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Abstract. We present a prototype sketch-based physics tutoring sys-
tem that combines mathematical sketching, an interaction paradigm
that supports construction of dynamic illustrations using the associa-
tion of handwritten mathematical expressions with drawings to govern
animation behavior, and a custom physics engine. We highlight key fea-
tures of our core system that focus on correcting approximately drawn
sketches and maintaining the correspondence between imprecise hand-
written drawings and precise mathematical specifications. We describe
the behavior and design of the system in detail and finally, present two
example scenarios illustrating its possible uses in an educational setting.

1 Introduction

Mathematics and physics teachers often use diagrams to present scientific con-
cepts in visual form and as an initial step in problem solving [12, 13]. In addition,
to solve a physics or mathematics problem, students usually condense the infor-
mation given in the problem statement by drawing a diagram. Students annotate
these initial diagrams with mathematical expressions to make links between ab-
stract concepts and concrete diagram elements. Often, the answer to a problem
is numeric or symbolic and it is unclear how it would affect the drawing, requir-
ing students to rely on their imagination to visualize the underlying concepts in
action. To alleviate this issue, we postulate that providing meaningful animation
of student-drawn sketches based on the associated mathematics used to solve a
problem is required in order to impart better understanding of physics concepts.
Such animation can also help students in intuitive verification of their answers
to problems. Our research goal is to construct sketch-based intelligent tutoring
systems for mathematics and physics that capture the essence of pen and paper
diagrams while leveraging the power of computation by providing meaningful
animation to enhance student learning.

We have developed a prototype physics tutoring system that is based on
mathematical sketching [7], an interaction paradigm that supports construction
of dynamic illustrations using the association of mathematical expressions with
drawings to govern animation behavior. We took initial steps toward this goal
with a proof-of-concept system in [3]. Our current prototype more fully integrates



the advantages of mathematical sketching with an underlying physics engine and
leverages domain knowledge more efficiently to help it infer how to animate a
sketch at different levels of mathematical specification.

Fig. 1. A typical inclined plane diagram drawn by a student.

Hand drawn sketches are often approximate in nature. For example, Figure 1
represents an inclined plane problem. The triangle drawn by the user is approx-
imately right-angled. Likewise, the inscribed angle α is not exactly π/4. Such
approximations are acceptable with pen and paper diagrams because the user
relies on his imagination to see concepts in action. However, these inaccuracies
can cause problems for the underlying physics engine in [3] due to ambiguity
between the precise mathematical specifications and the imprecise drawings. A
sketch-based tutoring system must be able to correct such diagrams (i.e., per-
form rectification) to allow students to sketch diagrams in a natural manner.
In this paper, we describe the drawing rectification features that enable our tu-
toring system to deal with approximate sketches. We present a discussion of
its feedback mechanisms that allow users to more directly observe changes in
diagram state over time. We also highlight scenarios where understanding the
user’s intent based on physics domain knowledge allows us to present a better
dynamic illustration.

2 Related Work

Pen-based systems for understanding hand-drawn sketches and providing visual
feedback have been developed in the past for a number of specific goals. Al-
varado [1] and Kara [5] have constructed systems for recognizing and animating
diagrams in specific domains such as mechanical design and vibratory systems.
Both utilize a simulation back-end to facilitate animation of problems understood
in terms of basic primitive shapes. However, they are limited in scope because
they do not allow the user to write mathematics to govern animation behavior.
MathPad2 [8] provides a better mechanism for animating sketches by allowing



users to write down mathematics to describe aspects of animation. MathPad2 is
limited in its scope because users must specify all aspects of animation.

Existing physics tutoring systems, such as the Andes Physics Tutoring Sys-
tem [11], provide step by step guidance in problem solving, but rely on WIMP
interfaces and do not provide users with the ability to write down their solutions
and sketches as if using pen and paper. Newton’s Pen [9] is a pen-based tutoring
system that aids student learning in a few selected classes of physics problems. It
does not permit free-form sketching of diagrams and does not include the ability
to make associations in order to perform visual linkages between mathematics
and diagram. PenProof [4] is a pen-based geometry theorem proving system
that is able to recognize and understand the correspondence between geometric
constructs and proof steps. This system is able to leverage the correspondence
between geometry and proof steps to provide visual feedback to the user. At
the same time, its limitation is that users are forced to disambiguate between
geometry and proof steps explicitly and must rely on the system to associate
proof steps with the figure.

3 System Features

Users sketch diagrams and write mathematics by means of a stylus on a tablet
computer. Recognized diagrams can be annotated by making associations with
mathematical expressions. Expressions used to make associations can either de-
note initial conditions or mathematical equations governing behavior.

The system parses a sketch when instructed to do so. In the past, we ex-
perimented with real-time sketch recognition but discarded it because it did not
allow flexibility in terms of making/changing associations. On-demand parsing of
the user’s sketch is more natural because in a pen and paper scenario, students
first sketch the diagram and then annotate it with mathematical expressions.
The system is capable of recognizing the following diagram components: convex
shapes(Circles,Polygons), springs, and wires. Realistic values are assigned to
each component’s attributes upon recognition based on the component’s spatial
characteristics. For example, a shape’s initial mass is assigned proportional to
its enclosed area. This approach allows us to animate sketches realistically even
when the user does not specify any initial values. Assignment of initial attributes
in this manner also allows the user interface to be flexible because it does not
necessitate the input of all initial conditions by the user. Users can alter at-
tributes by writing mathematical expressions to reflect proper initial conditions
and associating them with diagram components. A lasso gesture is used to select
expression(s). The association is completed by tapping the desired component.
Existing associations can be viewed by hovering the stylus over a recognized
component.

Mathematical expressions can either be constant expressions (e.g. f1 = (0, 5))
or equations (e.g. vx = ksinθ). Equations can denote scalar quantities (e.g. mag-
nitude of normal force due to an incline) or vector quantities. Vector quantities
can be specified in terms of x and y component equations or as a single vector



equation. When x and y components are not specified, we use physics domain
knowledge to determine if the variable in the left-hand side of the equation de-
notes a vector or a scalar. Equations may be written in terms of numbers (e.g.
f1 = −0.5vA) or in terms of symbolic constants (e.g. f1 = −µv where µ = −0.5).
The system also uses domain knowledge to establish possible errors regarding
associations and diagram components. This takes an understanding of physical
properties of recognized diagram components. For example, it is illogical to as-
sociate an expression specifying a spring constant (e.g. k = 0.8) with a shape or
to associate a tension with a spring.

Writing and associating mathematics allows users to apply initial values and
modify behavior as needed for a given problem and also provides intuitive feed-
back. Recognition errors or mistakes in equations can cause incorrect animation
that conflicts with the user’s intuition. A reset mode is provided that lets users
debug and correct existing associations. This allows users to experiment with
different initial values and gain better insight into the working of underlying
concepts. We also allow a user to directly observe an attribute on a movable
shape with respect to time. Observable attributes are velocity, acceleration, net
force, all forces, x-displacement, y-displacement and position. When a particular
attribute is under observation, most other information on the shape’s animation
is replaced by the selected attribute in bold. The user can also choose to view a
real-time graph of a several selected attribute at any time.

In keeping with our research goal to capture and enhance the essence of
problem solving using pen and paper, the system has the capability to preserve
existing associations along different system modes. If users want to alter part of
an expression that is already associated with a diagram component, they do not
have to make the association again. We believe that this approach minimizes
unnecessary work on a user’s part and lets him focus on the problem at hand
rather than being encumbered by the user interface.

4 System Design

Figure 2 shows a high level view of the various components of the system. The
following sections will highlight salient aspects of important components.

4.1 User Input

Sketches and written mathematics are acquired as digital ink strokes. A ges-
ture recognition module recognizes three gestures: lasso, scribble-erase, and tap.
The gesture set is limited thus to reduce interface complexity. The lasso ges-
ture is used to select both ink and diagram components. Users can drag and
reposition the selection on the screen. The scribble-erase gesture is used to erase
ink and diagram components. If mathematical expression(s) are selected and
a tap gesture is performed on a diagram component, an association is made.
If no mathematics is selected, the tap gesture will cause a recognized shape to



Fig. 2. Overview of system components.

become immobile. The interface includes options to save/load ink. Instant recog-
nition feedback for mathematical expressions is provided by means of an online
mathematics recognizer [14]. Mathematical recognition errors can be corrected
by erasing the offending part of the expression by the scribble erase gesture and
rewriting it. The feedback results are also used to make the association which
improves performance by avoiding unnecessary work and minimizes recognition
errors by using only correctly recognized mathematics.

4.2 Sketch Recognition

Sketch recognition is the first step in converting a user’s sketch into components
that will be animated by the underlying physics engine. All ink strokes are filtered
and re-sampled prior to recognition to remove noise and ensure equal spacing
of stroke points. We use a custom cusp detector to count the number of cusps
in a stroke. A threshold is applied to the distance between the last and first
cusp of the stroke to check for closure. A closed stroke is classified as a polygon
if it has more than 2 cusps, otherwise it is possibly a circle. As a measure of
circularity, we compute the standard deviation of the angle subtended at the
stroke’s centroid by each line segment in the stroke. Since the points are evenly
spaced, the deviation will be extremely low for circular shapes. Strokes that have
2 cusps and are not closed are possibly springs or wires. A stroke is a spring if it
has three or more self intersections. A line segment intersection test is employed
for counting self intersections in the ink stroke. Wires are simply approximate
straight lines. Any ink strokes that do not meet the above criteria are considered
to be mathematics.

Every ink stroke is classified as either a diagram component or part of a
mathematical expression. It is possible to mis-classify parts of a mathematical
expression as diagram components (e.g. zeros as circles). We use the following
rules to disambiguate between diagram components and mathematics. Shapes



are disambiguated by ensuring that all convex components enclose a minimum
area. For springs and wires, the end point of each must be attached to a shape.
Hence recognition proceeds in the following order: Shapes, Springs, Wires, and
lastly mathematics.

4.3 Associations

Associations between mathematics and diagram components are used to modify
aspects of the animation. Associated mathematical expressions are either con-
stants or equations. Constants can modify attributes of a diagram component
such as mass, velocity, acceleration, etc. Constants are applied once, at the start
of the animation. The values of associated constants can be changed in reset
mode.

Equations can be similarly used to modify attributes of diagram components.
During each animation step, existing equations are populated with their param-
eter values and evaluated to guide the animation. When evaluating equations
with mathematical errors (e.g. f = −µvA is valid only if µ is specified), any un-
recognized/unspecified parameters are assigned zero. This ultimately serves as
visual feedback indicating an error in input being the cause of abnormal anima-
tion. In [3], equations could either use values associated with a single component
or use global values (e.g. gravity and time). We have extended this scheme to
include symbolic constants associated with any component in the diagram. Such
a mechanism is necessary to solve the inclined plane problem discussed in Sec-
tion 6.1.

4.4 Physics Engine

Recognized diagrams are animated by a custom 2D physics engine that is based
on principles described in [10]. The default animation behavior of all diagram
components depends on the standard equations of motion. Each shape’s posi-
tion is updated by computing net acceleration and performing numerical inte-
gration twice for position. Collision detection/resolution are performed after the
position update. Earlier we used the method proposed by [2] to deal with rest-
ing/sliding contacts. But upon experimentation, we found that keeping track of
every shape’s net motion via exponential smoothing defined by

Motionframe = ∥v∥2 + ω2

Motionnet = (1− α)Motionnet + αMotionframe

where α = 0.8 works fairly well and is faster.
After collision processing, a inference step is applied to deal with unspecified

circumstances such as whether wires will break or not. Important attributes of
shapes (e.g. velocity) are rendered as arrows. To provide visual feedback regard-
ing how the magnitudes and directions of important quantities change over time,
the length of rendered arrows are adjusted in proportion to the magnitude of
the attribute represented.



Attributes of recognized components can be altered by making associations
with written mathematics. It is also possible for a user to specify position or
velocity update equations for a diagram component as replacement for stan-
dard equations of motion. If only velocity is associated, it is integrated once
to update position. If the position is associated, no integration is required. Ob-
servable attributes (see Section 3) are computed in every frame even if there
must be computed indirectly (e.g. compute velocity when position equations are
associated).

Interesting situations arise when default behavior is overridden by custom
behavior. Consider the following example. Shape A moving under standard equa-
tions of motion collides with shape B moving under user-defined position update
equations. It is clear, that after the collision is resolved, the user-defined posi-
tion update equation for B no longer applies. When such objects collide, the
user defined equations are disabled and the physics engine takes over to resolve
the collision. After the collision, the collided objects’ position is updated by the
computation of net force and acceleration and double integration with respect
to time.

5 Correction of Approximate Sketches

Correction of approximate sketches can take three forms. First, components may
be corrected individually to conform to a user’s intended sketch. Second, groups
of shapes may need to be corrected. For example, the user may intend for one
shape to rest on top of the other, but his actual sketch places them a small
distance apart. During animation, the underlying physics engine will not treat
the two shapes as if they were in contact. Lastly, making an association may
change the appearance of a diagram component. Consider an inclined plane
problem. The user draws a triangle and then writes an expression for the incline
angle. When the association is made, the triangle should be adjusted to reflect
the correct incline angle. This is necessary because the underlying physics engine
will resolve contacts between shapes based on their spatial characteristics. For
example, an incline with actual incline angle π/4 is associated with the following
mathematical expression θ = π/6. If a ball is placed on the incline, the user
will calculate the parallel and perpendicular components of weight in terms of
θ = π/6. When the association is made and the animation run, the ball will
fly off the incline instead of sliding down the incline. This happens because the
direction of the net force will be slightly divergent from the incline instead of
parallel to it.

5.1 Shape Correction

Sketched polygons can have approximately horizontal and vertical edges and
may thus need individual correction. Each edge of a polygon is examined to see
if its slope is nearly vertical or horizontal. Approximate vertical or horizontal
edges of a polygon are thus corrected. In [3], users were required to draw polygon



vertices in anti-clockwise order. This constraint has now been lifted by examining
the sign of the cross product between adjacent polygon edges. If any of the cross
products is positive, then the ordering of vertices is reversed to ensure anti-
clockwise winding. This allows users to sketch polygons in an unconstrained
manner.

It is possible for the user to draw two or more shapes close to each other
with the intent that the shapes be in physical contact. Upon recognition, the
shapes may be a small distance apart. To correct these situations, the minimum
distances between all pairs of shapes are computed. If the distance between two
shapes is below a threshold value, then they are moved into contact. Between
circles, movement occurs along the axis connecting the centers. If either shape
in a pair is a polygon, then a vector corresponding to the minimum distance is
computed. This is always perpendicular to exactly one edge of one of the poly-
gons. This vector serves as the axis along which movement occurs. The direction
of movement is from the shape with lower mass toward the more massive shape.

Fig. 3. Two cases for Triangle Rectification

Associating an angle with a right-angled triangle changes the incline of the
triangle. Two possible cases are show in Figure 3. The only difference is whether
the incline is uphill or downhill. In case (i), the new vertex p′2 is computed as

1. Rotate p0 clockwise by θ about p1 to get p′0
2. Compute direction v =

p′
0−p1

∥p′
0−p1∥

3. Compute p′2 = p1 + kv, where k = ∥p0−p1∥2

v.
p0−p1

∥p0−p1∥

In case (ii), the new vertex p′2 is computed as

1. Rotate p1 anticlockwise by θ about p0 to get p′1
2. Compute direction v =

p′
0−p1

∥p′
0−p1∥



3. Compute p′2 = p0 + kv, where k = ∥p0−p1∥2

v.
p1−p0

∥p1−p0∥

5.2 Wire and Spring Correction

Wire and spring correction can also take three forms. The first case relates to
the length of the wire/spring. During sketching, users may accidentally draw
them as ending within a shape rather than attached to its boundary. In order
to capture the user’s intent, the correction mechanism clips the endpoint of the
wire/spring against the shape it is attached to. This ensures that forces due to
wires/springs act at their proper locations and result in a correct animation.
Secondly, if the distance between the endpoint of a wire/spring and a polygon
vertex is below a threshold, the endpoint is aligned with the vertex to conform
to the user’s intent.

The last case relates to the angle that wires/springs may make with hori-
zontal/vertical axes. If an association involves an angle, the system determines
if the association is made near the start or the end of the wire/spring. An angle
association completed near the end shape implies that the angle with the hor-
izontal axis is being altered. An angle association completed near the starting
point of the wire/spring indicates that the angle being altered is the angle with
the vertical axis. We assume that wires/springs endpoints are always drawn in
top-down ordering. Once the axis and the proper endpoint are determined, a
rotation about the other endpoint is required to alter the wire/spring into the
desired location in conformity with the user’s intent.

6 Example Scenarios

6.1 Example 1: Inclined Plane

Figure 4 represents a problem that involves a ball rolling down an inclined plane.
The information given to a student is the angle of the incline and the mass of
the ball. The student is asked to work out the magnitude of the normal force
acting on the ball. The student sketches a triangle to represent the inclined
plane. He then draws a circle on the incline to represent the ball. From the given
information he works out that the magnitude of the normal force acting on the
ball is f1 = ∥W∥ cos θ.

To verify the answer, the student decides to animate the sketch with the
solution as input. Upon analysis, the incline and ball are replaced with corrected
diagram components (triangle and circle). The triangle is made immobile by
tapping it once. The student associates the expression for incline angle with the
triangle. This causes the triangle to change appearance and the circle on it to
be repositioned accordingly. The student associates the expressions for mass and
the normal force (f1) with the circle and animates the sketch.

If the computed answer is correct, the ball will have a resultant force that
will cause it to roll down the incline. If the expression is wrong, then the ball
will either bounce off the incline (normal force too low) or fly off (normal force



Fig. 4. An inclined plane problem.

too great). An incorrect animation therefore provides the user with hints about
possible errors in his calculation. The student also chooses to view a graph of
how the magnitude of the velocity changes with time for the ball. It show a
linear increase in velocity with time, implying a constant acceleration. Notice
that the student worked out the answer as he would on paper. The information
associated with recognized diagram components is minimal and is a subset of
the student’s solution. The student did not have to specify the position update
equations to govern the ball’s motion down the incline. He simply worked out
the magnitude of the normal force acting on the ball due to the inclined plane.
Also, the expression derived by the student is just the magnitude of the normal
force and by itself is insufficient to animate the diagram. The system infers
from the shapes in contact and the association of the angle expression with the
triangle that an inclined plane problem is being animated. The unit direction of
the normal force is computed as perpendicular to the incline edge of the triangle
and multiplied by the magnitude (associated by the user) to get the normal force.
Note also that the expression for the normal force is written in terms of θ. Our
previous implementation [3] did not allow writing of vector equations and would
have required the specification of the normal force in terms of x and y coordinates
as fx = Wx cos θ and fy = Wy cos θ. The above equations are incorrect from a
physics point of view and would only confuse a student should he have to use
them to specify the animation’s initial conditions. We have removed this cause
of confusion in our current prototype.

6.2 Example 2: Wires Holding an object in Equilibrium

Figure 5 represents a problem where a box is being held in equilibrium by means
of two wires attached at an angle to it. The student is given the mass of the box
and the angle that each wire makes with the horizontal axis. He must calculate



Fig. 5. An equilibrium problem modeled in our system.

the tension in each wire that will keep the box suspended in equilibrium. Upon
reflection, the student realizes that the sum of the vertical components of tension
in each wire must equal the weight of the box. With this insight, the student
works out that the magnitude of the tension in each wire is 5

√
2. As before,

to verify the result, he instructs the system to analyze the sketch. The system
recognizes and replaces the box with a square. The wires are clipped properly
against the square’s boundary. The student alters the mass of the square and
associates the tension with each wire. Notice that the sketch is approximate and
that the wires are not truly at an angle of π/4 with the horizontal. Upon making
the association (θ = π/4), the system alters each wire so that it is at an angle
of π/4 with the horizontal.

When the animation is run, the system shows the box being held in a sta-
tionary position. If the student had computed the tension in any one of the wires
incorrectly, the animation would have resulted in a net force on the box. The
box’s resulting motion would cause one or both wires to break, confirming to
the student that his answer was incorrect.

7 Conclusion

We have presented a prototype sketch-based physics tutoring system that fuses
mathematical sketching with an underlying physics engine. We have described
key features of our prototype that allow it to deal with several cases of approxi-
mate user sketches through sketch rectification, enhance its capabilities in terms
of accepting flexible input, provide visual feedback, and support associations
between drawings and mathematics. Our current prototype is limited to simple
linear kinematics and can only provide visual verification. In the future, we plan
to include problems from other areas such as work, energy, rotational kinemat-
ics, simple harmonic motion, and planetary motion. We also plan to support



numerical verification of a user’s answer to a problem. Other possible avenues of
future work include implementation of a dimensionality analysis tool and a tool
to convert between different systems of units. We plan to do a general study of
the techniques and ways that university physics students employ to solve differ-
ent types of physics problems. We also plan on conducting technical and user
evaluations of our system at a suitably mature stage to help us get important
feedback to improve student learning.
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