3 Multiple-Choice Assessments
Multiple-choice assessments require the user to consider each in-
spection point and choose an option for the point from a set of
possibilities. These options can be used to indicate the correct state
of the point [33], what is wrong with the point [19], or how to
address any present issues [36].

Beh et al. [2] employed a multiple-choice assessment approach in
their building utility inspection simulation. At each inspection stage,
users were prompted with an in-VR quiz with multiple choices.
Similarly, Isleyen and Duzgun [15] prompted users to select one
of three failure options when inspecting mining hazards. For their
tree identification assessment, Vellingiri et al. [33] presented an
in-VR quiz consisting of three questions, each with three choices, at
each tree. Likewise, Li et al. [19] prompted users with four hazard
identification choices when they entered a hazardous region within
their construction site virtual environment. Finally, Moore et al. [25]
and Eiris et al. [11] have developed a multiple-answer variant of
the multiple-choice assessment by employing a checkbox interface
for selecting all of the hazards present at an inspection point, as
opposed to only one hazard.

Both the multiple-choice approach and our Carousel technique
are explicit assessments requiring users to select the correct op-
tion from a set of possibilities. The key difference between the ap-
proaches is that the multiple-choice assessment employs a subset of
likely possibilities (usually three or four options) while our Carousel
assessment employs the complete set of possibilities. Hence, the
multiple-choice approach affords a higher probability of getting
each inspection point correct (e.g., 1/4) than the Carousel approach.

2.4 Hybrid Assessments
Within the literature, researchers have also explored hybrid ap-
proaches that combine two of the three assessment approaches
discussed above.

The most common hybrid approach, based on our review, is
the selection-then-multiple-choice assessment. For example, Lucas
et al. [20] developed an in-VR assessment for identifying hazards
around conveyor systems and required users to first select hazards
and then answer an in-VR multiple-choice quiz pertaining to each
hazard. Likewise, Wan et al. [36] had users to select hazards within
their virtual oil depot environment and then select an option from
an in-VR multiple-choice quiz that describes the correct action to
take. Similarly, Pedro et al. [27] required users to select hazards
within their virtual construction site environment and then use a
drop down list to choose the option that best describes the hazard.
In their virtual construction site simulation, Perlman et al. [28] and
Sacks et al. [30] required users to select hazards and then assess
the risk level of each hazard.
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The only other hybrid approach that we found within the lit-
erature was a binary-choice-then-multiple-choice assessment em-
ployed by McMahan et al. [21]. For their in-VR assessment of haul
truck inspections, they first required users to use a binary-choice
approach to indicate whether a defect was detected at an inspection
point and then prompted the user with multiple choices for what
the corrective action should be.

Like our Carousel method, the hybrid assessment approaches
can involve the user making multiple decisions for each inspection
point. However, the selection-then-multiple-choice hybrid requires
an explicit selection decision. For non-selected points, the approach
infers an implicit decision to pass the point. On the other hand, the
binary-choice-then-multiple-choice assessment approach requires
the user to make explicit decisions about each point, much like
our Carousel approach. However, it only employs a subset of pos-
sibilities while the Carousel method requires the user to consider
a complete set of possibilities, which we believe more accurately
reflects the user’s knowledge.

2.5 External Assessments
In our review of literature pertaining to in-VR assessments for
inspection tasks, we found that only a few studies included knowl-
edge assessments external to the VR simulation. In all of these cases,
the researchers employed a knowledge test to evaluate the user’s
knowledge independent of the VR simulation.

For example, McMahan et al. [22] presented the same knowledge
test before and after their VR training and assessment modules. For
both their conveyor hazards application [20] and their haul truck
inspection application [21], they found that post-VR knowledge test
scores were significantly higher than pre-VR knowledge test scores,
indicating that VR training significantly increased knowledge. Like-
wise, Vellingiri et al. [33] used pre and post-VR knowledge tests
to assess the effectiveness of their tree identification simulation,
and they also found significant knowledge increases from pre to
post. Sacks et al. [30] also employed pre and post-VR knowledge
tests for evaluating their construction hazards simulation, but they
also administered a remote knowledge test one month later. They
found that VR training significantly increased scores from pre-VR
to post-VR and from pre-VR to one month later.

Unlike most of the examples of in-VR inspection assessments,
the studies above independently evaluated the effectiveness of their
VR training and assessments through external knowledge tests.
However, none of these studies compared the outcomes of their in-
VR assessments to their external knowledge tests. In this paper, we
present results statistically comparing the outcomes of our in-VR
assessments to a post-VR knowledge test to advance knowledge
with regard to the effectiveness and accuracy of in-VR assessments.

3 THE CAROUSEL INTERFACE
3.1 Carousel Concept
The concept of the Carousel method is to require the user to choose
the correct state of an inspection point from all relevant possibilities,
as opposed to simply passing or failing the point or choosing an
option from a subset of possibilities. We believe by requiring the
user to consider all relevant possibilities, the in-VR assessment will
better reflect the user’s actual knowledge.

3.2 Initial Carousel Design
In early stages of our development, we initially based the Carousel
interface on a more familiar and ubiquitous carousel design [4, 13].
As seen in Figure 2, our initial design presented users with left
and right arrows to change the current state by cycling through
the set of possible states. However, through early testing we found
three problems with this design. First, the design required several
interactions of using the arrows to find the correct choice among
the complete set of options. Based on the GOMS (Goals, Opera-
tors, Methods, and Selection) analysis model [16], this approach
inherently requires more time and effort than direct manipulation
designs [32]. Second, the design did not allow the user to see the en-
tire set of possibilities at any given instance. Finally, the 2D design
did not utilize the advantages of interacting in 3D space [18].

Figure 2: Our initial Carousel design. The left and right ar-
rows allow the user to change the current option (the blue
cube) by cycling through the set of options.

3.3 An Improved Carousel Design
To reduce the number of interactions required to make a selection,
we redesigned our Carousel interface to use direct manipulation
[32] via a simple virtual hand technique [18]. Instead of cycling
through the options using the arrows, the user can instead select
the option by grabbing it from a 3D circular layout with the virtual
hand technique (see Figure ??). However, this requires all of the
options to be visible and within the reach of the user.

In order to present the full set of possibilities, we redesigned the
Carousel interface to leverage a breadth and depth design, such
as those employed by 3D menu interfaces [5, 26]. The current de-
sign presents users with two 3D carousel interfaces: one on the
left for selecting the breadth of options (e.g., color, material, shape,
shininess, and transparency), and one on the right for selecting the
depth of the current breadth selection (e.g., which shape), as seen
in Figure 1. The left carousel is populated with variations of the
inspection point’s current state, altered by a single feature. For ex-
ample, in Figure 1, the current state is an orange sphere, so the left
carousel is populated by a red sphere (color), a textured sphere (ma-
terial), an orange pyramid (shape), a shiny sphere (shininess), and a
semi-transparent orange sphere (transparency). By selecting one of
these features, the right carousel is updated with all variations of
that feature for the current state. For example, by selecting the red
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sphere (color) from the left carousel, the right carousel is populated
with different color variations, as seen in Figure 1. This new design
affords a reduced number of interactions by allowing users to use
direct manipulation to select options while also affording a breadth
and depth of options that are capable of representing all relevant
states or scenarios.

4 EXPERIMENT
To evaluate the efficacy of our new Carousel technique and to bet-
ter understand in-VR assessments, we conducted a within-subjects
study comparing it to the binary-choice method. We chose to com-
pare Carousel to the binary-choice method because both in-VR
assessment techniques require explicit decisions from the user. Ad-
ditionally, because this was an initial investigation into the effects of
presenting users with all relevant possibilities for each inspection
point, we selected the binary-choice method over the multiple-
choice method to provide a more-contrasted experimental design.

To avoid potential confounds related to prior knowledge (e.g.,
prior knowledge of safety hazards) and to afford tasks of equal
difficulty for our within-subject design, we employed a simple
object inspection task requiring users to verify the color (5 options)
and shape (5 options) of each object. Each inspection assessment
required participants to inspect a series of 10 objects. Hence, for
the within-subject design, each participant completed two in-VR
assessments—one for the Carousel method and one for the binary-
choice method—counterbalanced via two cohorts to avoid ordering
and learning effects. Table 2 outlines the exact colors and shapes
for these two sequences of inspection training tasks.

Table 2: Object sequences for training task A and B

Training Sequence A Training Sequence B
Red Cube Blue Cube
Blue Sphere Green Sphere
Green Cone Orange Cone

Orange Cylinder Purple Cylinder
Purple Pyramid Red Pyramid
Orange Cube Orange Sphere
Purple Sphere Green Cube
Red Pyramid Purple Cone
Blue Cone Red Cylinder

Green Cylinder Blue Pyramid

4.1 Research Questions
Given our experimental design, we proposed the following research
questions and hypotheses for our study:

RQ1: Which method, Carousel or Binary Choice, affords the
highest in-VR assessment scores?

H1: Binary Choice will yield higher in-VR assessment scores
due to its 50% probability of correctness, whereas Carousel has
a probability of 4% due to selecting one of 25 possibilities (i.e., 5
colors x 5 shapes).

RQ2:Which method, Carousel or Binary Choice, yields the most-
accurate assessment scores?

H2: Carousel will be more accurate because it requires individu-
als to recall the exact state of each inspection point as opposed to
simply recognizing the correct state with Binary Choice.

4.2 VR Training and Assessment Tasks
For each condition, participants first completed a standard training
task for learning the colors and shapes of the 10 objects and then
completed the relevant in-VR assessment after a short break.

4.2.1 Training Task. In the training task, participants were exposed
to a sequence of 10 objects of varying colors and shapes in VR.
Regarding combination complexity, the color possibilities were Red,
Green, Blue, Purple, and Orange and the shape type possibilities
were Cube, Cone, Sphere, Pyramid, and Cylinder for an overall total
of 25 possible object variations. Participants were asked to learn
each of the 10 objects and their corresponding attributes, in this
case color and shape. Participants were only allowed to view and
interact with one object at a time.

At each podium, participants were shown a 3D representation
of an object with an associated color and shape. Participants were
also shown a text box at the podium to explicitly state, in text,
what the object’s color and shape was (see Figure 3). Once a par-
ticipant felt they had sufficiently learned the current object, they
would press a virtual “Next” button to hide the current object and
prompt and to display the object at the next podium. The participant
would then use the SteamVR teleportation technique to travel to the
next podium, using a newly displayed teleportation waypoint. This
provided participants with spatial cues about where objects were
located in the virtual environment. The participants would teleport
through the environment to visit each podium and object laterally
from left to right. We chose to hide previously learned objects to
avoid potential confounds in learning strategies (e.g., learning one
object at a time vs. learning all the objects at the end).

Figure 3: The standard training task interface.

4.2.2 Binary Choice Assessment. In the Binary Choice assessment,
participants were exposed to a sequence of 10 podiums and ob-
jects in a similar fashion to the training task. The key difference
being that at each podium an accept button and a reject button
were presented for passing or failing the object. The participant’s
goal was to inspect each object and determine whether or not it
correctly matched the object presented at that podium during the
training task. Mismatches were possible in the form of an incorrect
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color, incorrect shape, or both attributes being incorrect. Once each
object was thoroughly inspected, participants would respond via
the accept or reject buttons accordingly. Figure 4 shows the Binary
Choice interface seen throughout this assessment.

In our study design, we developed predetermined object se-
quences for the Binary Choice assessment to correspond to object
Sequence A and object Sequence B. In the conception of these as-
sessment sequences, we ensured that five of the 10 objects in the
assessment were consistently incorrect in the form of being a dif-
ferent color, shape, or both. Table 3 outlines the colors and shapes
used in the Binary Choice assessment for Sequences A and B.

Figure 4: The Binary Choice assessment interface.

Table 3: Object sets for Binary Choice assessments A and B

Binary Choice Sequence A Binary Choice Sequence B
Red Cube Blue Sphere

Purple Sphere Green Sphere
Green Cone Red Cone

Orange Sphere Purple Cylinder
Blue Cylinder Red Pyramid
Orange Cube Green Cylinder
Purple Sphere Orange Cube
Red Sphere Purple Cone
Blue Cone Orange Cylinder

Red Cylinder Blue Pyramid

4.2.3 Carousel Assessment. In the Carousel assessment, the goal
and workflow was similar to that of the Binary Choice assessment.
The exception, however, was that the participant would need to
interact with the two carousel interfaces to specify what they be-
lieved was the object that they inspected during the initial training
task. Since the attributes of the assessment task focused on only
color and shape, participants used the left 3D carousel to specify
color and the right carousel to specify shape.

4.3 Dependent Variables
Throughout the duration of the study, we gathered several points
of data in regard to participant performance and evaluation of their
experience with our training and assessment simulations.

Figure 5: The simplified Carousel assessment interface.

4.3.1 In-VR Assessment Accuracy. For both assessment conditions,
participants received 1 point for each correct inspection point and
0 points for each incorrect inspection point. For the Carousel as-
sessment, participants received 1 point if they selected the object
with the correct color and shape for a given podium. For the Binary
Choice assessment, participants received 1 point for accepting a
correct object or rejecting an incorrect object at each podium.

4.3.2 Post-VR Knowledge Test Accuracy. After each instance of the
Carousel and Binary Choice assessment, we administered a post-
VR knowledge test. This knowledge test was administered via an
electronic Qualtrics survey on a nearby desktop computer. The test
consisted of 10 questions corresponding to the 10 inspection objects.
For each question, the participant would use two drop-down menus
to specify the color and shape of each object. In terms of knowledge
test accuracy, participants would receive 1 point for each completely
correct answer (i.e., both color and shape were correctly specified)
and 0 points for any incorrect or partially incorrect answer.

4.3.3 Simulator Sickness. We measured simulator sickness at the
beginning of the study and after each in-VR assessment by admin-
istering the Simulator Sickness Questionnaire (SSQ) [17].

4.3.4 Task Load. We measured the task load of the in-VR assess-
ments by administering the NASA Task Load Index (NASA-TLX)
[14] after each condition. We employed the common Raw TLX
(RTLX) variant [14], in which the sub-scale weighting process is
eliminated to reduce survey times.

4.3.5 System Usability. We measured the perceived usability of
each in-VR assessment method by administering the System Us-
ability Scale [6] after each assessment condition.

4.4 Procedure
Upon arrival, recruited participants were asked to review and sign
an informed consent document. We then collected participant de-
mographics (i.e., age and gender) and administered an initial SSQ
to serve as a baseline for simulator sickness.

We then introduced participants to the VR system (a Meta Quest
2). We informed them how to adjust the headstrap and lenses to be
comfortably worn and how tomanipulate the controllers to perform
the required VR interactions. We then provided the participants
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with a verbal overview of our study and what the in-VR training
and assessment tasks would entail.

Once familiarized, participants were administered the VR train-
ing task for object Sequence A. Participants were allowed to view
and learn each of the 10 objects at their own pace and comfort.
Once the training task was completed, we encouraged participants
to take a break from the VR system before administering the in-VR
assessment task for object Sequence A. After the break, partici-
pants would don the headset again and were administered one of
the in-VR assessments based on their assigned cohort.

Following the in-VR assessment task, participants doffed the
headset and were asked to complete the subjective questionnaires
on a nearby desktop computer. The questionnaires were admin-
istered in the following order: SSQ, NASA TLX, and SUS. After
completing the questionnaires, the participants were administered
the post-VR knowledge test for object Sequence A.

After completing the post-VR knowledge test, participants were
encouraged to take a break before the next set of tasks. After the
short break, participants repeated the above procedures for object
Sequence B and their second in-VR assessment condition. The time
required to complete the study was approximately 60 minutes.
Participants were compensated $15 USD cash.

4.5 Participants
For our study, we recruited 30 participants from our university.
Participants were required to be 18 years of age or older, have
normal or corrected-to-normal vision, and be able to hear, walk, ex-
tend both arms, use both hands, and speak and understand English.
Participants with any visual, auditory, neurological, or physical
disabilities were excluded. Our final participant pool comprised 30
individuals (16 male and 14 female). The ages of our participants
ranged from 18 to 32 with a mean age of 21.93.

5 RESULTS
In this section, we highlight and report the findings of our statistical
analyses. We first highlight the in-VR Assessment Scores, followed
by the Post-VR Knowledge Test scores, and then finally we address
subjective measures found throughout the study.

5.1 In-VR Assessment Scores
First, we conducted a paired samples t-test on the in-VR assessment
scores for Sequence A and Sequence B to determine whether the
training tasks were significantly different. The test, 𝑡 (29) = 0.72,
𝑝 = 0.48, revealed that Sequence A in-VR assessment scores (𝑀 =

0.60, 𝑆𝐷 = 0.27) were not significantly different from Sequence B
in-VR assessment scores (𝑀 = 0.57, 𝑆𝐷 = 0.27), which indicates
that the tasks were approximately equivalent in terms of difficulty.

We then conducted a repeated-measures analysis of variance
(RM-ANOVA) at a 95% confidence level to determine if the Carousel
and Binary Choice methods significantly differed in terms of in-VR
assessment scores. A Shapiro-Wilk test indicated that the results
were normally distributed. The RM-ANOVA, 𝐹 (1, 29) = 70.39, 𝑝 <

0.01, 𝜂2 = 0.71, revealed that Carousel in-VR assessment scores
(𝑀 = 0.39, 𝑆𝐷 = 0.22) were significantly lower than Binary Choice
scores (𝑀 = 0.77, 𝑆𝐷 = 0.16). Participants scored significantly
higher in the Binary Choice condition (see in Figure 6).

Figure 6: Mean in-VR assessment scores for the Carousel and
Binary Choice conditions.

Figure 7: Mean post-VR knowledge test scores for the
Carousel and Binary Choice conditions.

5.2 Post-VR Knowledge Test Scores
First, we conducted an RM-ANOVA at a 95% confidence level to
determine if the Carousel and Binary Choice methods significantly
differed in terms of post-VR knowledge test scores. Again, scores
were normally distributed. The RM-ANOVA, 𝐹 (1, 29) = 1.13, 𝑝 =

0.30, revealed that the Carousel (𝑀 = 0.34, 𝑆𝐷 = 0.25) and Binary
Choice (𝑀 = 0.39, 𝑆𝐷 = 0.20) methods were not significantly
different in terms of post-VR knowledge test scores (see Figure 7).

We then analyzed the difference between each in-VR assessment
score and its respective post-VR knowledge test score. An RM-
ANOVA at 95% confidence level, 𝐹 (1, 29) = 65.66, 𝑝 < 0.01, 𝜂2 =

0.69, revealed that the Carousel assessment-to-test difference (𝑀 =

−0.05, 𝑆𝐷 = 0.11)was significantly different from the Binary Choice
assessment-to-test difference (𝑀 = −0.38, 𝑆𝐷 = 0.18). As seen in
Figure 8, the difference between the Carousel in-VR assessment
score and its post-VR knowledge test score was significantly smaller
than the difference between the Binary Choice in-VR score and its
post-VR knowledge test score.
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Figure 8: Mean in-VR assessment to post-VR knowledge test
differences for the Carousel and Binary Choice conditions.

Table 4: Means and standard deviations for SSQ, TLX, and
SUS measures.

Carousel M (SD) Conventional M (SD)

SSQ 11.84 (17.21) 16.86 (27.47)
Overall TLX 6.24 (2.91) 5.90 (2.48)
Mental Demand 10.83 (5.57) 8.73 (5.02)
Physical Demand 2.40 (3.25) 1.67 (2.23)
Temporal Demand 2.97 (4.12) 3.10 (4.48)
Performance 7.83 (5.31) 9.97 (5.40)
Effort 9.13 (5.20) 7.60 (5.14)
Frustration 4.27 (5.70) 4.33 (5.22)
SUS 85.33 (14.82) 87.75 (13.46)

5.3 Subjective Measures
For each of the subjective measures below, we conducted RM-
ANOVAs at 95% confidence level. The means and standard devia-
tions of each measure can be found in Table 4.

5.3.1 Simulator Sickness. We found that there was no significant
difference between the Carousel and Binary Choice methods in
terms of total SSQ scores, 𝐹 (1, 29) = 0.89, 𝑝 = 0.35. SSQ scores were
calculated through Kennedy’s overall SSQ equation [17].

5.3.2 Task Load. We found that there was no significant differ-
ence for Overall TLX scores, 𝐹 (1, 29) = 1.32, 𝑝 = 0.26. However,
upon analyzing subscales, we found that the Carousel assessments
had higher mental demand than the Binary Choice assessments,
𝐹 (1, 29) = 15.18, 𝑝 < 0.01, 𝜂2 = 0.34. Furthermore, Carousel assess-
ments trended higher for physical demand, 𝐹 (1, 29) = 4.04, 𝑝 =

0.054. We did not find any significant differences for temporal de-
mand, performance, effort, or frustration.

5.3.3 System Usability. We found that there was no significant
difference between the Carousel and Binary Choice methods in
terms of total SUS scores, 𝐹 (1, 29) = 2.70, 𝑝 = 0.11.

6 DISCUSSION
From our results, we are able to explore and gain insight into the
effects of employing our Carousel interface in the assessment stage
of a VR inspection learning task. The following sections highlight, in
further detail, the implications and conclusions we can derive from
these results and whether they align with our initial hypotheses.

6.1 In-VR Assessment Performances
The results from our study showed a significant difference between
our Carousel method and the Binary Choice method in terms of in-
VR assessment scores. On average, participants scored nearly twice
as high using the Binary Choice method as the Carousel method
(see Figure 6). This result confirms our H1 hypothesis that Binary
Choice would yield higher in-VR assessment scores.

In addition to confirming our hypothesis, this result indicates
that the probability of selecting the correct option with a given
assessment method has a direct impact on in-VR scores. In our study,
the Binary Choice method had a 50% probability of correctness
while the Carousel had a probability of 4% due to selecting one of
25 possibilities (i.e., 5 colors x 5 shapes). By extrapolating this result,
we can hypothesize that multiple-choice assessmentmethods would
also likely result in significantly higher in-VR assessment scores
than Carousel, depending on their number of options (e.g., three
choices afford a 33% probability, four choices a 25% probability).

An interesting question for future research is whether there are
significant differences in terms of in-VR assessment scores between
binary-choice assessments and multiple-choice assessments. There
is currently insufficient evidence to determine whether binary-
choice assessment methods will result in significantly higher in-
VR assessment scores than the multiple-choice methods. Another
interesting question is whether binary-choice assessments will
perform statistically similar to selection-based assessments, which
rely on implicitly passing or explicitly failing each inspection point.

6.2 Accuracy of In-VR Assessments
From the results of the in-VR assessment scores in Figure 6, the
natural inclination is to conclude that the Binary Choice method is
a better in-VR assessment technique than Carousel, as participants
performed significantly better. However, we have demonstrated
that the Binary Choice assessment technique is not reflective of
a user’s knowledge, as seen in Figure 8. On the other hand, our
new Carousel method was able to closely approximate a user’s
post-VR knowledge test score (within 5%). This result confirms our
H2 hypothesis that the Carousel method yields a more-accurate
assessment than the Binary Choice method.

One obvious implication of this result is that more research
needs to be conducted to investigate and validate the efficacy of our
new in-VR Carousel assessment method. While the current results
strongly indicate that our method is an accurate predictor of actual
knowledge, additional studies of different VR training contexts and
external evaluations must be conducted to confirm these results.
One interesting question is whether the Carousel method is a strong
predictor of training transfer to real-world tasks. Our current results
rely on a post-VR knowledge test, but a potential follow-up study
would involve a post-VR real-world test of the inspection task.



Carousel: Improving the Accuracy of Virtual Reality Assessments for Inspection Training Tasks VRST ’22, November 29–December 01, 2022, Virtual/Tsukuba, Japan

Another implication of this result is that in-VR assessment meth-
ods that present all relevant inspection possibilities to users are
more accurate than assessment methods that rely on binary op-
tions (e.g., pass/fail) or small sets of multiple options. Our Carousel
technique is merely one implementation of this design concept.
Other interface designs, potentially better ones, are likely to exist.
Furthermore, it is unclear whether in-VR assessment methods need
to present all of the relevant possibilities or just a larger subset of
the possibilities to be more accurate. For example, an interesting
question is whether a modified version of the Carousel technique
that only presents half of the relevant possibilities would be as
effective at predicting knowledge acquisition.

6.3 Potential Use Cases of Carousel
As highlighted in our related work, inspection VR training experi-
ences span multiple disciplines: aircraft inspections, construction
hazards, vehicle inspections, and more. Many of these inspection
training contexts may benefit from using our Carousel method.

Figure 9: An example of using our new Carousel method for
an assessment of a virtual patient examination.

One potential example of employing the Carousel method is
for virtual patient examinations (e.g. [9]). As seen in Figure 9, the
Carousel method can be employed to better assess a trainee’s knowl-
edge of such an examination by returning the virtual patient to a
healthy state. For example, if the virtual patient’s eyes are yellowish
due to jaundice (as seen in the top portion of Figure 9), the trainee
would be expected to select the eyeball from the left carousel, which
also includes a heart for heart sounds, lung for lung sounds, lips for
lip coloration, and a skeleton for patient posture. By selecting the
eyeball from the left carousel, the right carousel is then populated
with various eye conditions that the trainee should be aware of,
such as eye redness and pupil dilation. The trainee can then select
the healthy eyes to change the virtual patient. This process requires
the trainee to not only recognize that the patient had jaundice, but
to understand what healthy eyes look like.

6.4 Limitations and Future Work
One limitation of our research is that it focuses on using VR to train
and assess inspection tasks. While there are numerous examples of
inspection-based VR training applications within the literature (see
Table 1), these applications are obviously a subset of the breadth of
VR training applications. Other types of VR training applications
often involve more active forms of in-VR assessment, such as using
a virtual club to putt a golf ball [12], using virtual micrometers to
measure objects [3], or virtually manipulating the arms of a surgical
robot [24]. Our Carousel technique clearly does not apply to these
non-inspection training tasks. However, for inspection-based VR
training simulations, we believe Carousel should be considered.

Another limitation of our research is that the results are derived
from a controlled study and inspection task. We employed a simple,
highly controlled task that involved users inspecting objects to
assess their color and shape. Ecologically valid training tasks, even
inspection ones, often involve more complex objects and sensory
stimuli than the ones used in our study. However, using a highly
controlled study design for our initial investigation of the Carousel
technique is logical, as opposed to employing a more ecologically
valid design with potential confounds.

Finally, another limitation of our study is that we focused on
the comparison of two explicit assessment techniques: Carousel
and Binary Choice. As highlighted by Yang et. al [37], there are
different physiological factors at play when individuals are exposed
to implicit and explicit learning mechanisms. Hence, our results
may not apply if we were to compare the Carousel technique to an
implicit assessment technique, such as selection-based assessment.
With this in mind, future work should include a comparison of our
Carousel technique and an implicit assessment technique.

In addition to the above limitations, more research should be
conducted to compare the Carousel technique to other forms of
in-VR assessment, such as the multiple-choice technique and the
selection-based technique.

7 CONCLUSION
In this paper, we have presented the concept, design, and develop-
ment of Carousel, a novel method for assessing inspection knowl-
edge within VR training applications. The Carousel technique em-
ploys two 3D carousels for users to control the breadth and depth
of all relevant inspection possibilities. Through our study compar-
ing the Carousel technique to the Binary Choice technique (i.e., a
pass/fail method), we have found evidence that the Carousel tech-
nique more-accurately reflects a user’s inspection knowledge than
the Binary Choice method, which artificially inflates in-VR assess-
ment scores due to its higher correctness probability. These results
suggest that VR researchers and developers should consider employ-
ing in-VR assessment methods that require users to make decisions
given more options, as opposed to simplified assessment methods
that offer a reduced set of inspection possibilities. Additionally, our
results have raised several questions for future research.
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