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ABSTRACT

Despite decades of research, there is yet no general rapid pro-
totyping recognizer for dynamic gestures that can be trained
with few samples, work with continuous data, and achieve high
accuracy that is also modality-agnostic. To begin to solve this
problem, we describe a small suite of accessible techniques
that we collectively refer to as the Jackknife gesture recognizer.
Our dynamic time warping based approach for both segmented
and continuous data is designed to be a robust, go-to method
for gesture recognition across a variety of modalities using
only limited training samples. We evaluate pen and touch,
Wii Remote, Kinect, Leap Motion, and sound-sensed gesture
datasets as well as conduct tests with continuous data. Across
all scenarios we show that our approach is able to achieve high
accuracy, suggesting that Jackknife is a capable recognizer
and good first choice for many endeavors.
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INTRODUCTION

Although gesture recognition has been an active area of re-
search for some time, it has become especially popular in
the last decade with the introduction of several low-cost in-
teractive devices, such as the Wii Remote, Kinect, and Leap
Motion. To support gesture recognition on these devices, a
flurry of techniques have been proposed and evaluated, many
of which rely on domain specific knowledge to achieve com-
petitive accuracy (above 90%). And unsurprisingly, support
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vector machines, hidden Markov models, conditional random
fields, decision trees and random forests, as well as variants of
these machine learning approaches are ubiquitous [16]. How-
ever, these popular approaches are also inappropriate for rapid
prototyping or gesture customization given that either copious
training data or advanced knowledge of machine learning are
typically required.

For the rapid prototyping community, gesture recognition must
be easily accessible! for development on new platforms, where
best approaches have not been identified, or where libraries
and toolkits may not yet be available and consumers are un-
familiar with machine learning. The $-family of recognizers
[1, 2, 17, 35, 38] has been effective at addressing this issue
for pen and touch, though attempts to generalize these tech-
niques to higher dimensionalities have been less successful.
For gesture customization, recognizers must work well with
as little as one training sample per gesture class, as users may
be unwilling to provide a plethora of samples for a variety of
classes. Even when we relax these constraints, most research
still only focuses on one domain or input device, e.g., Kinect,
Leap Motion, or Wii Remote for full body or hand gestures,
and rarely does research consider general methods that might
easily be adopted to any modality. Another common issue is
that many researchers evaluate their methods using segmented
data without addressing continuous data stream related issues.
As a result, it remains unclear and confusing what might be
a good starting point when one desires to incorporate gesture
recognition into their work.

We begin to address these issues with Jackknife, a general rec-
ognizer for dynamic gestures that, much like a multitool, is a
collection of techniques designed to handle various scenarios.
Our recognizer is designed to be modality-agnostic, so that
little domain specific knowledge is required, and competitive
accuracy can be achieved with minimum training data. At
the heart of Jackknife is dynamic time warping (DTW), an
elastic dissimilarity measure suitable for handling large ges-
ticulation variability. As DTW has repeatedly been shown to
be a high quality recognizer in time series research, especially
for nearest neighbor (NN) pattern matching, it is surprising to

IBy easily accessible we mean self contained, easy to debug, and can
be implemented without too much effort.
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us that this technique is not already the de facto go-to gesture
recognition method. Still, since DTW itself was not designed
explicitly for gesture recognition, we introduce several exten-
sions that improve its base accuracy under various conditions.

While the main contribution of this paper is a general, device-
agnostic dynamic gesture recognizer, several additional contri-
butions are made to achieve this objective, which are that we
promote and raise awareness that DTW is a powerful 1-NN
gesture recognizer useful for rapid prototyping and custom
gestures; demonstrate that the inner product of gesture path di-
rection vectors is often a better local cost function for DTW as
compared to the pervasive squared Euclidean distance, which
to the best of our knowledge has not been explicitly evalu-
ated; present new correction factors that modify the DTW
score and help disambiguate certain gestures as well as further
separate negative samples from positive sample; and intro-
duce a new method to select a per class rejection threshold
for gesture spotting in a continuous stream and evaluate this
method with a new dataset collected from 40 participants. Fi-
nally, reference source code and our dataset is available at
http://www.eecs.ucf.edu/isuelab/research/jackknife.

The rest of the paper is organized as follows. First, we present
related works where we focus on what motivates Jackknife,
after which we describe our recognizer in detail. With an
understanding of the core methods in hand, we subsequently
evaluate the various aspects of Jackknife by analyzing visual-
izations of score distributions, and by performing recognition
tests with segmented and continuous data. Finally, we discuss
our findings.

RELATED WORK

Since space precludes a comprehensive discussion of all ges-
ture recognition work, we direct the reader to few surveys [12,
21, 25, 30, 31]. For a taste, Mitra and Acharya [21] discuss
different gesture recognition methods such as hidden Markov
Models (HMM), particle filtering and condensation, finite-
state machines (FSM), and neural networks. As hand-based
gesture recognition is a popular topic, Suarez and Murphy
[31] look through recognition methods using depth images.
These methods include common and customized approaches
like Du’s [8] classifier that counts the number of convex points
in a hand silhouette for classification over a small set of static
poses. Ibraheem and Khan [12] also discuss HMMs, neural
networks, and histogram based feature and fuzzy clustering
algorithm methods. Sarkar ef al. [30] similarly report on both
2D and 3D methods for hand gesture recognition. It is worth
noting that computer vision techniques such as those just men-
tioned are common in the gesture (and action) recognition
literature; however, in this work we assume that gestures are a
time series of trajectories through a multidimensional space.

A common theme of these works is that a large amount of train-
ing data is needed to train the recognizers. Another issue is
that many approaches also require domain-specific knowledge
to extract features useful for discriminating gesture classes,
which in itself can be a very challenging problem to solve.
Two clear advantages of DTW-based recognizers are that com-
petitive accuracy is still possible with limited data and complex
feature extraction is unnecessary.

Why DTW and Not Some Other Measure?

Gestures are naturally represented as time series, and it has
long been known that DTW is an excellent measure for 1-
nearest nearest (1-NN) pattern recognition in times series clas-
sification problems. As an example of its power, Giusti and
Batista [10] compared 48 dissimilarity measures over 42 time
series datasets and found that DTW and CIDDTW [4] (which
is incorporated in this work) are among the top performing
measures on average. More recently, Bagnall ef al. [3] con-
ducted an extensive evaluation of 18 recently proposed state-
of-the-art classifiers over 85 datasets and found that many of
the approaches do not actually outperform 1-NN DTW or Ro-
tation Forest, and they also remark that DTW is a good base
to compare against new work.

DTW has also already been used quite successfully in gesture
recognition. Celebi et al. [6] implemented weighted DTW for
Kinect to recognize 8 gestures with 28 samples per gesture.
They weighted each skeleton joint differently by optimizing a
discriminant ratio. Wu et al. [39] utilized DTW for user identi-
fication and authentication on Kinect. Their dataset consisted
of 8 unique gestures, each repeated 5 times, collected from
20 individuals. Bodiroza et al. [5] used DTW on Kinect data
to recognize 6 hand gestures performed 20 times by a single
subject. Vikram et al. [36] developed a DTW-based recognizer
for the Leap Motion sensor to recognize hand writing in the
air. Their dataset consisted of both uppercase and lowercase
alphabetical letters, and each letter was repeated 5 times by
100 participants. Not only do we see again that a large num-
ber of training samples are used, but also these works mostly
utilize Euclidean distance as the local cost function for DTW.
In our approach, we emphasize the inner product of gesture
path direction vectors and show that this local cost function
usually achieves higher accuracy.

What About Speed... | Hear It’s Slow?

DTW is infamous for its sluggishness, which we believe is an
unfair assessment. In its classic form, DTW is quadratic; how-
ever, Rakthanmanon et al. [23] demonstrated that DTW can
be optimized to achieve search times faster than typical linear
time Euclidean distance search algorithms. Further, even with-
out optimizations, Vatavu [34] found that low sampling rates
achieve high accuracy for Euclidean distance, angular, and
DTW based 2D gesture recognizers. In this work, we resample
gestures to n = 16 points; and by using a Sakoe-Chiba Band
[29] (to control pathological warping) that constrains DTW’s
search window to r = 2, complexity drops to &'(rn). It is also
useful to compare DTW with $P [35], a &(n*?) recognizer:
specially, we note that $P is popular and in common use, sug-
gesting that the algorithmic complexity of DTW should not
be an issue for many applications.

How Can We Select a Rejection Criteria?

Liu and Chua [19] summarize three common approaches for
rejecting negative samples: build a set of garbage models
from a set of explicitly defined unwanted patterns, learn a
cut off based on the distribution of scores between classes, or
generate mixture models from positive samples to form a uni-
versal background model (UBM). These are general methods
used across various fields and in particular the UBM approach
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stems from speaker recognition [26]. In all of these cases,
there is a sufficient amount of training data to construct repre-
sentative probability distributions, which is a not a luxury we
have with only one or two training samples per gesture class.
Our approach is most like UBM, where negative samples are
synthetically generated from positive samples, although we do
not generate an explicit background model. Instead we use the
distribution of scored synthetic negative and positive samples
to help select a rejection threshold. To increase the positive
sample distribution, we synthetically generate new samples
using a recently introduced technique, gesture path stochastic
resampling [32].

JACKKNIFE

Jackknife is a multitool for gesture recognition equipped with
the following functionalities: dynamic time warping using the
inner product of gesture path direction vectors as the local cost
function and squared Euclidean distance as a back up, correc-
tion factors that inflate the scores of dissimilar gestures, and
a synthetic gesture generator for learning a rejection criteria.
In practice, one will only need to implement the components
required for their specific application.

In this work, we treat gestures as time series, an ordered set of
points:

P=(pili=1.n), (1

where 7 is the number of points in the series and each p; € R™.
Typical values of m for various modalities include m = 2 for
pen or touch, m = 21 x 3 for Kinect 2.0, and m = 21 x 3 for
Leap Motion. A gesture can also be represented as a set of
unit length direction vectors through m-space, which we refer
to as the gesture path direction vectors:
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Further, we denote a query sequence as Q and a template se-
quence as T, where a template is a time series representation
of a specific gesture class. Jackknife employees 1-nearest
neighbor classification, where a query is compared against all
templates stored in a database, and the template whose mea-
sure against the query is least dissimilar is said to match the
gesture class of the query. Formally, given a set of templates T
and a query Q, the query’s class is the gesture class of T, € T
that minimizes their dissimilarity:

izl..n—l). 2)

F
match = argmin
LeT  j=

fi(T,0), 3
1

where fi is the DTW measure of T and Q, and f><;<F are
correction factors. This approach is based on the complexity-
invariant distance (CID) measure [4]. CID inflates a base
distance measure, such as Euclidean distance or DTW, with
a correction factor (CF) that is a measure of the complexity
difference between a template and query. CF ranges from one
to positive infinity such that time series similar in “complex-
ity" score near one and the base distance measure remains
relatively unchanged. Otherwise, the score is inflated. Our
interpretation of CID is that a good CF is able to capture infor-
mation about the dissimilarity of two time series for which the

Figure 1: Visualization of the 2D alignment found by DTW between
two right curly braces (left) and two unistroke question marks (right),
from the $1-GDS dataset [38].

base distance measure is unable, though the CF measure does
not necessarily need to relate to notions of complexity.

Dynamic Time Warping

Dynamic time warping (DTW) is a dissimilarity measure that
allows local warping of time series in order to find the best
alignment. Given two time series 7 and Q of length n and m,
we construct an n-by-m cost matrix. Each element (i, j) in the
matrix stores the minimum cumulative distance between the
subsequences ?1,...,#; and g1, ...,q;. This cumulative distance
can be found efficiently with dynamic programming by solving
the following recurrence:

Y(i,j) = d(ti,q;) +min{ y(i—1,) “4)
}/(i,j— 1)7

where d(t;,q;) is a local cost function, discussed shortly. In
other words, during the evaluation of element (i, j), the cumu-
lative measure of three neighbors are considered, the minimum
is taken, and the local cost of matching #; to ¢; is added to
the minimum, which then becomes the minimum cumulative
distance for the subsequences under evaluation. Once the
matrix is fully evaluated, element (n,m) is the DTW score
for T and Q. The path through the matrix that defines the
minimum cumulative distance between the sequences is the
optimal warping path, which is a set of alignments between
T and Q. A visualization of the warping path between two
different 2D gestures is shown in Figure 1.

Local Cost Function

The local cost function d(t;,¢;) in Equation 4 is most fre-
quently the squared (or standard) Euclidean distance over
z-score normalized sequences®: d(t;,q;) = (t; — q;)*. Though,
we find in gesture recognition that this cost function is not
always the best option. An alternative that has received less
attention is the inner product of a feature vector measure [20],
which can also be applied to gestures. Instead of extracting
feature vectors from a time series, we utilize the gesture path
direction vectors (see Equation 2). Since the inner product is a
similarity measure in [—1, 1] for unit vectors, we convert this
to a dissimilarly as follows:

2Each sequence is z-score normalized independently.



where 1 <i < n. This approach is inspired by the 2D Penny
Pincher [33] gesture recognizer that also uses the inner product
of direction vectors, an approach that proved to be empirically
faster than alternative unistroke recognizers while remaining
competitive in accuracy. When used as the local cost function,
we will later demonstrate that the inner product measure (IP)
is often superior to the squared Euclidean distance measure
(ED) in gesture recognition problems.

Warping Window Constraint

With classic DTW, pathological warping can occur when a
small part of one subsequence is inappropriately mapped to a
large portion of another [24]. To prevent this issue, one can
constrain the amount of warping allowed. A popular approach
is the Sakoe-Chiba Band [29], which limits the maximum
distance r the warping path can stray from the diagonal, where
| i— j|< r. An additional benefit immediately apparent is that
constraining the warping path can significantly speedup DTW
as less of the cost matrix is evaluated. The optimal warping
window varies per problem [24], but a very common constraint
is 10% of the time series length, which also yields very good
results in our testing.

Lower Bounding DTW
The cost of performing DTW is not much of a concern when
working with segmented data at a low resampling rate as well

as with a small number of gesture classes and training samples.

However, when working with a continuous data stream where
DTW evaluations are frequent and observational latencies
are problematic, it can be useful to prune templates that will
obviously not match a query. An efficient lower bound (LB)
score, where LB(T,Q) < DTW (T, Q), can be used to avoid a
full evaluation in two cases: when the determined lower bound
is worse than a predetermined rejection threshold or when a
closer match has already been found. One such lower bound
for DTW using ED is LBk, [13], which envelopes a time
series T with an upper (U) and lower (L) band based on a
window constraint r:

U= (ui = max t,) L= <l,- = min ti> . (6)
i—r<i<i+r i—r<i<i+r

Note that V; L; <t; < U;. To lower bound a query Q against a
template 7" for DTW using ED, we define:

(qi—U)?* ifqi>U;
LBkeogn(T,0) = ¥ < (¢i—Li)* ifgi<Li, (7)
=110 otherwise

which is visualized in Figure 2.

A lower bound has also been derived for the inner product of
posteriorgrams [40] based on the local cost function d(t;,q,) =
—log (t;,q;). One issue with this inner product lower bound is
that each component in a posteriorgram is non-negative, which
is unlike gesture path direction vectors whose components can
take on negative values, and hence a different lower bound is
required. Our inner product lower bound is similar to LB g,
where the upper and lower bands are calculated in the same
way. However, the summation instead is based on the IP
distance. If a component in the query vector is positive, then its
similarity will be maximized when paired with the upper band

Figure 2: Visualization of a LB, lower bound in 2D for the
triangle gesture from $1-GDS [38]. On the left, the combined upper
and lower bands of a template form a light blue bounding box per
point. On the right, the LB, lower bound is calculated for a query
as the sum of the minimum squared Euclidean distance from each
point in Q to the corresponding point boundary from 7' (shown as
thin black lines).

component (if both signs are positive), but the dissimilarity is
also minimized when paired with the upper band (if the signs
are opposite). For the same reasons, if a component in a query
vector is negative, pairing with the lower band will always
produce the best possible result, which leads to the following
IP lower bound:
n
LB;p(T,Q) = Y 1 —min[1,max (—1,< lb;,q; >)]

i=1

T ®)
j U/ ifq;j>0
bi = L/ otherwise’
; wise

where j indexes a vector’s components (1 < j < m) and the
template and query sequence are assumed to be unit length.
This lower bound can be proved using the same techniques as
in [13, 40].

Correction Factors

After the DTW score is calculated, correction factors are ap-
plied that inflate this score based on additional dissimilarities
not as easily perceived by only time warping measures, a
method that we adopted from CIDDTW [4]. Our correction
factors, however, use the inverse inner product of normalized
feature vectors:

1
< gi(T), g(Q) >’

where 2 < i < F per Equation 3 and each g; transforms the
time series into a normalized vector whose dimensionality is
greater than one (otherwise its normalization would simply
result in a scalar equal to one). The vector must also comprise
only non-zero components so that the denominator of Equation
9 falls in (0, 1] and the domain of f; becomes [1,0). Intuitively,
times series that are similar should score near one so that DTW
score inflation is minimized.

fi(T,0) = ®

We now describe two correction factor transformations that are
designed specifically for gestures and are inspired indirectly
by Rubine’s features for pen based gesture recognition [28].
In both cases, we focus on between-component information
that is scale and position invariant. These latter attributes
are important to ensure that differences between users do
not appear as dissimilarities in their gesticulations. First, the



component-wise absolute distance traversed by gesture P is
given by:

n—1
abs = Y, |Pil. (10)
i=1

Once g,»s is normalized, the components of this vector yield a
relative measure of the total distance traveled by each compo-
nent — this correction factor helps to ensure that the contribu-
tions to the gesture path for each component of two different
samples are similar in measure.

Our second feature is based on the bounding box extents of
the concatenated unnormalized direction vectors in R™ space:

p’!“_p’{)’ (11)
n—1 )
Duin = | bbyin, = min 3 pl., ~p] |.
= i=1

Once normalized, we have the relative distances spanned by
each component. We found this bounding box correction
factor to be useful in compensating for gestures that are mostly
similar, except in span. Consider two gestures: climb ladder,
which is a hand over hand action, and balance, which is a
seesaw-like action with arms extended [9]. In both cases,
the hands, wrists, and elbows oscillate vertically. The only
major difference is that one’s arms are extended outward to
perform the balance gesture. This extension, which occurs at
the beginning of the action, represents only a small duration of
the entire gesture and may be difficult to detect with either ED
or IP, depending exactly on how a participant performs either
gesture. However, the bounding box (span) of each gesture
is very different, which is why using the bounding box as a
correction factor can improve recognition accuracy.

8bb = bbmax - bbmin»
n—1

bbyax = (bbmaxj = max

<i !
1<i<n =1

Rejection

How one can determine an appropriate per template rejection
threshold from only a minimum amount of training data re-
mains a difficult problem. With sufficient amounts of training
data, a recognizer can estimate within class score probability
densities and select thresholds sufficiently low enough to pre-
vent type II (false negative) errors. One can also use negative
samples that are non-gesture sequences to help control type
I (false positive) errors by ensuring that a rejection threshold
is sufficiently high enough to prevent false positives. With
access to both positive and negative samples, one can instead
select a threshold that minimizes both error types, which is the
strategy we adopt. However, in this work, we assume that only
a minimum number of positive training samples are given, as
little as one or two per gesture class. This limitation implies
we need to somehow synthesize both negative and positive
samples.

To create negative samples, positive samples are spliced to-
gether to create semi-nonsense, noise-like sequences. We
favor this approach because we desire that negative samples
have parts of real gestures embedded within to ensure that
Jackknife can reject sequences that partially resemble but are

not actually real gestures. To generate synthetic negative sam-
ples, we randomly sample k training samples and from each
sample we randomly sample (n — 1)/k sequential direction
vectors. These direction vectors are concatenated together
to form a negative sample. We then compare each template
with the negative sample using DTW and save the results per
template. This process is repeated a number of times, after
which the scores are z-score normalized per template.

The generation of synthetic positive samples requires a dif-
ferent approach. Gesture path stochastic resampling (GPSR)
[32] is a new synthetic data generation developed specifically
for 2D gestures and rapid prototyping. A gesture path is non-
uniformly resampled to n + x points, after which the distance
between subsequent points is normalized to unit length, and
finally x random points are removed. GPSR was shown to
produce realistic results for pen and touch gestures; however,
for our use, we do not require realism. Rather, we only need to
be able to create a distribution of samples that when evaluated
with DTW generates a score distribution similar to the true
distribution, and we found GPSR works well for this purpose.
For additional information on implemented details and pseu-
docode, we refer the reader to [32]. In Jackknife, we use GPSR
to create synthetic positive samples that are scored with DTW
against their seed samples. These within class scores are then
z-score normalized using the mean and standard deviations
generated from the negative samples evaluation above.

Now we are able to determine a rejection threshold. With the
distribution of positive and negatives samples (all of which
have been z-score normalized), a standard deviation A is se-
lected that minimizes the aggregate false and negative positive
count. Since we trained with a noise-like pattern, our goal is to
be able to reject idle-like motion®. The per template rejection
threshold 0 is then:

0 = Ui — Aoy, (12)

where L; is the mean of the negative sample scores relative
to each template i and o is its standard deviation. As we
will show in an evaluation, this approach appears to select
thresholds near the optimum.

EXAMINATION OF THE DISTRIBUTIONS

To examine the distribution of scores generated by Jackknife
for a specific dataset, we do the following: For a given subject,
a recognizer is trained with one random sample per gesture
class. All z-score normalized synthetic scores generated as
part of the training process are saved for analysis. An addi-
tional, but unique test sample per gesture class is subsequently
evaluated, and the within class DTW score of each test sample,
before and after correct factor inflation, are similarly z-score
normalized and saved. Last, new synthetic negative samples
are again generated, scored, and saved. This process is re-
peated 10 times per subject and all results are combined into a
single set of distributions.

Results are shown in Figure 3, and we note a number of ob-
servations. First, the within class samples distribution is well

3To increase tolerance to higher energy patterns, the minimization
can non-uniformly weight the importance of true and false positives.
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Figure 3: Normalized distributions of within class and negative samples before and after correction factors are applied, as well as the synthetic
positive sample distribution for Ellis ef al.’s [9] and Cheema et al.’s [7] datasets.

separated from the negative samples, having only a small
amount of overlap, which we perceive as a desirable property
for a noise pattern; a poor noise distribution would be far away
from the within class samples and result in unreliable rejec-
tions thresholds (no false positives or false negatives). Second,
the within class corrected DTW scores are remarkably close to
the true distribution of the uncorrected DTW scores, whereas
the distribution of negative samples are shifted right, away
from the within class distribution. This observation suggests
that the correction factors are doing their job, although further
analysis in the next section will quantitatively confirm this.
Finally, the positive samples generated using GPSR form a
score distribution that is quite near the true distribution. This
does not imply that the synthetic samples are realistic, but it
does help build confidence that GPSR can be used to help find
a reasonable rejection threshold when used in combination
with synthetic negative samples.

EVALUATION OF SEGMENTED DATA

In order to evaluate Jackknife, we consider a number of pub-
licly available gesture datasets that span a range of input modal-
ities. Where appropriate, we compare our recognizer against
alternative methods. In general, we start with low dimensional
data and work our way into higher dimensions. We perform
repeated measures full factorial ANOVA analysis to under-
stand if there are statistically significant differences between
the recognizer variants evaluated. However, because recog-
nition error rates are often quite low, accuracy measures are
often non-normally distributed and may also violate the ho-
mogeneity of variance assumption, which is why we utilize
the Aligned Rank Transform method for ANOVA analysis
[37]. In the ANOVA results tables, the measure factor is either
euclidean distance (ED) or inner product (IP), and the correc-
tion factors (CF) are either disabled (False) or enabled (True).
Further, T = x specifies that x samples (templates) per gesture
class are used for training.

Pen and Touch

Table 1 presents results for Jackknife variants on the $1-GDS
pen and touch dataset [38]. This dataset contains 4800 sam-
ples of 16 pen gestures collected from 10 participants. Our
results were obtained using a writer-independent protocol. The
reason for focusing on writer-independence is that state-of-
the-art recognizers already achieve near perfect recognition
rates in writer-dependent tests on this dataset. Given a training
participant, our writer-independent protocol randomly selects
T samples per gesture class from that participant for training.
Next, one sample per each gesture class is randomly selected
from the pool of samples from all other participants, which
is used as the test set. This sampling process is repeated 500
times, and all results for the training participant are combined
into a single average accuracy value for that individual. This
process is repeated for each participant, so that each is used to
supply training data.

We observe that using inner products (IP) with gesture path
direction vectors yields higher accuracy with significance, as
does increasing the template count. Correction factors were
not a significant factor; however we cannot say how the cor-
rection factors affect negative samples with this test. In Table
2 we compare the best Jackknife variant to $1 [38] and $P
[35], two popular rapid prototyping $-family recognizers. The
main observation is that Jackknife outperforms the alternative
recognizers by a large margin and with significance.

Wii Remote

In Table 3, we report results for Jackknife variants on Cheema
et al.’s Wii Remote dataset [7]. This dataset contains 15625
samples of gestures collected from 25 participants who in-
dividually provided 25 samples per gesture. This dataset is
particularly interesting because as compared to other Wii Re-
mote datasets, the gesture vocabulary is large at 25 classes
and the Wii Remote traverses through various orientations.
Our results were obtained using a user-dependent protocol



Measure CF T=1 T=2
u (o) u (o)

ED False 091 (0.03) 0.92 (0.03)

ED True 091 (0.03) 0.92 (0.03)

1P False 0.94 (0.02) 0.95 (0.03)

1P True 094 (0.02) 0.95 (0.03)
Effect Figs Pr(>F) 77/2:
Measure 412.65 <.001 .87(L)
CF 0.33 .57 .01 —
Templates 86.8 <.001 .58(L)
Measure x CF 0.0 .96 .00 —
Measure x Templates 10.84 < .01 15 (L)
CF x Templates 0.13 12 .00 —
Measure x CF x Templates  0.02 .88 .00 —

Table 1: Writer-independent mean accuracies for Jackknife vari-
ants on $1-GDS [38], as well as ANOVA results with statistically
significant effects highlighted and their effect size labeled: (L)arge,
(M)edium, or (S)mall.

R . T=1 T=2
ecognizer

u (o) u (o)
Jackknife 094 (0.02) 0.95 (0.03)
$1 0.88 (0.02) 0.90 (0.01)
$P 0.84 (0.02) 0.86 (0.02)

Table 2: Writer-independent mean accuracies for several recognizers
on $1-GDS [38]. There is a significant difference between recogniz-

ers with a large effect size (F3 45, p < .001, nI% =.92), and a post hoc

analysis shows that all recognizers are significantly different from
each other.

similar to the original work of Cheema et al. [7]. For each
experiment in this protocol, 7 samples are selected at ran-
dom from a participant for training and the remaining 25 — T
samples are selected for testing, and this selection process is
performed 500 times per each participant. We did not run a
user-independent protocol because device orientation has a
significant impact on the accelerometer signal data, and there
is a great deal of variance in how the Wii Remote is held
by each participant. However, applications that track device
orientation can easily adjust the signals in order to support
user-independence. To improve accuracy for the inner product
(IP) Jackknife variant, the acceleration data was integrated into
3D position points per [15], but we found this was unhelpful
for the squared Euclidean distance variant (ED). There was a
significant difference between the ED and IP measures, where
the IP measure gave higher accuracies. There was also a small
positive effect when utilizing the correction factors; though,
due to truncation, this cannot be seen in the table.

We next compared the best performing Jackknife variant
against alternative domain-specific recognizers (DTW with
quantization [18], $3 [14], and Protractor 3D [15]), whose
results are shown in Table 4. DTW with quantized accelerom-
eter data performed slightly better than Jackknife, although
accuracies were similar. We note that other than the common
step to integrate acceleration samples into position trajecto-

T= 1 T=2

Measure CF
u (o) u (0)

ED False 0.79 (0.05) 0.86 (0.04)

ED True 0.80 (0.05) 0.86 (0.04)

1P False 0.93 (0.03) 0.96 (0.02)

1P True 093 (0.03) 096 (0.02)
Effect F1,168 Pr(> F) 1’]1%
Measure 1747.23 <.001 91 (L)
CF 391 < .05 .02 (S)
Templates 314.67 <.001 .65()
Measure x CF 2.23 .14 .01 (S)
Measure x Templates 44.05 <.001 21
CF x Templates 0.17 .68 .00 —
Measure x CF x Templates 0.03 .86 .00 —

Table 3: User-dependent mean accuracies for Jackknife variants on
Cheema et al.’s Wii Remote dataset [7], as well as ANOVA results
with statistically significant effects highlighted and their effect size
labeled: (L)arge, (M)edium, or (S)mall.

ries, Jackknife did not require domain specific knowledge to
achieve high accuracy. On the other hand, DTW with quan-
tized data required an analysis of the accelerometer data and a
selection of the quantization levels, which may be domain or
device specific.

R . T=1 T=2
ecognizer

H (o) u (o)
DTW (w/ quantization) 0.94 (0.03) 0.97 (0.02)
Jackknife 0.93 (0.03) 0.96 (0.02)
$3 0.71 (0.06) 0.79 (0.06)
Protractor 3D 0.63 (0.06) 0.73 (0.06)

Table 4: User-dependent mean accuracies for various recognizers
on Cheema et al.’s Wii Remote dataset [7].The recognizer main
effect is significant with a large effect size (F3 168 = 789.72,p <
.001, ng =.93(L)), and post hoc tests show that all recognizers are
also significantly different from each other.

Kinect

In Table 5, results are presented for the Ellis et al. (Parkour)
[9] Kinect dataset, which contains 1280 samples of 16 parkour
actions, e.g. climbing and vaulting, collected from 16 partici-
pants using a Kinect sensor. We used the same user-dependent
test protocol as reported in the last section. The local cost
function was significant, where the Jackknife IP measure out-
performed ED, and IP was able to achieve 99% accuracy with
one training sample. The correction factors were are also sig-
nificant and played a role in substantially driving down the
error rates*. We also ran a user-independent variant of this test
and found that IP with correction factors and T=2 achieved
96% accuracy, whereas ED with correction factors achieved
70%.

We also replicated Ellis et al.’s observational latency test [9]
that evaluated recognizer accuracy when training and test data

“It is important to note that as accuracies reach high levels, seemingly
small improvements in accuracy are actually large reductions in error
rates.



Measure CF T=1 T=2
M (o) u (o)

ED False 0.88 (0.05) 0.93 (0.03)

ED True 0.89 (0.05) 0.94 (0.03)

1P False 097 (0.03) 0.99 (0.02)

1P True 0.99 (0.02) 0.99 (0.01)
Effect F11105 Pr(> F) T]IZ,
Measure 383.89 < .001 79 (L)
CF 16.62 <.001 .14 M)
Templates 80.36 <.001 43(@L)
Measure x CF 1.73 .19 .02 (S)
Measure x Templates 35.86 <.001 .25()
CF x Templates 3.38 .07 .03 (S)
Measure x CF x Templates 0.0 .96 .00 —

Table 5: User-dependent mean accuracies for Jackknife variants on
the Parkour dataset [9], as well as ANOVA results with statistically
significant effects highlighted and their effect size labeled: (L)arge,
(M)edium, or (S)mall.

were truncated to varying frame counts in order to minimize
the delay between when a user performs an action and when
the time that action is recognized. If an action can be recog-
nized before completion, observational latency can be reduced.
In Table 6, we see that Jackknife with IP achieves the highest
accuracy for all frame count levels.

Recognizer 10 15 20 25 30 40 60
Jackknife IP w/ CF 24 53 78 90 95 98 99
Ellis et al. [9] 14 37 65 82 91 95 96
Conditional Random Field 15 25 47 67 81 91 94
Bag of Words 11 21 44 68 83 92 94

Table 6: Recognition percentage accuracies for Jackknife and recog-
nizers evaluated by Ellis e al. [9] (bottom three) for varying length
video sequences. Both training and testing data are truncated to the
specified number of frames.

Acoustic Gestures

Hand based gesture interactions with computers via Doppler
shifted sound waves is presently gaining attention [11, 27].
Unlike other interface devices evaluated to this point, sound
waves are especially subject to noise as extracting and detect-
ing frequency changes over a large spectrum with low cost
hardware still lacks robustness. Further, complex over-the-air
hand gestures are prone to large variations in shape and speed,
the later of which manifests itself uniquely in frequency dis-
tributions (unlike in 2D or 3D Euclidean space where speed
alone does not change the observed trajectory). These issues
make accurate gesture recognition difficult. To test whether
Jackknife is suitable for this input modality, we collected a
new dataset comprising eighteen dynamic hand gestures col-
lected from 22 participants with a 5 speaker, 1 microphone
setup based on [22] (see our project website for more details).
The raw data is represented as a 33 frequency bin distribution
per speaker, which results in an m = 165 component vector
per frame. Jackknife results are shown in Table 7, which
were obtained using the user-dependent protocol [7] described

previously. In early testing, we learned that z-score normal-
ization on the spectrum data was harmful; we believe this is
because for some gestures, there is no motion through certain
frequency bins, and so z-score normalizing those components
only served to scale up noise. Therefore, ED- is also reported,
which is the squared Euclidean distance measure on raw data
without z-score normalization. While ED- is not formally part
of Jackknife (as this result required an additional investigation
and some domain knowledge), we feel that the reader should
be aware of this result. Additionally, since the bounding box
correction factor does not have meaning in this context, we
only utilize the absolute distances traveled correction factor.

Measure CF T=1 T=2 T=4
M (o) M (o) u (o)

ED False 0.71 (0.08) 0.81 (0.08) 0.87 (0.07)
ED True 0.75 (0.07) 0.83 (0.06) 0.89 (0.05)
ED- False 0.83 (0.07) 090 (0.05) 0.94 (0.04)
ED- True 0.84 (0.06) 0.91 (0.05) 0.94 (0.04)
1P False 0.72 (0.07) 0.81 (0.06) 0.88 (0.06)
1P True 0.75 (0.06) 0.84 (0.05) 0.90 (0.05)
Effect F Value Pr(>F) n;
Measure P 483 = 491.46 < .001 .67 (L)
CF F]ﬁ483 =72.36 <.001 13 (M)
Templates F3 483 = 551.31 < .001 77 (L)
Measure x CF F 483 = 10.02 < .001 .04 (S)
Measure x Templates  Fg 433 = 11.41 <.001 .12(M)
CF x Templates F3;4g3 =1.76 15 .01 (S)

Table 7: User-dependent accuracy results for Jackknife variants
on the acoustic gesture dataset, as well as ANOVA results with
statistically significant effects highlighted and their effect size labeled:
(L)arge, (M)edium, or (S)mall. ED- indicates that sequences were
not z-score normalized.

As is shown, the local distance measure and correction factor
effects are significant. In a post hoc analysis, we found that
ED- was significantly different from ED and IP, but the latter
measures where not different from each other. Good accu-
racy (> 90%) can be achieved with ED- with two templates,
otherwise four templates are required with IP.

Performance

Over 10,000 iterations, we trained a C++ based Jackknife
recognizer with our Kinect user study data (see next section),
which is 63 components per point. The recognizer was trained
with T=10 templates per gesture class, resulting in 140 tem-
plates (since there are 14 gesture classes). The recognizer
was then used to evaluate one additional sample per gesture
class and the evaluation time in microseconds per sample was
recorded. On a MacBook Pro, 2.2 GHz Intel Core i7 with 8GB
DDR3 memory, the average time to execute a recognition test
on a raw sample was 395 us (std=90.2); or equivalently, the
evaluation process took approximately 2.82 us (0.64) per tem-
plate, amortized.

EVALUATION OF CONTINUOUS DATA
To evaluate the effectiveness of our approach in rejecting non-
gesture sequences from a continuous data stream, we collected
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Jab L/R Hook L/R Uppercut L/R Kick L/R

Sidekick L/R

Cartwheel L/R  Push Duck

Table 8: List of 14 Kinect gestures used in our contiguous data study. Note that L/R indicates there is a left and right side version of the gesture.

&
P

Fist Circles Index Circles Snip Snip Explode

Sideways Knock Love

e

. L
$ © W

Devil Horns

Table 9: List of 8 Leap Motion gestures used in our contiguous data study. Each gestures starts with one’s hand in a first and ends in the same

position.
2 F| Score  Precision  Recall FPR Pruned
1(o) (o) (o) (o) 1(o)
1.5 95.7(5) 954(5) 96.1(6) 03(0) 89.2(6)
1.75  96.0(6) 96.0(6) 96.1(7) 03(0) 90.1(5)
2.0 969 (5) 97.3(5) 96.5(6) 0.2(0) 909 (5)
225 964(6) 97.5(4) 955(7) 02(0) 91.7(5)
2.5 959(6) 975(4) 945(8) 02(0) 92.6(4)
275 95.1(5) 975(3) 93.0(8 02(0) 933(4)
198 964(5) 96.8(5) 96.1(6) 02(0) 90.8(5)

Table 10: T=2 Percentage accuracy results for various rejection
thresholds on the Kinect gesture dataset shown in Table 8. The last
entry is the threshold that was automatically selected.

test data from a pool of 40 students (30 male and 10 female)
at the University of Central Florida, ranging in age from 18 to
28. The participants were divided into two groups where the
first group worked with a Kinect and the second group worked
with a Leap Motion. We collected segmented training data of
the gestures shown in Tables 8 and 9 as well as a continuous,
uninterrupted session of the sample gestures performed in
random order with repetitions, which is discussed in detail
below. Each participant took around 15 to 20 minutes to
complete all tasks, including a pre-questionnaire to collect
demographic information, and all were compensated $10 for
their time.

The experimental setup comprised a 50 inch Sony Bravia
HDTV and a Microsoft Kinect 2.0 or Leap Motion. The
Kinect sensor was mounted above the HDTV using a mounting
device and was kept stationary throughout all sessions. The
Leap Motion sensor was mounted on a desktop in front of the
television and was kept in place through a single session using
tape, except in one case where the participant was left handed
and the sensor’s orientation was changed to accommodate
for their comfort. Further, a box was placed between the
participant and the device so one could rest their arm and
avoid fatigue, which also helped to control the distance and
orientation of a participant’s hand during the study.

Precision Recall FPR
(o) u(o) u(o) u(o) u(o)

2 F} Score Pruned

1.5  93.8(5) 933(7) 950(7) 0.8(0) 548(7)
175 944(5) 950(5) 944(8 0.6(0) 58.1(7)
20 943(5) 958(5) 933(8) 05(0) 625(7)
225  940(7) 97.7(3) 91.5(11) 03(0) 662(6)
25  92.8(8) 98.1(3) 89.4(13) 02(0) 702(6)
275 90.9(10) 983(2) 863(15) 02(0) 73.7(5)
195 938(6) 957(5) 925(9) 05(0) 61.8(8)

Table 11: T=2 Percentage accuracy results for various rejection
thresholds on the Leap Motion gesture dataset shown in Table 9. The
last entry is the threshold that was automatically selected.

Data Collection

We developed a data collection utility with two modes using
Unity 3D v5.4. The first mode allowed us to collect clean,
segmented samples of each gesture for training. A participant
was asked to perform a specific gesture that was initiated by a
count down. The sequence was then resampled and replayed
to ensure correctness. If an error occurred or the participant
was unhappy with the replay, the sample was discard and
recollected. This process was repeated twice so two training
samples per gesture were collected. Note that all gestures were
demonstrated to a participant before any data was collected.
The second mode enabled us to collect a continuous stream of
gesture articulations. Our application prompted the participant
to perform a specific gesture selected at random, and once
we confirmed the correct action was performed, we manually
advanced the application to the next gesture. Otherwise, if an
error occurred, e.g., a malformed gesture or loss of tracking,
the action was retried. A proper example of each gesture was
collected three times so that there were a total of 14 x 3 valid
Kinect gestures and 8 x 3 valid Leap Motion gestures included
in the unsegmented stream.

We noticed the Kinect lost track of some participants more
frequently than others, which may be related to the texture and
colors of the participants clothing. In such cases the skeleton



appeared jittery on the screen and gesture were repeated as
necessary. The Leap Motion device also frequently lost track-
ing and detected incorrect hand poses, such as reporting that
both the index and middle fingers were extended when, in fact,
only the index was so. These problems were exacerbated with
5 participants who had smaller hands. Also, we actually col-
lected data for 9 Leap Motion gestures, but found one gesture
(not shown in Table 9) was difficult for participants to perform.
This gesture was removed from our analysis.

Results

Using data collected from each participant, we trained Jack-
knife and replayed the participant’s session. All classification
results including true and false positives (¢p and fp) as well
as true and false negatives (fn and fn) were averaged into an
overall result. Additional parameters were tuned as follows:
the recognizer was run once every 10 frames using the last four
seconds of buffered frame data® ; once an action was detected,
the buffer was cleared and the recognizer was suspended for
2 seconds, which we believe is sufficient time to prepare for
the next gesture; and a gesture was considered as executed if
Jackknife returned the same result twice in a row. Based on
our experiences, these are fairly reasonable criteria, which can
be tuned to match a practitioner’s specific requirements.

We reran the above procedure several times for different levels
of A used to set the rejection threshold (see Equation 12). Ta-
ble 10 shows results for our Kinect continuous data test, and
Table 11 shows results for the Leap Motion test. The rejection
threshold is important in balancing precision (rp/(tp + fp))
and recall (rp/(tp + fn)), and the F; score is the harmonic
mean of these measures. Our goal is to therefore maximum Fj.
In the Kinect test, we are able to achieve 96.9% at A = 2.0,
which is close to the automatically selected threshold A = 1.98.
Similarly, the maximum F; score of 94.4% for the Leap Mo-
tion test occurred at A = 1.75, which again is near the automat-
ically selected A = 1.95. Recall that the automatic threshold
is selected so that the false and true negatives generated from
synthetic data is minimized, which appear to be appropriate
for idle movement in between actions. However, A can also
be increased to allow for a larger variety of non-gesture ac-
tions to be performed at the expense increased false negatives.
According to our results, the affect on the F] score is not too
large, where the improvement in precision may well be worth
the loss in recall for many applications. These results suggest
that Jackknife is useful for working with continuous data.

DISCUSSION

Jackknife is designed to be a “go-to" recognizer for gesture
interface development that can span multiple modalities and
still achieve competitive accuracy. By combining DTW with
concepts developed for 2D gesture recognition, for rapid pro-
totyping and gesture customization, we believe our recognizer
accomplishes its objective. There is no simple criterion by
which one can judge a recognizer and determine that is it excel-
lent or terrible. At best we can compare with other recognizers

5We used four seconds because some gestures were performed slowly
by some participants; though we could have used a shorter duration
in most cases. Since the gesture paths are resampled to n = 16, idle
frames do not significantly contribute to the shape of the action.

in a specific domain for a specific dataset when such is avail-
able and speak in relative terms. In this way, we see that Jack-
knife is very competitive. Examples include the $1-GDS pen
and touch dataset where Jackknife with IP outperformed $1
and $P; Cheema et al.’s [7] Wii Remote datasets, where Jack-
knife was on par with the domain-specific quantized DTW;
and Ellis et al.’s [9] Parkour dataset, where our recognizer
achieved 99% accuracy with one training sample, and can
be used to reduce observational latency. Even with atypical
gesture data such as sound frequencies, Jackknife is able to
reach greater than 90% accuracy with only two training sam-
ples per gesture. From another perspective, based on accuracy
results reported for 36 3D gesture recognizers across different
domains [16] (Table 1), one might expect a competitive rec-
ognizer to fall between 88—98% (93% =+ 5.29%) accuracy. In
all tests performed, Jackknife fell in this range.

However, a gesture recognizer can only be a go-to option if
it can also support continuous data, which requires robust
rejection. By using GPSR [32] to create synthetic positive
samples that are combined with synthetic negative samples,
we are able to learn a per template rejection threshold with only
one training sample per gesture class. We were able to show
through an evaluation of continuous data that this automatic
process is able to derive a threshold near the optimum.

One Recognizer To Rule Them All?

No, while Jackknife has been demonstrated to be a versatile
tool, we do not claim that our recognizer is appropriate for
every situation or even that it is the best solution possible for
any one situation, and some limitations are worth noting. First,
Jackknife presently does not handle static poses. Motion into
and out of a static pose can be detected, but a single frame
pose does not constitute a time series appropriate for DTW
treatment, a limitation of Jackknife we intend to address in
future work. The techniques presented also do not generalize
to arbitrary variability; for instance, a 3D hand gesture of a cir-
cle drawn counterclockwise does not automatically pair with
a clockwise gesture without providing appropriate training
samples. A last issue that requires attention is that the resam-
pling rate n for GPSR has to be manually tuned. Similar to the
optimal-n equation for synthetic 2D gestures, work needs to
be done to find an equivalent for more complex data.

CONCLUSION

We have presented Jackknife, a general gesture recognizer
suitable for rapid prototyping and gesture customization that
works well with little training data as well as continuous data.
Our recognizer uses DTW with an inner product local cost
function on normalized gesture path direction vectors, which
was shown to outperform the squared Euclidean distance al-
ternative in most tests, although Jackknife can be equipped
with either measure. We also introduced two new correction
factors for DTW that help disambiguate certain gesture classes
and inflate negative, non-gesture sample scores. Finally, we
proposed a new method of automatically selecting a rejection
criteria for continuous data that, according to our evaluation
of online data, can select a threshold close to the optimum.
Overall, we have demonstrated that Jackknife shows promise
of being a capable and robust go-to gesture recognizer.
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