
A Research Demonstration of Code Bubbles

ABSTRACT
Today’s integrated development environments (IDEs) are ham-
pered by their dependence on files and file-based editing. We
propose a novel user interface that is based on collections of
lightweight editable fragments, called bubbles, which when
grouped together form concurrently visible working sets. We
describe the design of a prototype IDE user interface for Java
based on working sets.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
integrated environments.

General Terms
Human Factors

Keywords
Integrated development environments, concurrent views, working
set, source code, bubbles, navigation, debugging, human factors.

1. INTRODUCTION
Programmers spend between 60-90% of their time reading and
navigating code and other data sources [1]. Programmers form
working sets of one or more fragments corresponding to places of
interest [2]; with larger code bases, these fragments are scattered
across multiple methods in multiple classes. Viewing these frag-
ments concurrently is likely to be beneficial, as it has been shown
that concurrent views should be used for tasks in which visual
comparisons must be made between parts that have greater com-
plexity than can be held in limited working memory [3].

Because contemporary integrated development environments
(IDEs) are file-based it is difficult to create and maintain a view in
which multiple fragments are visible concurrently. This requires
the programmer to manually and repeatedly perform numerous
interactions to place, resize, scroll, and wrap long lines in a differ-
ent file window for each fragment. Instead, IDEs are optimized
for switching among different views using tabs, forward/back
buttons, etc. Perhaps as a result, programmers may spend on aver-
age 35% of their time in IDEs actively navigating among working
set fragments [2], since they can only easily see one or two frag-
ments at a time.

In this paper, we argue in favor of a new approach, where the IDE
shows multiple editable fragments concurrently, letting the user
see and work with complete working sets. The result reduces na-

vigations and supports new higher-level interactions over and
within the working set.

Our approach is founded on the metaphor of a bubble – a fully
editable and interactive view of a fragment such as a function,
method documentation, or debugging display. Bubbles, in contrast
to windows, have minimal border decoration, avoid clipping their
contents by using automatic code reflow and elision, and do not
overlap but instead push each other out of the way automatically.
Bubbles exist in a large 2-D virtual space where a cluster of bub-
bles comprises a concurrently visible working set.

Code Bubbles is presented in [7] [8], and is more fully-described
there, along with several user studies which evaluate its efficacy.
In this paper we focus on providing a summary of the system.

2. RELATED WORK
User interfaces for classical programming languages have a long
history. The work closest to the bubbles approach let the pro-
grammer work in terms of program fragments. These efforts let
the programmer edit in terms of individual functions, or similar
units. This was the approach we took in Desert [9] [10] and it can
also be seen in IBM’s Visual Age environments [11] and in the
Sheets environment from CMU [12]. All these were loosely based
on non-file based programming languages such as Xerox’s Small-
talk and its successors, various versions of Lisp, and visual lan-
guages such as NI’s LabView. Another approach is that of JAS-
PER which displays small read-only views that represent the us-
er’s current task as a means for navigation [13]. A number of tools
have been developed to add navigation aids to file-based envi-
ronments, e.g. Mylar [14]. These navigation tools focus on identi-
fying working sets, whereas we focus on displaying working sets
concurrently.

3. THE BUBBLES METAPHOR
The basis for the user interface of our IDE is the bubble metaphor
described fully in [7]; in this section we will briefly recap the
metaphor and then in the next section present the extensions we
made to design a prototype IDE user interface built on this meta-
phor. The bubbles metaphor represents working set code frag-
ments (typically functions) as individual bubbles (Figure 1-L) that
can be freely positioned on the 2-D display surface (1-Q). In addi-
tion, the display surface is treated as a portal on a large scrollable
canvas which both lets more bubbles be open in the workspace
than fit onscreen and also encourages programmers to pan over
(thus preserving their working set views) to create room for new
working set fragments when needed. This metaphor fundamental-
ly differs from the multi-window UI used in some IDEs, such as
Visual Studio or Eclipse, because it addresses four critical prob-
lems associated with window displays:

 Code does not naturally fit into arbitrarily sized windows
 Viewing overlapping windows requires manual interaction
 Window decorations are distracting and space consuming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

Andrew Bragdon1, Steven P. Reiss1, Robert Zeleznik1, Suman Karumuri1, William Cheung1,
Joshua Kaplan1, Christopher Coleman1, Ferdi Adeputra1, Joseph J. LaViola Jr.2

1Brown University

Department of Computer Science

{acb, spr, bcz, suman, jak2, wcheung, cjc3,
fadeputr}@cs.brown.edu

2University of Central Florida
School of EECS

jjl@eecs.ucf.edu

293

 Eventually, the user will run out of space as he/she works on
a series of tasks

To ensure that code can be easily read and edited regardless of the
dimensions of its bubble, bubbles never clip text horizontally, but
instead automatically reflow long lines. This approach produces
similar results to those generated manually by programmers when
splitting long lines. Additionally, bubbles vertically elide lengthy
functions by default at the block level, and support subsequent
user-based expansion. Reflow and elision are only applied to the
view; they do not edit the underlying text.

Bubbles are also not allowed to overlap each other, making
groups of bubbles easier to read since no Z-order management is
needed. When one bubble is moved on top of another, a bubble
spacer automatically moves the overlapped bubbles out of the way
using a simple, recursive, heuristic algorithm that minimizes the
total movement of bubbles.

To facilitate the simultaneous display of large numbers of bub-
bles, bubbles have no space-consuming UI decorations (i.e.,
scroll-bar, title-bar, etc) other than a thin border line and a bread-
crumb bar (see top of 1-L). Instead, programmers interact with
bubbles using right, middle, and left buttons respectively to move,
close or edit text within bubbles. In addition, the scroll wheel is
used to scroll text and dragging the left-mouse button on a bubble
border initiates resizing. The breadcrumb bar provides the bub-
ble’s context by displaying the package and class name. Clicking
on the class or package name provides direct access to peer me-
thods and variables via a drop down list.

Background annotations are also used to highlight important inter-
bubble relationships. For example, when Open Definition is cho-
sen for a method call, a rectilinear arrow connection (1-M) is add-
ed to indicate the calling relationship between the resulting me-
thod definition bubble and the bubble containing the call.

Bubble stacks (1-F) are used by commands which logically return
sets of bubbles, such as Find All References. Bubble stacks
present results in two columns, the first listing the function con-
taining the result, and the second showing the line in question

with the result highlighted. Results are grouped by package, class
and method. Clicking an item expands it in-place as a bubble (1-
G). Since each such command results in a new bubble stack, users
can easily compare results side-by-side.

4. IDE USER INTERFACE
Building on the bubbles metaphor as a foundation, we have de-
veloped a functional IDE user interface that includes many of the
features of traditional IDEs, and novel features that fundamentally
leverage the bubbles approach. These new features are centered
on working sets. Some techniques make it easy to create displays
of useful working sets, while others use displays of working sets
to provide direct access to functionality that would otherwise be
unavailable or cumbersome.

4.1 Compatibility Techniques
Since not all techniques benefit directly from the bubbles meta-
phor, we extended our interface to include standard tools. We
display a docked package explorer pane (1-H) on the right-hand
side of the display for exploring and adding new classes, methods
and imports. We also pop-up a pane with compiler errors, docked
to the bottom of the display, when they occur. We provide key-
board shortcuts for common functionality, including the ability to
change keyboard focus between bubbles, bring up the popup
search box, pan, and zoom.

Within bubbles, developers can edit code in much the same way
they do with a conventional editor. If needed, they can open a full
class in a bubble, perhaps to initially enter the code for an entire
class at once. Developers can also “bud” a new method from an
existing bubble; when users insert a new line at the bottom of a
method in the desired class, and begin typing the method’s decla-
ration it will split off into a new bubble that grows as the user
types, pushing bubbles below it out of the way using the bubble
spacer. We also provide several menu-based methods for adding
classes and methods. We implemented traditional auto-complete,
and augmented it with a working set-oriented technique; pro-
grammers can type a new method signature not in the list and
create an empty bubble for the new method to be filled in later.

Figure 1.
The Code Bubbles
IDE. Resolution:
1920x1200 (space
reserved for task‐
bar).

294

4.2 Building Heterogeneous Working Sets
To create a bubble display for any method in the full package
hierarchy, a popup search box (1-N) can be displayed by right
clicking on the background. Using Boolean substring matching,
programmers need only type brief fragments of a class or method
name to rapidly filter the list of matched methods and open a bub-
ble from the list. Hovering over a result shows a preview (1-P).

While reading and editing source code is important, we realize
that much of what a programmer does within an IDE goes beyond
code. We thus provide specialized bubbles that let users create
richer task-relevant working sets.

Javadoc bubbles (1-I) let users browse through the documentation
for a class, field or method. Javadoc bubbles provide appropriate
elision controls and popup search box integration makes it easy to
find the appropriate documentation with minimal data entry. Note
bubbles (1-D) let users add formatted text annotations as sticky
notes sharable with others. Flag bubbles (1-J) are a lightweight
means of associating an icon and optional label with code and are
useful for annotating bugs and to-do items, for creating hyper-
links, and for generally creating visual markers. Web bubbles
provide access to a simple but full-featured web browser within
the bubble framework. Bug bubbles (1-C) provide a bubble view
of bugs from a bug tracking database based on Bugzilla.

The developer can display call paths by drawing a connecting line
between two functions open in bubbles with the mouse; the back-
end performs a static call graph analysis to determine if there is a
path in the call graph between the two functions. If more than one
path exists, the shortest path is used. New bubbles and connec-
tions are opened for each function in the path, and are inserted
between the two existing bubbles.

4.3 Lightweight, Persistent Groups
In addition to individual bubbles, our front end supports bubble
groups (1-E) - which provide a simple means for defining and
saving working sets and tagging functions. Groups automatically
form when bubbles are brought close enough together; they are
displayed using a common background color for the group, can be

named using a title box, and are supported by extensions to the
bubble spacer. These extensions both support group membership
and provide an interface for splitting groups.

Groups persist automatically. They can then be reloaded on de-
mand. They can be used as the target of a search, based on a sub-
string match of group name and/or contents. They can also be the
basis for a search, letting the user see bubbles that are related to a
particular bubble by means of saved group membership.

4.4 Interruption Recovery and Multi-tasking
The workspace bar (1-A) at the top of the display is an extension
of the simple panning bar from our previous work [7] that sup-
ports the definition of working sets for a particular task or goal.

The workspace bar operates by extending the screen space in the
X and Y directions and provides access to different areas of that
space by simply clicking in the bar. The bar provides a high-level
overview map of the bubbles throughout the virtual display. Sec-
tions of the bar (1-B) can be labeled for task management. The bar
and its sections are continuous rather than discrete so that these
sections can be easily extended to occupy more or less space in-
crementally as a task grows or shrinks in size. The map is detailed
enough to show the icons associated with flag bubbles.

The workspace bar provides a simple means for handling interrup-
tions. If an interruption requires working on the project in a dif-
ferent way, the programmer can easily move to a different area of
the virtual space, do the new work in that space, and then simply
move back to where they were when they were interrupted. Task
naming can help keep track of the interrupted and new tasks.

While the task bar is quite large, it is not infinite. To support pro-
longed development, we allow the user to close and save sections
of the task bar for later use. These sections appear in a list we call
the task shelf where they are displayed with their name and date.
The user can reload closed task sections by clicking.

4.5 Debugging with Bubbles
One of the most important functions of an IDE is to aid the pro-
grammer in debugging. While we wanted to use bubbles to pro-
vide convenient access to traditional debugger support, the

Figure 2.
Debugging with
the Code Bubbles
IDE. See Debug‐
ging, above.

295

lightweight nature of bubbles and the ability to have significant
numbers of them displayed at once let us provide a much richer
experience by showing program context over time.

Traditional debuggers provide displays of the program state at a
single point in time. However, programmers often need to under-
stand what changes over time, and to compare program state, data
structures, etc. at the current time with their values at a previous
time. Programmers may also want to annotate the program state
with appropriate notes, observations, and ideas and to share this
information with others.

Traditional debugger support is provided by a breakpoint bar to
the left of the code, by toolbar commands or keyboard shortcuts
for starting, stepping, continuing, and terminating an execution,
and by allocating a section of the workspace bar for debugging.

When a program stops at a breakpoint or an exception, the user is
taken to a new area of the debugging workspace (2-J), a code
bubble is opened (2-D) for the code where the program stopped,
and a bubble stack is opened to display the call stack (2-C). This
bubble lets the user open methods from the call stack. If the user
then steps into another method, a new code bubble is created (2-
G) to the right of the current bubble and the bubbles are linked
with a connector. Run time exceptions that stop the program also
create exception bubbles displaying the Javadoc for the thrown
exception. New bubbles opened in the debugger push bubbles that
are siblings in the call hierarchy out of the way using the spacer.

Stepping out does not explicitly remove the prior function bubble.
If the user next steps into another function, a new bubble is
created to the right and below the prior call bubble. If the program
stops in a new context (e.g., breakpoint hit), this context is placed
to the right (2-H) of the prior one and the display is automatically
panned. The result of this is a viewable history of the program-
mer’s debugging actions displayed, where appropriate, as a tree.

Right clicking on a variable brings up a data structure bubble (2-I)
showing the type, name and values of the selected object. These
bubbles can be further expanded to show nested values. Typically,
these bubbles are updated dynamically as the program executes.
However, the user can either freeze a display, or they may “tear
out” a subtree of the data structure and save the display for later
comparison. Data structure bubbles for functions that are not be-
ing executed are saved for future comparison (2-F). In addition to
a standard console, we support multiple virtual console bubbles
(2-K, L); users can direct program output to particular consoles
based on a user-configurable line prefix.

Each instance of a program being debugged is stored in a horizon-
tal layout we call a channel (2-A). The system preserves views of
previous debugging sessions (2-M) for comparison. Similar to the
main workspace, each channel can be panned independently and
has a miniature panning bar (2-E), providing a scrollable overview
of the session. The panning bar lets the channel scale to accom-
modate a large or long session. Each session channel is accompa-
nied by a title bar (2-B) that includes the modification date and an
optional title. Sessions can be saved and reloaded using an inter-
face (2-S) equivalent to the task shelf.

4.6 Sharing Information
The configuration of code or debugging bubbles along with ap-
propriate annotations and flags provides a visual display of infor-
mation relevant to the programmer, effectively a visual explana-
tion. This can be printed, exported as PDF or saved for documen-
tation or future use. Moreover, the saved configurations can be
shared with other developers by simply e-mailing (using the built-

in email-as-attachment option) the saved file and having them
reload the bubble configuration in their own workspace.

5. LIMITATIONS
The prototype implementation of Code Bubbles is limited in sev-
eral ways. It is resource-intense, requiring a modern dual-core
CPU or better, a hardware-accelerated graphics card, and either
one large (24”) or two smaller (19”) monitors to be effective.
Large numbers of bubbles tend to degrade display performance.
Many features one might expect in a complete IDE are missing:
support for programming languages other than Java, portability,
GUI and HTML designers, unit testing, XML files, database de-
signers, and performance monitoring. The Code Bubbles editor is
not as sophisticated as modern program editors such as Eclipse’s.
Working set definitions are not robust across significant external
edits; this problem could be ameliorated by storing workspace
information using file offsets, and applying the techniques devel-
oped in [15]. The debugging interface is currently optimized for
problems in which an error in part of the call tree manifests im-
mediately in the same branch of the tree. One advantage that files
have over working with code fragments is that they can provide a
readable and long-lasting context for programmers who need to
read an entire class.

6. ACKNOWLEDGMENTS
The authors wish to thank Andries van Dam and Ken Hinckley for
their advice and insight, and Donnie Kendall, David Eichler, Sal-
man Cheema, Jared Bott, Jeff Coady and Max Salvas for their
assistance. This material is based upon work supported under a
National Science Foundation Graduate Research Fellowship and
in part by NSF grants CCR-0613162, and IIS-0812382.

7. REFERENCES
[1] Erlikh, L. Leveraging Legacy System Dollars for E-Business. IT Pro,
May/June (2000), 17-23.
[2] Ko, A. J., Myers, B. A. et al. An Exploratory Study of How Developers
Seek, Relate, and Collect Relevant Information during Software Maintenance
Tasks. IEEE TSE, 32, 12 (December 2006), 971-987.
[3] Plumlee, M. D. and Ware, C. Zooming versus multiple window interfaces:
Cognitive costs of visual comparisons. ACM Transactions on Computer-
Human Interaction, 13, 2 (June 2006), 179-209.
[4] Murphy, G. C. et al. How are Java software developers using the Eclipse
IDE? IEEE Software, 23, 4 (July/August 2006), 76-83.
[5] Robillard, M. P., Coelho, W., and Murphy, G. C. How effective developers
investiage source code: An exploratory study. IEEE Trans. on Software
Engineering, 30, 12 (December 2004), 889-903.
[6] Sherwood, K. D.. Path exploration during code navigation. The University
of British Columbia, 2008.
[7] Bragdon, A., Zeleznik, R., Reiss, S. P. et al. Code Bubbles: A Working Set-
based Interface for Code Understanding and Maintanence. In Proceedings of
CHI 2010.
[8] Bragdon, A., Reiss, S. P., Zeleznik, R. et al. Code Bubbles: Rethinking the
User Interface Paradigm of Integrated Development Environments. In
Proceedings of ICSE 2010.
[9] Reiss, Steven P. Simplifying data integration: the design of the Desert
software development environment. In 18th International Conference on
Software Engineeering (1996), 398-407.
[10] Reiss, Steven P. The Desert environment. ToSEM, 8, 4 (1999), 297-342.
[11] Nackman, Lee R. An overview of Montana. IBM Research (1996).
[12] Stockton, R. and Kramer, N. The Sheets hypercode editor. CMU, 1993.
[13] Coblenz, M., Ko, A., and Myers, B.. JASPER: an Eclipse plug-in to
facilitate software maintenance tasks. In OOPSLA Workshop on Eclipse
Technology (2006), 65-69.
[14] Kersten, M. and Murphy, G. C. Mylar: a degree-of-interest model for
IDEs. In AOSD '05 (2005), 1590168.
[15] Reiss, S. P. Tracking source locations. In Proceedings of ICSE'08, 11-20.

296

