
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)
T. Hammond and A. Nealen (Editors)

CSTutor: A Pen-Based Tool for Visualizing Data Structures

Sarah Buchanan, Brandon Ochs and Joseph J. LaViola Jr.

University of Central Florida, Department of EECS, Orlando, FL, USA

Abstract
We present CSTutor, a pen-based application for data structure visualization that lets users manipulate data
structures through the recognition of handwritten symbols and gestures as well as edit the corresponding code.
The UI consists of a sketching area where the user can draw a data structure in a way that is as natural as pen
and paper. Running in parallel with the visualization is a code view where users can make changes to the source
code and add functions which manipulate the data structure on the canvas in real time.

Categories and Subject Descriptors(according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Interaction styles K.3.2 [Computers And Education]: Computer and Information Science Education—
Computer Science Education

1. Introduction

Data structures are generally taught by referencing hand
written examples on the white board or by learning diagrams
in a textbook while separately studying the code that drives
these examples. This type of learning creates a disconnect
between the diagram and the code that can often be confus-
ing to students. Additionally, it is hard to determine which
line of code corresponds to which change in the diagram,
and this can prevent students from learning some of the key
concepts of different data structures.

Alternatively, algorithm visualization tools are used by
students and instructors as a supplemental learning aid.
However, studies have shown that algorithm visualization
alone does not improve a student’s level of learning; it is the
level of student engagement with the algorithm visualization
that is effective [GMN03]. In addition, many existing sys-
tems are not practical for use in the classroom or by students
because creating the data structures and animations is too
time consuming. These systems are also not flexible enough
to support creating and editing examples on the fly.

To facilitate a more unified approach to learning intro-
ductory computer science concepts, we present CSTutor, a
novel, pen-based application for data structure visualization
that combines data structure animation and programming.
CSTutor lets the user create diagrams easily with a sketch-
based interface directly linked to an animation engine. This

combined system creates an up-to-date diagram with each
code change. CSTutor has the flexibility of diagramming a
data structure with the familiarity of pen and paper, while
also being able to dynamically animate and update the data
structure based upon any operations or code changes. In
other words, if the user sketches changes to the diagram the
code will dynamically change, and if the user edits the code
the diagram will animate and update itself.

2. CSTutor User Interface

2.1. Sketching Area

CSTutor was designed to have an interaction model that
makes the users feel like they are writing on pen and paper.
We accomplish this by providing a sketching area for the
user to create a data structure diagram (see Figure1). Using
a stylus, the user creates data structure components through
writing and performing a variety of gestures. The data struc-
tures represented in CSTutor (Linked List, Doubly Linked
List, Binary Search Tree, and Heap) were chosen specifi-
cally because they are the most basic data structures taught
in introductory computer science classes. We create an inter-
action mode for each of these data structures, which the user
can select from the menu buttons. In order to keep the UI as
natural as possible, a combination of several basic gestures
are used for each interaction mode. Linked Lists and Dou-
bly Linked Lists use a combination of rectangle, line, and
scribble erase gestures. For the trees (Binary Search Tree

c© The Eurographics Association 2011.



Sarah Buchanan, Brandon Ochs & Joseph J. LaViola Jr. / CSTutor: A Pen-Based Tool for Visualizing Data Structures

Figure 1: The sketching area in Linked List mode after nodes
29 and 3 are added.

and Heap) a combination of circle, arrow, tap, and scribble
erase gestures are used.

2.2. Interaction Modes

There are different ways of sketching a conceptual operation
on each type of data structure, which is translated directlyto
automatically generated code. All of the gestural operations
that we have chosen are based on how a professor would
teach these concepts using a diagram, and the content comes
from a variety of course lectures and textbooks, including
[Sta95].

The sketching area is designed to allow the user to do
any operations on the data structure through sketching as
they could with the code. They can create nodes, connect
and disconnect nodes, assign/un-assign pointers to nodes,
delete nodes and pointers, and update the data and next val-
ues. For example, a linked list node is created by writing
the value of the node and then boxing that region in with a
rectangle. When the rectangle gesture is completed, the sur-
rounded strokes are sent to an online recognizer [AW10] that
analyzes the user’s handwriting to determine the numerical
value. After the node is drawn it is translated and scaled to
make room for subsequent sketches. Then, a small box is
drawn within the node to represent the allocated memory for
a pointer to the next node. A null pointer stroke is also added
to this memory field for nodes where the next link is null (see
Figure1). Sketching a node produces the following steps in
code: (1) allocating a node in memory, (2) assigning a value
to that node, and (3) setting the node’s next value to null.
The applicable code is then displayed in a text area above
the completed node, and simultaneously the code is added
to the code area. To connect two nodes in a linked list, a line
is drawn from one node to the destination node, resulting in
a reference arrow (see Figure1).

Tree nodes are created by writing the value of the node
and then circling that number, which sends the surrounded
strokes to an online recognizer, just as with the Linked List
mode. After the node is drawn it is dynamically arranged on
the canvas by translating and scaling the nodes to make room
for subsequent tree nodes. Lines are drawn to each child
node if the children are not null. In addition to inserting new
nodes in the tree, the user can delete nodes by scratching
out the node they want to delete. Since insertion and dele-
tion are the main operations made to a binary search tree,
gestural operations are provided for them and any other op-
erations on the tree must be implemented in the user’s code.
AVL tree and Heap interaction modes are similar to the Bi-
nary Search Tree, however AVL trees allow rotations with a
left or right arrow gesture and Heaps allow swapping nodes
with up and down arrow gestures.

2.3. Code Area

Any sketch created in the canvas area has an association with
a section of code. When a sketch is completed, the corre-
sponding code appears in an information box on the canvas,
and is simultaneously added to the main method in the code
area. Users can edit the auto-generated code, add their own
functions and operations, compile and run the code, and step
through the resulting changes to the diagram.

3. Conclusion

We have presented CSTutor, a pen-based tool that supports
the dynamic visualization of data structures including linked
lists, doubly linked lists, binary search trees, and heaps.
CSTutor creates a bidirectional interaction flow by synergis-
tically combining hand drawn data structures with the corre-
sponding code so the interaction between them can be visu-
ally explored. This synergy lets users change either the code
or the hand drawn data structure to observe the effects.

4. Acknowledgments

This work is supported in part by NSF CAREER award IIS-
0845921 and NSF Award IIS-0856045.

References

[AW10] A NTHONY L., WOBBROCK J. O.: A lightweight multi-
stroke recognizer for user interface prototypes. InProceedings of
Graphics Interface 2010 (Toronto, Ont., Canada, Canada, 2010),
GI ’10, Canadian Information Processing Society, pp. 245–252.
2

[GMN03] GRISSOMS., MCNALLY M. F., NAPS T.: Algorithm
visualization in cs education: comparing levels of studenten-
gagement. InProceedings of the 2003 ACM symposium on Soft-
ware visualization (New York, NY, USA, 2003), SoftVis ’03,
ACM, pp. 87–94.1

[Sta95] STANDISH T. A.: Data Structures, Algorithms, and Soft-
ware Principles in C. Addison-Wesley, Reading, Massachusetts,
1995.2

c© The Eurographics Association 2011.


