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Abstract

Sketching is a natural way to input chemical structures that can be
used to query information from a large chemical structure database.
Based on a user’s incomplete sketch of a chemical structure, sketch
prediction becomes a challenging problem not only due to arbitrary
drawings orders among users but also similarities among chemical
structure layouts. In this paper, we present a graph-based approach
to handle the sketch prediction problem. We use multisets as the
data representation of hand-drawn chemical structures and create
an undirected graph to handle data in all multisets. This approach
transforms the sketch prediction problem into a search problem to
find a hamiltonian path in the corresponding sub-graph with poly-
nomial time complexity. We introduce mixed heuristics to guide the
search procedure. Through an initial experiment on a hand-drawn
chemical structure dataset, we demonstrate that in comparison with
a baseline method, the proposed approach improves the prediction
accuracy and efficiently predicts chemical structures from only par-
tially sketched drawings.

CR Categories: I.7.5 [Document management and text process-
ing]: Document capture—Graphics recognition and interpretation
I.2.8 [Artificial intelligence]: Search methodologies—Search with
partial observations;

Keywords: Chemical Structure Sketch Prediction, Graph Search,
Heuristics, Hamiltonian Path

1 Introduction

Sketch-based interfaces present a pencil-and-paper-like approach to
entering organic chemical structures on a computer which supports
chemical structure prediction queries based on the partial sketch.
For instance, users can sketch partial chemical structures instead
of the full chemical diagram to explore similar chemical structures
within a large chemical structure database, such as SciFinder. In
addition, partial sketch prediction can guide users to draw their in-
tended structures, especially when the user forgets how to draw the
exact solution. However, sketch prediction is a difficult problem
not only due to users’ arbitrary drawing orders but also due to the
similarity between chemical structure layouts. In this paper, we
propose a chemical structure sketch prediction framework to tackle
such problems.

1.1 Sketched Chemical Structure Variation

We asked users to enter different chemical structures using a digitiz-
ing Tablet PC in order to get a better sense of the types of variation
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that exists when users sketch chemical structures. A hand-drawn
chemical structure is composed of chemical bonds and chemical
symbols.

Figure 1 shows several hand-drawn chemical structure samples. In
Figure 1(A), both the top and bottom hand-drawn samples repre-
sent bromobenzene. Yet their visual representations are different
due to the position of single bonds and double bonds to construct
the benzene ring. Besides, each chemical bond or chemical symbol
is labeled as a number to indicate the drawing order. For instance,
the benzene ring in the top sample is drawn in a clockwise manner
started from the single bond which is labeled as 1. By contrast, the
benzene ring in the bottom sample is drawn in a counterclockwise
manner started from the double bond which is labeled as 1. Partic-
ipants also draw a benzene in one stroke to represent the ring and
then update three single bonds to double bonds. Thus, the same
chemical structure can be drawn with an arbitrary drawing order.

In Figure 1(B), both the top and bottom hand-drawn samples rep-
resent phenol. Due to the symmetrical property of chemical struc-
tures, users might change their drawing orientations from the top
sample to the bottom sample. Thus, the drawing orientation of a
chemical structure can vary. In Figure 1(C), both top and bottom
hand-drawn samples represent 1-bromopentan-2-ol. Compared to
the top sketch, a user explicitly draws several carbon chemical la-
bels between every two chemical bonds. Thus, drawing conven-
tions can vary with chemical structures. In Figure 1(D), the top
and bottom hand-drawn samples represent two isomers. They have
similar visual appearance except the position of the chemical label
on structures. Therefore, chemical structure similarity could mean
molecule isomers with different visual chemical structure layouts.
These examples illustrate the variety of ways that a chemical struc-
ture can be written, making sketch prediction a challenging problem
with a large search space.

1.2 Related Work

Sketch prediction is a challenging problem which depends on
sketch recognition [Gennari et al. 2005; Hammond and Davis 2004;
LaViola Jr. and Zeleznik 2007; Ouyang and Davis 2007; Peterson
et al. 2010; Sezgin and Davis 2005] since it needs to interpret the
incomplete user sketch and discriminate between object classes. In
general, [Tirkaz et al. 2012] proposes a method by learning visual
appearances of partial drawings through semi-supervised cluster-
ing, followed by a supervised classification step that determines ob-
ject classes. [Costagliola et al. 2014] uses an Attributed Relational
Graph to represent symbol and exploits a novel spatial descriptor to
represent relations between two stroke primitives in order to make
the symbol matching. [Mas et al. 2007] presents a syntactic ap-
proach to on-line recognition of sketched symbols. The symbols
are defined by an adjacency grammar whose rules are generated
automatically given the small set of seven symbols. The system
can recognize partial sketches in arbitrary drawing order, using the
grammar to check the validity of its hypotheses.

Regarding chemical structure sketch recognition, [Ouyang and
Davis 2011] provided a state-of-the-art sketch recognition frame-
work which combines multiple levels of visual features using a
jointly trained conditional random field. [Sadawi et al. 2012] illus-
trates a rule-based system to recognize chemical structures.
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Figure 1: Chemical structure hand-drawn samples. In Figure 1(A), the same chemical structure bromobenzene can be drawn in different
drawing orders between the top sample and the bottom sample. Each chemical label or chemical symbol is marked with a number to
represent the drawing order. In Figure 1(B), phenol can be drawn in different chemical structure layouts. In Figure 1(C), methylbenzene
contains benzene in its visual layout. In Figure 1(D), 1-bromopentan-2-ol can be drawn by explicitly writing multiple carbon labels in the
bottom sample. In Figure 1(E), 3-bromopentane and 2-bromopentane have similar visual layouts.

With respect of structure prediction work, [Shatabda et al. 2013]
proposed mixed heuristics to guide protein structure prediction.
More generally, [Doppa et al. 2013] introduced a framework for
structured prediction. Given a structured input, their framework
uses a search procedure guided by a learned heuristic to uncover
high quality candidate outputs and use another cost function to se-
lect a final prediction among the output.

In contrast to this prior work, the key contribution of our work is to
treat the chemical structure sketch prediction as a structural pre-
diction problem [Daumé et al. 2009]. After sketch recognition,
hand-drawn chemical structures can be interpreted as a sequence
of encoded symbols. Then we use multisets to represent such an
encoded sequence. A multiset is a set which may contain multiple
occurrences of the same encoded symbol. Through such structured
input, we introduce a graph-based approach to store all multisets
and use mixed heuristics to guide the search to find a Hamiltonian
path in one sub-graph from the graph.

As the sketch prediction work depends on sketch recognition, we
briefly discuss the recognition method which provides both rea-
sonable correct recognition results and efficient recognition perfor-
mance. After that, we explain our sketch prediction framework by
explaining the graph-based approach and propose several heuristics
to efficiently do the local search to meet our goal.

2 Sketch Recognition

Our sketch recognition system initially parses the ink strokes into
a number of lines or arc primitives. We cluster these primitives
to generate chemical symbols (chemical labels or chemical bonds).
By using a domain specific encoding policy, we further change rec-
ognized chemical symbols to the corresponding encoded symbols,
so that encoded symbols have more stroke information than chem-
ical symbols. According to the drawing order, the generated en-
coded symbols form an encoded sequence [Sezgin and Davis 2005].
These encoded sequences are used as input to the sketch prediction
process. Currently, our system can recognize two types of chemical
symbols: chemical bonds (single bond, double bond, triple bond,

hash bond and dash bond) and chemical labels (combination of let-
ters).

2.1 Geometric Primitives Extraction

Each drawing stroke is a combination of atomic geometric primi-
tives that can include line primitives and arc primitives. Breaking
up a stroke in this fashion lets us distinguish cases where one stroke
might contain many chemical single bonds. The segmentation pro-
cedure relies on geometric straw features [Wolin et al. 2008; Xiong
and LaViola 2009] to find stroke corners on a stroke and decompose
a stroke into a number of line primitives and arc primitives.

2.2 Symbol Interpretation

After extracting geometric primitives for each stroke, we cluster
line primitives and arc primitives as symbol candidates and label
them as chemical symbols. By interpreting the domain knowledge
and geometric features of chemical structures, we assume that only
line primitives can construct chemical bonds; both line primitives
and arc primitives can form chemical labels. Based on it, we apply
a clustering method [Ouyang and Davis 2007], which uses a time
sliding window with a fixed length to group contiguous strokes. If
these strokes contain an arc primitive, we send grouped strokes to
a template-based symbol recognizer [Vatavu et al. 2012] to label
them. As for the chemical bonds, before clustering, we use domain
knowledge and geometric features to form different types of chem-
ical bonds. After clustering, we perform domain knowledge veri-
fication to check if recognized chemical symbols satisfy chemical
rules.

2.3 Encoding Policy

We encode recognized chemical symbols as shown in Table 1. Re-
garding chemical bonds, the slope feature of bonds further restricts
a bond as a specific encoded symbol. For instance, a single bond
with a positive slope is interpreted as 2; the double bond with both
lines horizontal are interpreted as 4. Each chemical label directly
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Symbol Code Symbol Code Symbol Code Symbol Code
LineHorizontal 0 ParallelHorizontal 4 None -1 Br 12

LineVertical 1 ParallelVertical 5 C 8 OH 14
LinePositiveSlope 2 ParallelPositiveSlope 6 N 9 NO2 16
LineNegativeSlope 3 ParallelNegativeSlope 7 H 11 . . . . . . . . .

Table 1: Encoding examples in the codebook.

maps to a corresponding encoded symbol. Incorrect recognition
results lead to the error (-1) encoded symbol.

3 Sketch Prediction

The purpose of sketch prediction is to analyze the partial drawings
interpreted as the encoded sequence through the sketch recognition
process and match the most similar chemical structure from training
encoded sequences. Figure 2 shows an example predicting four
chemical structures based on the user’s partial drawing.

We propose a graph-based method by first building a graph G from
training encoded sequences which depends on mixed heuristics.
Then using additional heuristics, we search in G for the substances
that are good fit for the partial drawing.

Before illustrating the details on graph construction and partial
drawing prediction, we first analyze the similarity between en-
coded sequences and then introduce the multiset as data representa-
tion which is used as the constraint heuristic in the partial drawing
matching.

3.1 Encoded Sequences Analysis

Corresponding to Figure 1, there will be four different cases be-
tween encoded sequences. Assume there are two encoded se-
quences S1, S2:

• Case 1 S1, S2 have the same label and encoded symbols col-
lection with different orders (Figure 1(A)).

• Case 2 S1, S2 have different labels and one encoded symbols
collection is the subset of another one (Figure 1(C)).

• Case 3 S1, S2 have the same label but different encoded sym-
bol collections and orders (Figure 1(B, D)).

• Case 4 S1, S2 have different labels, both have the same
encoded symbol collections yet with different orders (Fig-
ure 1(E)).

From the above cases, we notice that encoded symbol collection
and sequence order are two critical properties to disambiguate one
encoded sequence from others. In order to use these two features
to classify a partial drawing as a chemical structure, we further rep-
resent the encoded sequence as a multiset to declare the predic-
tion boundary among training encoded sequences. A multiset is a
set which may contain multiple occurrences of the same element.
Using multisets allows the same encoded symbol to appear more
than once in the set. Besides, it automatically incorporates other
sequence orders which construct the same collection of encoded
symbols. However, since several multisets may represent the same
chemical structure because of diverse chemical structure layouts
(Case 3 above), we set up the ground truth among these multisets to
help us disambiguate.

Figure 2: Sketch prediction based on the user’s partial drawing.

3.2 Graph Representation

We represent all encoded sequences with their corresponding mul-
tisets as an undirected edge-weighted graph:

G = (V,E,W) (1)

where V is the vertex set and each vertex v ∈ V maps to an encoded
symbol which can exist in more than one encoded sequences. E is
the edge set in which each edge e ∈ E indicates the connection
between every two contiguous encoded symbols in an encoded se-
quence. The weight W = (wij , wji) represents the frequency at
which an edge between vertices i and j appears in all training en-
coded sequences. As the order between two encoded symbols can
vary, there are two edge weights wij and wji on the same edge.

As each vertex vi ∈ V on G can map to the same encoded symbol
in different encoded sequences, we define the vertex constraint Cvi

on the vertex vi, which is the set of multiset corresponding to the
above encoded sequences.

3.3 Graph Construction

Algorithm 1 demonstrates the graph construction process. For each
training encoded sequence S, we build the sequence onto the graph
G using several steps.

Algorithm 1 Build encoded sequences onto a graph.

1: Input: encoded sequences S
2: Initialize an empty graph G.
3: for each encoded sequence S with length N in S do
4: M ← Corresponding multiset of S.
5: GSub← Construct Vertices On Graph(S, G).
6: for i = 1 to N do
7: Vcurrent← GSubi−1 , Vnext← GSubi .
8: Add M to CVcurrent , CVnext .
9: Add or Update an edge from Vcurrent to Vnext.

10: end for
11: Add or Update an edge from GSubN−1 to GSub0 .

. S forms a Hamiltonian Cycle on GSub

12: end for
13: Output: Graph G.

First, we compute the current encoded sequence S’s corresponding
multiset M (line 4 of the algorithm). In line 5 of the algorithm, we
search S on G to find a subgraph GSub of G. For every encoded
symbol si ∈ S, our goal is to match one vertex vi on the graph to
indicate this symbol. We utilize the two heuristics below to guide
the search to find such vertex.
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Figure 3: Iterative graph construction by building three encoded sequences. (A) is generated after building bromobenzene’s encoded se-
quence (2,5,3,6,1,7,2,12). (B) is generated after building bromobenzene’s encoded sequence (2,7,1,6,3,5,2,12). (C) is generated after building
pheno’s encoded sequence (2,7,0,6,3,4,3,14). The arrow represents the drawing order between two encoded symbols and the number on the
arrow shows the weight of each edge. The color of node indicates which multiset it belongs to. For instance, the node with number 7 in (C)
is included by both multisets M1 and M2 while the node with number 12 in (C) is contained only by M1.

Heuristic-1 For the encoded symbol si, we can find out all the
matching vertices which corresponds to si. If we have chosen the
vertex vi−1 on the graph which is corresponding to si−1, we check
if an edge on the graph G exists between the vertex vi−1 and each
matching vertex. If only one edge exists, we can select that edge’s
endpoint vi to represent si. If more than one edge exists, we further
apply Heuristic-2 to select vi. However, if no edge exists, we pick
vi from vertex candidates which holds the maximum number of
vertex constraints.

Heuristic-2 Each edge in the graph G has a weight to represent the
connection frequency between two encoded symbols in all training
encoded sequences. If there are multiple vertices which have an
edge to connect the vertex vi−1, we will select the vertex with the
maximal weight on ei−1,i as vi.

For these two heuristics, applying Heuristic-1 alone will average
the weight of edges which increase the ambiguity to select a ver-
tex for the encoded symbol. While applying Heuristic-2 alone may
create exceeding vertices that represent the same encoded symbol,
which also make it difficult to select a vertex. Therefore, we com-
bine these two heuristics to maximize the utilization of existing ver-
tices on the graph and at the same time to guarantee to choose the
correct vertex based on edge weights.

For every encoded symbol si ∈ S, we search for a set of vertex can-
didates in which each vertex has the same encoded symbol as si. If
no vertex candidate matches si, we create a vertex to map on this
encoded symbol. If more than one vertex candidate match the cur-
rent encoded symbol, we further apply Heuristic-1 and Heuristic-2
till only one vertex candidate is left to represent the encoded sym-
bol si. If no vertex on the graph satisfies these heuristics, we create
a vertex to map on this encoded symbol.

The intuition behind these two heuristics is that as there might be
similar encoded sequences with the same prefix, Heuristic-1 can
guarantee to match the current sequence S onto the graph with
the longest matching encoded sequence. The edge weight prop-
erty records users’ drawing sequence behavior. So, Heuristic-2 can
project S onto the graph with the most frequent encoded sequence.

After retrieving the subgraph GSub from G to represent the current
encoded sequence, we iterate each vertex GSubi in GSub to up-
date its vertex constraint by adding the current encoded sequence’s
corresponding multiset M (line 8 of the algorithm). In addition,
between every two contiguous vertices in GSub, if no edge exists,
we create an edge; otherwise, we update the edges corresponding

weight (line 9 of the algorithm).

In line 11 of the algorithm, after every encoded symbol in the se-
quence has found the vertex on G, between the last vertex and the
first vertex, if no edge exists, we create an edge; otherwise, we up-
date the edges corresponding weight. By doing this every training
encoded sequence S forms a hamiltonian cycle in a subgraph of G.

Figure 3 builds three encoded sequences onto the graph. Based
on the encoding policy in Table 1, both sequence (A) and (B) re-
flect the top hand-drawn sample in Figure 1(A). The benzene ring
in sequence (A) is drawn in the counterclockwise manner whereas
the same ring in sequence (B) is drawn in the clockwise manner.
Both sequence (A) and (B) are represented by the same multiset
M1. Sequence (C) corresponds to the top hand-drawn sample in
Figure 1(B). The sequence is represented by the multiset M2.

3.4 Partial Encoded Sequence Prediction

Algorithm 2 illustrates the partial sketch prediction process. It re-
turns a predicted ground truth chemical structure representing a in-
put partial sequence.

Algorithm 2 Sequence prediction on the graph

1: Input: partial encoded sequence S′ and graph G(V,E,W).
2: P ← Search Partial Path On Graph(G,S′).
3: C ← Get Search Constraints(P ).
4: while ∃AmbiguityInSearchConstraint(C) do
5: Search Hamiltonian Path(P,C).
6: end while
7: M ← the multiset with the smallest size in C.
8: if ∃AmbiguityInMultiset(M ) then
9: Post Processing.

10: end if
11: Output: Ground truth chemical structure which M represents.

In line 2 of the algorithm, we search the partial encoded sequence
S′ on the graph G to find all corresponding vertices to form a path
P . During the search, after deciding the first vertex v0 for the en-
coded symbol s′0, we define the global search constraint C as the
vertex constraint Cv0 . After selecting every vi toward the encoded
symbol s′i, we update C as:

C = C ∩ Cvi (2)
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Figure 4: Predictive graph search for three different partial sequences. (A) shows the search result for the partial sequence (2,5,3). (B)
shows the search result for the partial sequence (2,7,1). (C) shows the search result for the partial sequence (2,7,0).

For every encoded symbol s′i ∈ S′, in order to decide the mapping
vertex on G, similar to the graph construction search, we initially
search for a set of vertex candidates in which each vertex has the
same encoded symbol as s′i. If no vertex candidate matches any
encoded symbol s′i, the algorithm will terminate without any pre-
diction. If more than one vertex candidate match the current en-
coded symbol, we first use the same Heuristic-1 in the constructive
graph search to reduce the vertex candidate. After that, we apply
the below Heuristic-3 to further eliminate vertex candidates.

Heuristic-3 When searching for the vertex vi toward the encoded
symbol si, we already get the updated C from the last i−1 matched
vertices. For every vertex candidate’s vi, we check whether Cvi ∩
C = 6 ∅. If the intersection is not empty, we mark this vertex can-
didate as consistent with regard to C. If the intersection is empty,
it means there will be no predicted multiset in C after selecting the
vertex candidate vi. In other words, this vi should be eliminated
from vertex candidates. In the specific case, many vertex candi-
dates maintain the consistency with C. As the number of multisets
differ in the intersection set between C and every vertex candidate,
we select the vertex candidate, which contains the largest number
of multisest in the intersection set.

Though applying Heuristic-3, it is possible that global search con-
straint C still includes more than one multiset. We further utilize
the edge weight property in Heuristic-2 in the constructive graph
search to eliminate vertex candidates. However if we still cannot
make a decision to select a vertex after applying the above heuris-
tics, we will randomly picks one vertex from vertex candidates.

After deciding all vertices for S′, we retrieve the updated global
search constraint C (line 3 of the algorithm). From line 4 till line
6 of the algorithm, based on the existing path P , we continue to
search for a Hamiltonian path which attempts to visit all vertices in
one of the subgraphs corresponding to one multiset in C. During
the search (line 5 of the algorithm), similar to the search in line 2
of the algorithm, we use heuristic-3 and heuristic-2 continuously
to complete the Hamiltonian path search procedure. However if
we still cannot a make decision to select a vertex after applying
the heuristics, we will randomly pick one vertex from vertex can-
didates. When a new vertex is added into the path, we update the
global search constraint C. Such a search procedure will be termi-
nated when the global search constraint C only contains one multi-
set (line 4 of the algorithm).

Regarding case 2 in Section 3.1, the global search constraint C
might contain both the multiset Ma and multiset Mb (Ma ⊂Mb ).
Under such conditions, we apply Heuristic-4.

Heuristic-4 Each multiset assigns a counter variable and initial-

izes its value as the size of itself. When updating the global search
constraint C, we also update the counter in each multiset of C by
subtracting 1 from it. When the counter reaches 0 for the multiset
M with the smallest size, it indicates that the Hamiltonian path of
subgraph in G is found which corresponds to M .

We add Heuristic-4 into the search termination in line 4 of the al-
gorithm, which checks if the counter in any one multiset of C be-
comes zero. If such a multiset exists, we will select it and neglect
other multisets which are both in the global search constraint C.

After the graph search procedure from line 2 to line 6 of the algo-
rithm, if the global search constraint C only leaves one multiset or
the search procedure finds a Hamiltonian path in the multiset with
the smallest size, we can successfully get a multiset M from the
global search constraint C (line 7 of the algorithm). Otherwise, the
search procedure fails to make the prediction.

3.4.1 Post Processing

Due to case 3 and case 4 in Section 3.1, a multiset can contain
multiple labels, in which some labels represent ground truth hand-
drawn chemical structures, whereas the others do not. From line 7
to line 9 of the Algorithm, we do post processing to disambiguate
and select the ground truth chemical structure from the multiset M .

Regarding case 3, as different multisets can reflect the same chem-
ical structure, we set up the ground truth multiset among them.
We build a relation between the ground truth hand-drawn chemical
structure and other various hand-drawn samples which can group
all different multisets corresponding to the same ground truth. As
a result, we eliminate such ambiguity through this pre-constructed
relationship.

Regarding case 4, though two encoded sequences’ multisets are
identical, we additionally analyze recognized symbols’ spatial in-
formation in order to make the distinction. During sketch recog-
nition, we capture chemical bonds’ 2D relationship on the drawing
canvas. Then we generate another spatial encoded symbol sequence
by sorting all the recognized chemical bonds from the left to the
right and from the top to the bottom of the canvas. During sketch
prediction, we match the partial spatial encoded information with
training chemical structures. If the partial spatial encoded sequence
is the prefix of any complete spatial sequence, the corresponding
ground truth of that complete sequence will be the prediction can-
didate for the partial encoded sequence.

Based on the graph from Figure 3, Figure 4 shows three partial
encoded sequence prediction examples. All of them correctly pre-
dict the ground truth chemical structures. Compared to partial se-
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User
CR 0− 19% 20%− 39% 40%− 59% 60%− 79% 80%− 99% 100%

Graph Baseline Graph Baseline Graph Baseline Graph Baseline Graph Baseline Graph Baseline
1 0.58 0.36 0.67 0.53 0.78 0.70 0.82 0.72 0.86 0.85 1.0 1.0
2 0.64 0.50 0.71 0.56 0.75 0.57 0.79 0.70 0.81 0.78 1.0 1.0
3 0.71 0.49 0.79 0.52 0.80 0.67 0.82 0.73 0.84 0.84 1.0 1.0
4 0.67 0.35 0.75 0.47 0.82 0.71 0.84 0.75 0.90 0.85 1.0 1.0
5 0.65 0.52 0.73 0.59 0.84 0.64 0.87 0.78 0.89 0.81 1.0 1.0
6 0.57 0.44 0.58 0.50 0.76 0.56 0.80 0.61 0.88 0.79 1.0 1.0

Average 0.64 0.43 0.70 0.53 0.79 0.64 0.82 0.71 0.86 0.82 1.0 1.0

Table 2: User-dependent sketch prediction correctness result across six different completion rates (CR).

User
CR 0− 19% 20%− 39% 40%− 59% 60%− 79% 80%− 99% 100%

Graph Baseline Graph Baseline Graph Baseline Graph Baseline Graph Baseline Graph Baseline
1 0.43 0.26 0.55 0.35 0.57 0.46 0.57 0.45 0.62 0.45 0.71 0.52
2 0.32 0.20 0.41 0.27 0.47 0.34 0.49 0.35 0.56 0.38 0.69 0.47
3 0.41 0.19 0.55 0.24 0.57 0.41 0.56 0.48 0.60 0.48 0.65 0.51
4 0.52 0.24 0.59 0.30 0.61 0.36 0.67 0.46 0.72 0.47 0.80 0.58
5 0.41 0.34 0.56 0.39 0.64 0.52 0.64 0.57 0.73 0.58 0.79 0.62
6 0.34 0.31 0.50 0.32 0.61 0.42 0.64 0.47 0.64 0.53 0.69 0.59

Average 0.40 0.26 0.53 0.31 0.58 0.42 0.59 0.46 0.64 0.48 0.72 0.55

Table 3: User-independent sketch prediction correctness result across six different completion rates (CR).

quences (B) and (C), when parsing the partial sequence (2,7), the
algorithm cannot determine the Hamiltonian path between vertex 0
and vertex 1 which both connect to the vertex 7. Under this con-
dition, the algorithm will randomly pick a vertex and follow one
Hamiltonian path to search.

4 Evaluation

We ran an experiment to explore the effectiveness of our approach.
In comparison with a baseline method, we evaluated the perfor-
mance of our graph-based approach in two ways: prediction ac-
curacy and execution time. In order to guarantee correct sketch
prediction across all four cases in the previous section, we only
show the performance result below by using all heuristics. We im-
plemented this graph-based algorithm in C# and integrated it with
our existing sketch recognition system. We used the HP Compaq
tc4400, 12.1 inch tablet PC running Windows 7 to conduct the ex-
periment.

4.1 Experiment and Data Set

As we did not find any sketched datasets which tackle the com-
binatorial drawing orders in the chemistry domain, we designed 4
sets of 2D molecular structures to capture users’ drawing orders
from common organic molecules, with each set having 5 visually
similar structures. In total, there are 20 chemical structure class
categories for the evaluation. All these chemical structures cover
users’ arbitrary drawing orders. Some sets also cover the similar-
ity problem among chemical structure layouts. We recruited six
participants with an organic chemistry background to draw these
chemical structures. Participants were asked to draw each chemical
structure 10 times consecutively. During data collection, the sketch
recognizer gives good recognition results. However, if the recog-
nizer makes an error, we let the user re-draw the same structure.
During that process, the ground truth chemical structure is shown
on the drawing canvas for a short period of time. Users were asked
to draw the same ground truth structure the first time. After that,
they draw the same structure using their own drawing styles another
9 times. In total, we collected 1200 encoded sequence instances of
training data. The encoded symbols among these sequences fall in a
range between 0−21. The length of encoded sequences is between
5 − 33. The number of multisets is within the range of 47 − 107.
Based on this training data set, we obtained the testing data by ex-

tracting the ordered partial sequences from each complete encoded
sequence in the training data set.

4.1.1 Baseline Method

Since our method is designed to tackle the chemical structure sketch
prediction problem with diverse drawing orders and similar chem-
ical structure layouts, we need to choose a baseline method which
concentrates on the same aspects of the problem. Based on the en-
coding policy for chemical structures, we simply implemented a
HMM based sketch prediction method [Sezgin and Davis 2005].
The schematic representation of the HMM topology is the left-to-
right model [Rabiner 1990]. Such a model can represent the tem-
poral structure of encoded sequences. We trained each chemical
structure using one HMM model which can handle variable length
encoded sequence data. Regarding one chemical structure’s corre-
sponding model, we set the number of hidden states as the maximal
length of all training encoded sequences. We achieve the sketch
prediction goal by finding the Viterbi path in the model.

4.2 Sketch Prediction Accuracy Analysis

We conducted both user-dependent and user-independent tests to
assess sketch prediction accuracy between the graph-based ap-
proach and the baseline approach. In the user-dependent test, we
use each participant’s own complete dataset to train models of both
methods and use its own extracted test dataset to validate models. In
the user-independent test, we conduct a 6-fold cross-validation on
these 6 participants’ datasets. For both metrics, we ran an average
of 1683 tests each among 6 different users.

For both the graph-based approach and the baseline approach, to
measure sketch prediction accuracy, we compute prediction correct-
ness under the different sequence completion rates. A correct pre-
diction means that the prediction result is the same as the ground
truth chemical structure. Therefore, the prediction correctness is
the ratio of the number of correct predictions among the total pre-
dictions. The completion rate is calculated by dividing the length
of the partial encoded sequence by the length of its corresponding
complete encoded sequence in the training data set. In some cases,
the decision cannot be clearly made due to insufficient partial infor-
mation. We consider these cases as the correct prediction as long as
the predicted multiset contains the entire partial sequence.
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In the user-dependent evaluation, Table 2 shows the sketch predic-
tion correctness for six users. For each user, we report the pre-
diction correctness between two methods in six different comple-
tion rate ranges. For instance, for partial sequences from user 2,
in which the completion rate of each of them is between 20% and
39%, the prediction correctness to use the graph-based method is
0.71, which means that 71% of partial encoded sequences, are cor-
rectly matched to the ground truth chemical structure. The last row
of the table shows the average prediction correctness for all users in
different completion rate ranges. For both methods, the result from
Table 2 implies that when the completion rate goes up, the pre-
diction correctness increases. Besides, when the completion rate
achieves 100%, there is no wrong prediction for partial sequences.
Indeed, under this circumstance, the sketch prediction problem be-
comes the sketch recognition problem. Compared with the base-
line method, the graph-based method shows prediction correctness
gains in different completion rate ranges.

In the user-independent evaluation, Table 3 gives the sketch pre-
diction result. In comparison with the user-dependent test, the pre-
diction correctness in the user-independent test goes down for both
methods. This can be explained by users’ diverse drawing styles,
which might generate different visual layout for the same chem-
ical structure. In other words, by using other users data to train
models, if the current user draws the same chemical structure us-
ing non ground-truth layouts, it becomes easier to fail to predict the
ground-truth structure. From the last row of the table, the average
prediction correctness of the graph-based method outperforms the
baseline method which spans all completion rate ranges.

4.3 Sketch Prediction Execution Time Analysis

Theoretically, finding a Hamiltonian path in a graph is a NP-
complete problem [Garey and Johnson 1979]. We reduce the graph
exhaustive search complexity to polynomial time after applying
mixed heuristics. The running time of the heuristic search algo-
rithm depends on three factors: the length of the partial sequence,
the size of the search constraint and the number of vertices in the
graph. We run the performance test based on our dataset. Our ex-
perimental machine has a 2.30 GHz Intel Core i5 with 4 GByte
main memory. For all six users’ tests across completion rates, the
average time for sketch prediction takes roughly 0.14s. So it meets
the real-time requirement of providing a sketch prediction result in
our sketch-based system.

5 Discussion and Future Work

Our evaluation results demonstrate promising prediction accuracy
with real-time execution. However, when both the size of dataset
and length of an encoded sequence increases, the prediction ac-
curacy might decrease and real-time sketch prediction cannot be
guaranteed. Therefore, we need to further explore ways to repre-
sent hand-drawn chemical structures more efficiently. One possi-
ble method is to apply more advanced encoding policies to reduce
the encoding length. On the other hand, with the longer encoded
sequence, the performance of applying Heuristic-3 will be signifi-
cantly downgraded since we need to compare and find the proper
multiset in every prediction step from more multisets. Therefore,
we will try to find more sophisticated search algorithms to boost
the search performance.

Besides the above algorithmic improvement, we could further im-
prove the algorithm by making it stroker order invariant. Although
the same chemical structure can be sketched using different stroke
orders and these different ordering pose an issue with our algorithm,
it will have no impact on the visual sketched structure. Thus, it is

possible to pre-process the sketched structure such that the encod-
ing is order invariant, which might reduce the computational com-
plexity of the search algorithm and improve the prediction accuracy.

Currently, our graph-based sketch prediction method relies on the
domain specific dataset and encoding policy, which does not fit for
other domains. Thus it is important to generalize our method to
handle different datasets and encoding policies.

Regarding the sketch recognition, our sketch prediction method
depends on the correct recognition toward chemical symbols and
bonds. In other words, we do not consider the recognition error
effects in the sketch prediction. In the future, we would like to
investigate how to improve our graph approach to handle sketch
recognition errors.

6 Conclusion

In this paper, we formalize the chemical structure sketch predic-
tion problem as a structure prediction problem. We use multisets
to represent hand-drawn chemical structures, and propose a graph-
based method to handle all multisets. Through such structured in-
put, we transform sketch prediction to a graph search problem by
using mixed heuristics to guide the search to find a Hamiltonian
path in one sub-graph. We evaluated the graph-based approach
through our hand-drawn chemical structure data set. The results
shows that our prediction method outperforms a baseline method
both in user-dependent and user-independent tests.
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