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Figure 1: Four examples equations utilizing math boxes. Subexpressions, according to their spatial relationship with neighboring
terms, are entirely contained in a hierarchy of boxes. A math box and its parent boxes are dynamically resized when the user
hovers over a box’s boundary so that the associated subexpression can be easily extended.

ABSTRACT
We present math boxes, a novel pen-based user interface for
simplifying the task of hand writing difficult mathematical
expressions. Visible bounding boxes around certain subex-
pressions are automatically generated as the system detects
specific relationships including superscripts, subscripts, and
fractions. Subexpressions contained in a box can then be ex-
tended by adding new terms directly into its given bounds.
Upon accepting new characters, box boundaries are dynam-
ically resized and neighboring terms are translated to make
room for the larger box. Feedback on structural recognition
is given via the boxes themselves. We also provide feedback
on character recognition by morphing the user’s individual
characters into a cleaner version stored in our ink database.

To evaluate the usefulness of our proposed method, we con-
ducted a user study in which participants write a variety of
equations ranging in complexity from a simple polynomial to
the more difficult expected value of the logistic distribution.
The math boxes interface is compared against the commonly
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used offset typeset (small) method, where recognized expres-
sions are typeset in a system font near the user’s unmodified
ink. In our initial study, we find that the fluidness of the offset
method is preferred for simple expressions but as difficulty in-
creases, our math boxes method is overwhelmingly preferred.
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Introduction
Recognition of handwritten mathematics has a long history
[2] and is a critical component of numerous pen-based soft-
ware interfaces for physics [7, 9], geometric theorem proving
[4], Boolean logic visualization and manipulation [5], and
algebraic intelligent tutoring systems (ITS) [1] among others.
Users of these systems demand high accuracy. For instance,
Anthony et al. [1] estimate that 91—97% recognition accu-
racy is required for acceptance in a mathematics oriented ITS
system. However, based on results from the fourth interna-
tional Competition on Recognition of Online Handwritten
Mathematical Expressions (CROHME) [11], expression level
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recognition rates are still well below this threshold. Comple-
mentary to mathematical expression parsing and recognition,
user interface (UI) design can play a crucial role in usability
and can potentially assist individuals in writing difficult ex-
pressions as well as help simplify error correction. That is,
a well designed UI can go a long way towards improving a
user’s experience and acceptance of such systems.

To this end, our work is motivated by two observations. First,
without in-depth technical knowledge of the algorithms and
architecture employed by the mathematical parser, it can be
difficult to determine the source of a parsing error (or set
of errors) and consequently, equally difficult to correct the
underlying issue. Second, we observe that even when an
expression is available to a user beforehand, he or she will
not ration sufficient space in advance to write out the full
expression. For example, parenthesis are often too small for
large inner expressions; fractions bars are too short for long
numerators or denominators; and superscripts are initiated too
low when they contain fractions. Worse still is that when these
issues do occur, moving symbols around into their desired
positions or rewriting subexpressions may not be enough to
ameliorate any or all errors. With math boxes, we aim to
address both of these issues.

Math boxes relies on simple structural parsing only to be able
to detect superscripts, subscripts, and fraction bars. Once a
particular relationship has been determined to exist between
two symbols, one in which they do not share the same base-
line of math, then boxes are created to contain symbols as is
appropriate for the specific relationship; see Figure 1 for a few
examples. Math boxes are visible to the user and can be easily
extended. Hovering over a box with a stylus or writing into a
box causes its boundaries to grow, and neighboring ink that
overlaps with the box is translated aside, to make room for
the expanded box and possibly new symbols. This eliminates
the need for complex structural parsing and helps to ensure
that users will always have enough room to continue writing
long expressions. As a consequence of this approach, error
correction is simplified because an expression’s structure is
tied directly to the math boxes interface, which therefore does
not require a guess as to why the underlying recognizer went
astray when an error occurs, or trial and error correction.

Based on these ideas, a prototype system utilizing math boxes
was developed and subsequently evaluated and compared
against the currently best known and highly rated user interface
design offset typeset (small) [8, 22]. After asking participants
to write a range of equations varying in complexity, we find
that participants prefer using math boxes for difficult equa-
tions and further, accuracy and time to completion improves as
expressions become more complex, as compared to the offset
typeset (small) interface.

RELATED WORK
Recognition of handwritten mathematics has been an active
area of research for many years, with most effort focusing
on techniques for parsing characters and structure [16, 19],
though less attention has been given to UI techniques for
providing recognition feedback and editing features. Zanibbi
et al [20] introduced the concept of style preserving morphs

to provide instant feedback on the system’s interpretation of
an expression’s structure. Individual characters are resized
and translated into their correct structural position, however,
this technique does not indicate what symbol was actually
recognized nor does it help to prevent errors. Further, by
moving characters into their correct structural position, users
may not have enough space to extend a subexpression.

Smithies et al.’s Freehand Formula Entry System (FFES) [14,
15] is a pen-based interface for editing equations. The system
supports four modes of operation: draw, modify stroke groups,
modify characters, and select and move (for equation level
error editing). FFES, therefore, does not provide a seamless
integration between recognition and editing. Labahn et al.’s
MathBrush [6] is designed specifically to work with a com-
puter based algebra system. One interesting feature of their
UI is that users have the ability to circle subexpressions and
work with them separately. Although this was designed for
algebraic manipulation, it is a potentially useful UI technique
that is slightly related to math boxes in that boxes help to
isolate subexpressions.

Unlike most previous work that focuses on the construction of
equations, Zeleznik et al.[22] focused specifically on UI design
for feedback of recognition results. To the best of our knowl-
edge, this work represents the state of the art. In their work
they describe several variations of typesetting. These include
replacing recognized characters with system font characters
or prerecorded ink characters, and typesetting the recognized
equation underneath the user’s ink in a system font of varying
size. They also experiment with ink color as well as tech-
niques for dealing with allographs. All of these variations
were thoroughly evaluated by LaViola et al. [8] who found
that offset typeset (small) was the preferred choice of recogni-
tion feedback, which is described in the next section. Zeleznik
et al.[21] introduced Hands-On Math, a pen and touch biman-
ual interface that makes computer algebra systems accessible
to users through virtual pages. They developed a rich set of
interaction techniques to manipulate algebraic expressions and
manage virtual pages. However, the error correction and space
issues discussed previously that are handled by math boxes
are not addressed in their work.

Non pen-based interfaces also exist that supports structural
mechanisms akin to math boxes. For instance, BREDIMA
[12] is a web-based tool for editing mathematical expressions
where each math object contains its own rectangular region,
though actual structural changes still requires various WIMP
interactions. We are unaware of any other pen-based UI tech-
nique that structures mathematical expressions utilizing inter-
active and dynamic boxes as we describe.

OFFSET TYPESET (SMALL) USER INTERFACE
Zeleznik et al.’s offset typeset (small) user interface [22], or
just offset hereon, is a well studied interface and is the pre-
ferred feedback interface for recognition of handwritten math-
ematics [8]. Their design provides recognition feedback in
a number of ways. Most notably, results from the math rec-
ognizer are displayed in a typeset system font underneath the
user’s ink. In this way a writer is not distracted by recognition
feedback (such as by character morphing) and he or she can
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(a) Offset UI (b) Boxes UI

Figure 3: Side by side comparison of various aspects of the
the offset (a) and math boxes (b) user interfaces. Specifically,
differences in how unrecognized characters are handled, how
ink is colored, how each system typesets mathematics, and
how much space is required is shown.

verify recognition correctness as is convenient. Further, the
user’s ink is colored according to the recognized structure of
the expression. This allows for quick validation of alignment
and various parsing results. An example of the offset interface
is shown in Figure 3(a).

To edit an expression, offset provides two techniques. First,
scribble-erase allows a user to scribble over previously penned
ink, thus erasing those strokes that overlap with the convex
hull of the scribble stroke. Second, ink is translated by using
the lasso-drag gesture. Targeted strokes are circled and subse-
quently dragged into the new position. Note that the system
continues to parse ink as it is being dragged around, allowing
for instant feedback so that the user can stop dragging when
he or she is satisfied with the result.

A major disadvantage of the offset interface is that user feed-
back does not provide enough information as to what errors
have occurred when the typeset equation does not match the
user’s expectation. Therefore users have to guess as to which
strokes or arrangements may have caused their error. This
violates Wais et al.’s [18] guidance that recognition errors
must be predictable and/or understandable. Wais et al. also
report that users generally prefer to correct errors when they
are done drawing, which may further exacerbate the problem.
In mathematical sketch recognition, delayed error correction
can potentially make the task of understanding and correcting
an underlying error more difficult.

MATH BOXES USER INTERFACE
Math boxes are dynamic containment units for subexpres-
sion symbols that share a common spatial relationship. For
instance, consider the expression:

x

2+ab

+

y

3

z

+ w

5
. (1)

In this equation, the symbols x, +, w, and the fraction bar
share a common baseline of math and consequently, a common
math box. Symbols of the subexpression 2 + ab are offset

from the previous math box, being a superscript of x, and
therefore also share their own math box. Note, however, that
even though 5 is offset in the same manner, it is a superscript of
a different symbol and so will reside in its own math box. For
similar reasons the numerator, denominator and 3 superscript
all reside within their own math boxes. In total, the expression
of Equation 1 is comprised of six unique math boxes.

For reference throughout the remainder of this section, the
flowchart diagrams in Figure 4 show how changes in the stylus
hover state and how new strokes are handled. Most notably,
math boxes are created on-the-fly as new symbols are added
to an expression. Since the boxes are visible to the user, they
also convey useful information about the recognized spatial
relationship between the various symbols. For example, a user
can be certain that a new symbol is recognized as a superscript
because the new symbol is instantly wrapped inside of a new
math box.

Recall that one goal of this work is to eliminate space planning
issues for when a user does not leave his or herself enough
room to write a large expression. To accomplish this goal,
each math box dynamically resizes itself as symbols are added
into a math box’s boundary. However, as boxes are resized,
they may expand into and overlap with other already existing
symbols. This clutter and confusion is avoided by translating
neighboring ink out of the way, to make room for an expanded
math box as is depicted in Figure 5.

Superscripts and Subscripts
New strokes that are determined to exist in the superscript
or subscript space of the left adjacent symbol will cause an
associated math box to be created. The subexpression of
either the superscript or base can then be extended by writing
into the appropriate math box. If a user pens what he or she
expects to be a subscript or superscript and a math box does
not appear, then the user instantly knows the stroke was not
parsed correctly. If this goes uncorrected, then the symbol will
be brought down to the baseline at a later point in time (when
the expression is typeset).

Only certain symbols can contain superscripts or subscripts.
Alphabetic characters can have both whereas numbers can only
have superscripts. Left brackets (rounded, curly, or squared)
cannot have either and closing brackets can have only super-
scripts. These restrictions are not only reasonable, supporting
most mathematical notation requirements, but also help to
eliminate various parsing errors.

Fraction Bars
Fractions generate two math boxes, one for the numerator
and another for the denominator. If a horizontal line is drawn
and there are no symbols above or below the line, then the
stroke is assumed be a negation or minus sign operator. On
the other hand, when a character is written above or below the
line, then both math boxes are created and the new character is
added to the appropriate math box. Another way to work with
fractions is to first write one or more symbols of the numerator
or denominator and then draw the fraction bar. Any symbols
that overlap with the projection of the fraction bar onto the
horizontal axis are automatically added into the appropriate
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(a) Hovering stylus. (b) New stroke collected.

Figure 4: Flowchart for stylus events when (a) the stylus is hovering and when (b) a new stroke is collected. Details of the system
are discussed throughout math boxes user interface section.

(a) (b) (c) (d)

Figure 5: An example of writing a complex expression. A typical scenario (a) occurs when the user fails to reserve enough space
for the denominator (1 + exp (�(x� µ)/�))

2. In (b), once the minus sign is recognized in e’s superscript space, a superscript
box is generated, providing enough additional space so that the subexpression can be further extended if desired. After the fraction
bar is drawn (c), terms above the line are moved into a numerator box. Similarly, a denominator box is supplied as surrounding ink
is simultaneously pushed aside. Finally in (d), by moving the stylus out of range, our system typesets the expression.

math box. Further, the fraction bar automatically resizes as the
numerator or denominator grows so that users can be certain
of and confident in the relationship between the math boxes.

Limits
Limit boxes are automatically created for sigma and integral
symbols. These symbols have to be drawn first, before any
limits are written. If the limits are written first, then we assume
these symbols were intended to be part of the math box’s
baseline of math. However, this is something we intend to
address in future versions of the prototype system.

Symbol Morphing
Many users in fact do not prefer to see their handwriting
changed [8], but without typesetting the equation separately
(and thus wasting space in user interface), we are unaware
of a better method to provide feedback concerning character
recognition correctness. Therefore we choose to morph the

user’s symbols into cleaner versions of the recognized char-
acters stored in our database of prerecorded examples. This
differs from style preserving morphs [20] since recognized
characters are not only rescaled and translated, but they are
also reshaped. To avoid annoyances with rapidly replacing the
original character, the morph is instead animated. Dynamic
timing warping [17] is utilized to determine which points from
the original ink best aligns with the replacement ink characters
points, to make the transition as smooth as possible.

Typesetting
When the stylus is taken out of range of the tablet PC, then
any modified expression is typeset. All symbols are properly
aligned according to their 2D spatial relationships and spacing
between symbols is corrected. Because users do not write
uniformly with proper variation between offsets (e.g., from the
baseline to the superscript space), most symbols also have to be
resized. To minimize the amount of change to each character,
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we utilize the golden section search [13] such that the change
in character height is the error to minimize. Consequently,
the baseline capital letter height is selected to be the value
that minimizes the height change of all symbols. We tried
similar techniques for determining the baseline and left offset
but found through iterative design that utilizing the initial
character’s original position for the baseline and left offset
worked best. Otherwise an expression’s change in position
could be too distracting, even if this minimizes the total overall
movement of each symbol.

As part of typesetting an expression, parentheses and integral
symbols are resized to match the subexpression associated
with the operator or group. In both cases however, resizing
only occurs when the expression is typeset, not as the user is
inking new symbols. As already mentioned above though, this
contrasts with fraction bars, which are dynamically resized as
new math is added into either math box. Finally, parentheses
resizing also only occurs if the group set is complete (i.e., a
subexpression with an open left parenthesis will be resized if
their is a matching closing right parenthesis).

Typesetting an expression removes excess space between sym-
bols created by the math boxes, but this is not a problem
however. If the user thereafter wishes to extend a subexpres-
sion, hovering over the associated math box will cause the
box to expand again, so that the subexpression can be further
modified.

Editing
The same scribble-erase gesture that is supported by the offset
interface is also supported by math boxes. However, the lasso-
drag gesture is not directly applicable. As an alternative, if a
user needs to make room for additional symbols in-between
two preexisting characters, he or she can hover-drag a charac-
ter horizontally to create the necessary space. That is, a user
single-taps a symbol he or she wishes to move. The convex
hull of the symbol is highlighted yellow and then the symbol
is dragged horizontally while hovering over the display. A
final single tap releases the symbol into its new position. At
the same time, terms left or right of the symbol (depending
on the direction of displacement) are also translated and the
associated math box expands to accommodate the new con-
figuration. Math boxes also provide a mechanism for easily
expansion. If a user feels constrained and requires additional
space, he or she can simply tap in an empty region of the math
box to inflate the box’s boundaries.

EVALUATION
StarPad1 (stylized starPad) is an open source SDK for the
recognition of handwritten mathematics developed for Mi-
crosoft’s .NET framework and is based on [10, 22, 23]. The
SDK comes with an example application that implements the
offset user interface described in [8, 22], therefore we uti-
lized this system in our evaluation. Further, to ensure a fair
comparison between user interfaces, we developed a math
boxes implementation around the same underlying character
recognizer.

1
http://pen.cs.brown.edu/starpad.html

Figure 6: Apparatus utilized for user study with Eq 4 in Table
1 shown.

We conducted a user study to evaluate the effectiveness of math
boxes. From the University of Central Florida, we recruited
12 participants, ranging in age from 18—53 (mean=24.67).
Nine participants were male and three were female, two left
handed and ten right. The participants’ backgrounds included
communication sciences and disorders (1), health information
management (1), computer science (7), electrical engineer-
ing (1), statistics (1), and physics (1). Six participants had
some prior experience with handwriting recognition systems
(mostly for note taking on tablet devices). Each participant
took between 90—120 minutes to complete the study and were
compensated $20.

The evaluation was conducted on a Hewlett Packard HP Elite-
Book 2760p Tablet PC with an Intel® Core™ i5-2410M CPU
(2.3GHz) having four gigabytes of memory, running Microsoft
Windows 7 Professional. The touch interface was disabled
so that participants would write naturally without having to
worry about interfering with the interface. The tablet PC was
rested upon a table and pitched at an adjustable incline so that
participants could sit and work comfortably.

Experimental Design and Procedure
We conducted a within-subjects experiment to evaluate user
performance and perception of the math boxes interface com-
pared to the offset interface. The independent variable was
the interface used to write a set of equations, and the depen-
dent variables were the time to completions, accuracies, and
post-questionnaires. Participants first filled out a short pre-
questionnaire in order to collect demographic information and
prior experience with handwritten mathematics on a stylus
or touch device. Subsequently, each participant was then in-
troduced to both user interfaces via two practice problems
per method. In this training phase, complex expressions are
constructed incrementally through a number of stages that
let users become familiar with each system and their editing
features. For the offset method, this included explanations on
and practice with the scribble-erase and lasso gestures. For the
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Eq 1 (a+ b)

2
= a

2
+ 2ab+ b

2

Eq 2
nX

i=1

=

n(n+ 1)

2

Eq 3 f(x) = ax

3
+ bx

2
+ cx

1
+ dx

0

Eq 4 (x� x0)
2
+ (y � y0)

2
+ (z � z0)

2
= r

2

Eq 5
Z

e

ax

b+ ce

a

x

dx =

1

ac

log(b+ ce

ax

)

Eq 6
r

1� sin ✓

1 + sin ✓

=

1� tan

�
✓

2

�

1 + tan

�
✓

2

�

Eq 7 x

2 + 15

(x+ 3)2 (x2 + 3)
=

1

2(x+ 3)
+

2

(x+ 3)2
+

�x+ 1

2 (x2 + 3)

Eq 8
Z 1

�1

1

�

p
2⇡

e

(x�µ)2

2�2
dx = 1

Eq 9
1X

x=0

(4x)!

2

4x
p
2(2x)!((2x+ 1)!)

z

x

=

s
1�

p
1� z

z

Eq 10 E[X] =

Z 1

�1

1

�

e

�(x�µ)
�

⇣
1 + e

�(x�µ)
�

⌘2xdx

Table 1: Equations used in the evaluation, ordered from short-
est to longest in average time taken to write the equation using
the offset method. Note that the equations are labeled to match
Figure 7 and Figure 9.

math boxes method, scribble-erase was similarly demonstrated
and practiced, but also the hover-drag gesture was introduced.
In addition to allowing participants to become familiar with
the interface, we also provided guidance on best practices
to ensure characters are correctly recognized and how to fix
commonly occurring errors. Training lasted between twenty
minutes to one half hour.

After having completed training and once the participant was
ready to continue, he or she was asked to write ten unique
equations twice, once for each method. These equations are
shown in Table 1 and vary in complexity but are roughly
ordered from easiest to hardest in the evaluation. To ensure that
the participant’s focus was not drawn away from the screen, the
equation under consideration was typeset in a system font and
displayed in the upper left corner of the display; the participant
was free to write anywhere else on the display. The order of
which method was used first for each equation was constant
throughout the training and evaluation, however, this order
alternated between participants so that half started with offset

Eqs 1—5 t11-values 1.956 2.085 2.920 1.641 1.343
p-values 0.076 0.061 <0.05 0.129 0.206

Eqs 6—10 t11-values 1.761 -0.184 -1.659 -2.112 -3.655
p-values 0.106 0.858 0.125 0.058 <0.05

Figure 7: Average time in minutes taken to write each equa-
tion using both methods and the T-test results for each equation.
The equations are given in Table 1 and are roughly in order of
difficultly.

and half started with math boxes. Throughout the evaluation
and only on occasion, if the user struggled to correct an error
(usually while using the offset method), we would provide
suggestions on how to correct the error. Further, because the
tablet PC exhibited sluggishness in certain situations (see the
discussion section), we would occasionally have to remind the
participant to write slower and wait for the dynamic resizing
and rendering of the boxes to complete before penning new
characters. Once the participant completed writing an equation
using the second method, he or she was then asked to provide
feedback on a 7-point Likert scale concerning the difficulty of
each method.

Data Collected
During the evaluation, the time to completion (TTC) for each
equation was recorded. We also recorded each modification
so that the entire sequence of events could be replayed if nec-
essary. The number of modifications is also used to calculate
the error rate as discussed in the results section. For each
equation we also collected immediate ease of use feedback for
each interface. Finally, in a post-questionnaire we collected
information on general/overall impressions.

Results
Quantitative Results
For each equation we recorded time to completion (TTC) and
total modifications required to complete the equation. Fig-
ure 7 gives the average TTC results in increasing order by
offset TTC as well as the T-test results for each equations.
For simple and moderately simple equations, the TTC results
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Eqs 1—5 t11-values 1.412 0.789 -0.471 -0.493 -0.136
p-values 0.816 0.188 0.448 0.648 0.632

Eqs 6—10 t11-values -0.136 -2.007 -3.007 -2.720 -5.175
p-values 0.895 0.073 <0.05 <0.05 <0.05

Figure 8: Average accuracy for each equation and the T-
test results for each equation. Accuracy is calculated as the
minimum number of required strokes to complete an equation
over the total number of modifications.

are similar even though math boxes is slightly slower (rea-
sons for this are outlined in the discussion). In general, for
the more complex set of equations, there is a noticeable dif-
ference in TTC rates where math boxes outperforms offset.
Even though we only observed statistical significance for equa-
tion 10 (t11 = �3.655, p < 0.05), we believe this result is
representative of the true distribution. There were also two
instances where a participant gave up on an equation, in both
cases the offset method was under consideration and in both
cases the same equation was completed using the math boxes
interface.

There are a number of approaches to calculating accuracy [3].
Since we are concerned with reducing difficulty in writing
complex expressions, we utilize an accuracy measure that re-
lates to the total amount of work a participant needs to do
to write an equation and therefore, we rely on modification
counts. A modification is any action that results in an invoca-
tion of the parser, such as when a user pens new characters,
erases previous ink, or repositions symbols via the lasso-drag
gesture. To calculate accuracy we first determined the min-
imum number of strokes required to complete an equation,
which is equivalently the minimum number of modifications
needed to complete the equation. The minimum is then di-
vided by the total number of modifications observed so that
accuracy is in terms of effort. Using this metric, accuracy
results from the evaluation are shown in Figure 8. For sim-
pler equations, where structural parsing errors are less likely,
the accuracy of both methods are approximately equivalent.
However, as the equations become more difficult, accuracy
diverges such that math boxes is significantly more accurate.

Eqs 1—5 z-values 10.500 7.000 10.000 25.000 18.000
p-values 0.281 0.206 0.130 0.449 0.584

Eqs 6—10 z-values 9.000 9.000 2.000 10.500 0.000
p-values 0.739 0.196 <0.05 0.286 <0.05

Figure 9: Perceived difficulty of writing each equation for
both methods where 1 is very hard and 7 is very easy, and
the Wilcoxon signed-rank test results. Notice that the off-
set method trends downward as the equations become more
complex whereas boxes remains consistent.

Also notice that offset continues on a downward trend as the
complexity increases which contrasts with math boxes that
is moderately consistent across all equations. One exception,
however, is Eq 6 which was especially subject to the issues
covered in the discussion section.

Qualitative Results
In addition to TTC and accuracy, we asked each participant to
rate how easy each user interface was to use for each equation,
where 1 is very hard and 7 is very easy. These results are
shown in Figure 9. The outcome here matches the quantitative
data in that for simpler and moderately similar equations, there
is little difference. Offset has a slight advantage with higher
scores, but the difference is not statistically significant. This
is consistent with our expectations as we would not anticipate
math boxes to be significantly harder to use for these equation
types. For complex equations, however, using the Wilcoxon
signed-rank test, math boxes is reported to have an advantage
over offset with two of the complex equations—they have
statistical significance (Z = 2.0, p < .05) and (Z = 0.0, p <

0.05 for Eq 8 and Eq 10 respectively). As before, offset’s ease
of use trends downward from approximately 6 to below 4 as
complexity increases, which contrasts with math boxes that
remains fairly level with some fluctuation around 5.5.

Participants were asked via a post-questionnaire to rate their
overall impressions of both systems, for specific features and
in terms of ease of use. The results of this questionnaire are
shown in Table 2. All questions have a value range of 1—
7, where 7 is generally more favorable. The offset method
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Overall (1=hard, 7=easy) Offset Boxes Z p

Ease of use 4.417 5.5 5.5 <0.05
Ease in identifying errors 5.50 5.667 15.5 0.723
Ease in correcting errors 3.583 5.5 0.0 <0.05

Preference (1=offset, 7=boxes) Offset Boxes Std. dev.
For simple equations 1.545 – 0.988
For complex equations – 6.364 1.494

Typesetting (1=disliked, 7=liked) Offset Boxes Z p

Typesetting System 5.5 5.167 4.0 0.336

Math boxes features (1=disagree, 7=agree) Boxes Std. dev.
Liked character morphing 5.08 1.61
Boxes were comfortable 5.33 1.49
Boxes were not distracting 5.25 1.64
Boxes were helpful 6.000 0.912

Table 2: Results of post-questionnaire. Each question has a
value range of 1–7 for which the meaning (given in the table)
varies per question. The mean is shown for question and where
applicable, the Wilcoxon signed-rank test (Z), otherwise, the
standard deviation.

received a moderate score of 4.417 in overall ease of use,
whereas math boxes achieved a more enthusiastic response,
scoring 5.50 with statistical significance between interfaces
using the Wilcoxon signed-rank test (Z = 5.5, p < 0.05).
This is despite similar ease of use ratings, completion times,
and accuracy for most equations. While ease in identifying
errors were positive for both systems (5.5 and 5.667 for offset
and math boxes respectively with Z = 15.5, p = 0.723),
there was a much greater contrast for ease in correcting errors.
With high significance (Z = 0.0, p < .05), offset received a
moderately negative score at 3.583 and math boxes achieved
5.50. This may directly relate to why math boxes is considered
easier to use overall. For equations that are considered simple
as defined by the participant’s intuition, offset is preferred
over math boxes unanimously and the converse is similarly
true. Math boxes, as equations become complex, is strongly
preferred by all participants.

With respect to each interface’s typesetting approach, offset
averaging 5.5 and math boxes closely trailing at 5.167 (Z =

4.0, p = 0.336), there seems only small (without significance)
preference towards offset. This difference, with offset having
a slightly higher average, is consistent with LaViola et al.’s
findings [8], where users report offset-variant interfaces to
be less distracting and less frustrating than ink modifying
interfaces.

A subset of post-questionnaire questions focused on specific
features of the math boxes interface. Participants gave a
moderately positive response to symbol morphing, 5.08 with
� = 1.605. Note that one issue identified in symbol morphing
was that participants would rather see characters morphed into
their own handwriting. Overall, participants found that work-
ing in and with boxes was very helpful (scoring 6, � = 0.91)
and that, despite their dynamic resizing, the boxes were not
too distracting (5.25, � = 1.64). Though the features and in-
terface provided by math boxes gained positive reviews, there
were still a number of issues that caused confusion and frus-

(a) Correct

(b) Error 1 (c) Error 2

Figure 11: Example errors that occurred using the math boxes
method. The correct form is shown in (a). In (b) and (c) the 2

is drawn faster than the fraction bar can be registered, before
the denominator box is rendered. This results in the 2 being
accepted as part of the top level white box, as a character
inserted after “tan( ✓ ”. In (c), the numerator box containing ✓

is registered but not yet rendered as the user begins writing the
closing parenthesis. Because the stylus lands in the numerator
box’s bounds, the closing parenthesis is accepted into the
numerator box despite not being visible.

tration, that kept math boxes from earning higher scores. The
discussion section goes into detail on these issues.

DISCUSSION
Math boxes was designed to address space constraint issues
that arise naturally in writing long expressions and to simplify
error correction, so that having intimate knowledge of the the
underlying parser is not necessary to fix even trivial errors.
The unanimous conclusion based on participant feedback is
that math boxes accomplishes its goal. This is also reflected
in the time to completion results, in the accuracy results, and
in the per equation ease of use surveys for complex equations.
In discussions following the evaluation, many participants
stated that the structure provided by math boxes was helpful,
especially when the expression contains multiple levels of
subexpressions. Math boxes is not a perfect system however.

The offset method was said to be considerably more fluid and
was preferred by all participants for writing simple equations,
a result that is reflected in both the quantitative and psycho-
metric data. Many also felt that a hybrid system might offer a
better alternative, so that one can write fast in normal circum-
stances but be able to utilize a yet unspecified gestural type of
mechanism to create math boxes when needed.

Observations, Feedback, and Suggestions
The system that we used in our evaluation may have been
the cause of a number of errors and difficulties that occurred
during the evaluation of math boxes. Some of these issues
are depicted in Figure 11. Namely, the primary issues were
due to sluggishness in the system. With the collection and
processing of each new stroke, the associated boxes have to be
dynamically resized. In many cases, to make room for larger
boxes, surrounding ink also needs to be translated (so that the
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boxes do not overlap with other characters). When new boxes
have to be created, in some of the worst case scenarios, the
entire process of handling a new stroke can take as long as
600–1000ms to complete. Because users are not accustomed
to having to wait for the system to catch up to write new
characters, participants would often get ahead of the process
and wind up writing into blank areas that would normally have
a box (such as in a denominator space), but before the box
actually exists. In another common scenario and for similar
reasons, a box expansion would be in progress with the final
boundaries already defined. However, the box would not yet
be fully rendered and so the user, believing he or she was
in the outer box, would add a character to the canvas that
was actually accumulated into the inner box not yet visible.
We believe that if such updates had occurred in real-time,
then the overall times for the math boxes method would be
faster and less errors would have occurred. We found through
instrumentation that the majority of the latency came from
interacting with ink points (.NET WPF components). In other
words, the time it takes to calculate the new position of each
ink point when typesetting, morphing, expanding, and so forth
is negligible.

Another issue that occasionally caused frustration occurred
when a user accidentally drew his or her fraction bar impre-
cisely, so that characters left or right of the targeted subex-
pression were unintentionally accumulated into the numerator
or denominator box. Presently, the only way to correct this
error is to scribble-erase the character and rewrite it into the
correct position. To help with this issue and those previously
discussed, and based on discussions with the participants, hav-
ing an easy to use gesture to simply move symbols between
adjacent boxes would have likely improved the overall user
experience.

The math boxes system was designed so that characters could
be modified by writing over previous characters. Therefore
when a new stroke overlaps with previously written ink, the
new stroke is accumulated into the character space and the
previous character is either modified (if the additional stroke
results in a valid character) or completely overwritten. In this
regard, our system is too rigid as this sometimes results in
accidents where users unintentionally overwrite neighboring
characters.

A final issue that caused frustration and sometimes errors
was due to the automatic and frequent typesetting. Users
would periodically raise the stylus out of range of the tablet,
causing the system to typeset their equation, and then bring the
stylus back down to continue writing. Because symbols and
their associated boxes had been moved around, the participant
would land the stylus in the wrong position. Usually this was
quickly noticed and corrected with a scribble-erase. However,
a separate gesture or delayed typesetting timer mechanism
could easily resolve this issue and, again, further improve the
user experience.

Despite these issues and limitations, participants still preferred
working with math boxes as equations became more complex.
This response is reflected not only in the post-questionnaire
results, but also in the accuracy and TTC results. Participants

stated that math boxes’s dynamic resizing and ink transforma-
tions greatly simplified situations involving multiple levels of
subexpressions such as when a term in the denominator of a
fraction possesses a superscript.

Future Work
In addition to addressing those issues aforementioned discov-
ered during the user study, we wish to explore techniques that
increase the acceptance of morphing recognized symbols into
an alternate form for the purpose of recognition feedback. We
are also interested in methods of typesetting parts of the equa-
tion that are not being modified in realtime without causing
frustration or distraction, which we believe is an important
part of space management, readability, and thus of the user
interface. Last, the current design requires the interface to
track an input device while it is hovering over the display.
Many systems do have this support such as most mobile de-
vices. Therefore, a math boxes interface that does not require
hovering is another important avenue of research.

CONCLUSION
We have presented math boxes, a UI design for handwritten
mathematics to make identifying and correcting errors easier
and to assist users with writing difficult equations. In a user
evaluation, we discovered that we did indeed make significant
progress towards our goals but we also discovered several
ways to improve the interface. While all users preferred to
use our math boxes interface for complex equations, they still
preferred the fluidness of the traditional offset method for
simpler equations. We believe with further work and some
refinement, that math boxes will be the preferred option for
expressions of every complexity.
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