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A large part of the energy budget of traditional sensor networks is consumed by the hop-by-hop
routing of the collected information to the static sink. In many applications it is possible to replace
the static sink with one or more mobile sinks that move in a sensor field and collect the data through
one-hop transmissions.This greatly reduces the power consumption of the nodes, which can be further
reduced by choosing the appropriate moment of transmission. In general, the transmission energy
increases quickly with the distance, and thus it makes sense for the nodes to transmit when one of
the mobile sinks is in close proximity. Seeing the node as an autonomous agent, it needs to choose its
actions of transmitting or buffering the collected data based on what it knows about the environment
and its predictions about the future. The sensor agent needs to appropriately balance the following two
objectives: the maximization of the utility of the collected and transmitted data and the minimization
of the energy expenditure. We introduce the cummulative policy penalty as an expression of this
interdependent pair of requirements. As a baseline, we describe a graph-theory-based approach for
calculating the optimal policy in a complete knowledge setting. Then, we describe and compare three
heuristics based on different principles (imitation of human decision making, stochastic transmission
and constant risk). We compare the proposed approaches in an experimental study under a variety

of scenarios.
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1. INTRODUCTION

Traditional sensor networks are composed of a set of low-
power sensor nodes that collect environmental data and forward
it by hop-by-hop routing to one or more sinks. Sinks are
assumed to have much more computational power and energy
resources than the sensor nodes. The traditional vision of a
sensor network assumed both the sinks and the sensor nodes
to be static. Because of the low-power resources of the sensor
nodes, energy conservation is an important factor. Most of the
energy of the node is spent for the wireless transmissions. Nodes
in the proximity of the sink need to forward the transmissions
of the nodes from the exterior part of the network. For such
a node, the energy expenditure of forwarding can be several
times larger than the cost of transmitting the node’s own
observations.

An alternative approach, more economical in terms
of consumed power would be to collect the data with a set
of mobile sinks, which are periodically visiting the vicinity
of each node. The sensor nodes are collecting and buffering
their observations, and occasionally transmitting them to the
closest sink. Naturally, there will be moments when there is no
mobile sink in the transmission range of the node. Even when
a sink is in the transmission range, it might be so far that the
transmission can happen only with large energy consumption.
This creates a new problem for the sensor node: should it
send the data now, or wait until a sink gets closer, allowing
the transmission of the data with a lower power consumption?
Given that the necessary transmission power increases very
quickly with distance (in certain cases, for nodes close to the
ground, it can be as much as the fourth power of distance),
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the right choice of the transmission moment can be of major
importance. Of course, if a sensor node waits too long, it might
be forced to transmit at the moment when its memory buffer is
full, while bypassing previous, better opportunities. Even worse,
if there is no mobile sink in the transmission range when the
buffer is full, some amount of observations will be lost. Those
interested in energy consumption within sensor networks can
refer to an extensive survey presented by Anastasi et al. [1].

In this paper, we describe and compare three practically
implementable heuristic algorithms to control the transmission
behavior of the nodes in the presence of mobile sinks. To
provide a baseline for comparison, we also describe an optimal
algorithm based on the transformation of the problem into
a graph theory problem. The latter, however, has a limited
practical applicability due to its information requirements
(it requires advance knowledge of the movement patterns
of the mobile sinks) and its considerable computational
complexity.

The remainder of this paper is organized as follows. The
transmission scheduling problem, its applications and possible
strategies are described in Section 2. Related work in the domain
of sensor networks with mobile sinks (MSSN) is presented in
Section 3. In Section 4 we present the Oracle Optimal (OrOpt)
algorithm, an algorithm which calculates the optimal schedule
of transmissions providing that the movement schedule of
the sinks is known ahead of time. While this requirement,
together with the high memory and computational cost makes
it less suitable for deployment on a sensor node, the algorithm
will serve as a reference for the more realistic algorithms we
present in the next sections. In Section 5 we present the three
heuristic algorithms for transmission scheduling. In Section 6
we present the results of an experimental study. We conclude in
Section 7.

2. THE TRANSMISSION SCHEDULING PROBLEM

The transmission scheduling problem for MSSN is centered on
the decisions of the node whether or not to transmit its currently
collected set of observations to a mobile sink at a particular
moment in time.

MSSN have applications in areas ranging from environmental
data collection to battlefield surveillance. The transmission
scheduling problem appears in most of these deployments,
although in slightly different formulations. For instance, our
assumption is that data transmission is initiated by the sensor
node, and thus the transmission scheduling problem needs to be
solved by the node itself. If a certain architecture requires the
data transmission to be initiated by the sink, the transmission
scheduling problem must be solved by the sink. The only
scenario when the transmission scheduling problem is irrelevant
is when the mobile sink visits the sensor nodes regularly
and positions itself at a predetermined location for receiving
data.

In this paper, we make the following assumptions about the
deployment scenario of the network:

(i) The mobile sinks visit every sensor node; all the nodes
will be eventually visited by a sink. This does not
necessarily mean that all the data collected by the node
can be transmitted to the sink; it is possible that the time
interval between two visits is so large that even with an
optimal strategy some data will be lost.

(ii) The data transmission always happens between the
sensor node and the closest mobile sink.

(iii) The sink does not move during the transmission.
(iv) The nodes have a finite buffer of constant size and collect

observations with a constant bit rate.
(v) The information does not become obsolete in the time

it takes to fill the buffer. That is, the node can wait until
its buffer is full and transmit the full buffer in a single
transmission, without incurring penalties for delay. Of
course, the node can also transmit when the buffer is
only partially full.

Naturally, the algorithms proposed in this paper need to be
appropriately modified if deployed under different assumptions,
and the relaxation of some of these assumptions, such as
allowing the sink to move during data transmission, adds
additional complexity to the problem.

The sensor node, acting as an autonomous agent, needs to
balance two separate goals as follows: the transmission of the
observations to the mobile sink and minimization of the energy
consumption. Neither of these two objectives alone would yield
the desired behavior. Considering only the energy minimization
criterion would create a sensor that does not transmit any
observation. Considering only the goal to minimize data loss
would create a system that will transmit at every available
opportunity.

To consider both goals, we will require the agent to minimize
a cummulative policy penalty (CPP) function which represents
over a period of time the consumed energy and a weighted
penalty for data loss. The cummulative aspect of this function
is important, because of the delay between a decision and
the moment when the associated penalty occurs. For instance,
the decision of not transmitting at a certain moment will
incur a data loss penalty only later, if no other opportunity
to transmit occurred before the buffer was full. Unfortunately,
this cummulative aspect means that the CPP cannot be used
directly as a decision function, as it can only be evaluated
retrospectively. The policy aspect of this function reflects the
fact that the balance of the two components can be set arbitrarily
by the beneficiary of the system.

Let us assume that the sensor network operates over a
timespan [0, T ] during which the considered node performs
k transmissions, with transmission i ∈ 1 . . . k being performed
at time ti with the buffer content being bi and the distance to the
mobile sink di . We denote by bnt the amount of data that was
not transmitted to the mobile sink. The CPP can be expressed
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as follows:

CPP =
∑

i∈1...k

bi · ptx(di) + wp · bnt. (1)

If the data gathering rate is r , we have

rT =
∑

i∈1...k

bi + bnt. (2)

The transmission energy is fully determined by the physical
factors. We use the following model for the energy dissipation
used for communicating one bit of data [2]:

ptx(d) = (α11 + α2d
n), (3)

where ptx is the power dissipated when the node is transmitting
to the mobile sink, d is the distance to the sink and n is
the path loss index, and α11 and α2 are positive constants.
The path loss index varies between 2 and 4 depending on the
environment and the position of the node. In general, for sensor
networks deployed on the ground, the path loss index is higher.
In our experimental study, we assume a path loss index of
4. Typical values of the parameters are α11 = 45 nJ/bit and
α2 = 0.001 pJ/bit/m4 (for n = 4).

Let us now consider the choice of the data loss penalty
parameter wp. At first sight, this is a free policy parameter,
which can be set arbitrarily by the customer of the sensor
network. Unfortunately, such free parameters are a significant
headache for the users, because we lack the intuition of what
a particular setting of this parameter means and subtle changes
in the parameter can trigger unexpected emergent behavior
in the system. The solution is to anchor this parameter to
intuitive physical properties of the system. In the following
we present two approaches for this anchoring, both of them
relying on bringing the two components of the CPP to the same
dimensionality.

2.1. Express the consumed power in terms of future
data loss

Let us assume that the sensor node starts with an initial energy
reserve Ptotal, and the life expectancy of the sensor network is
Texp. Excessive energy consumption in the present would make
the node exhaust its energy before the expected lifetime, losing
all the data which would have been collected afterward. We thus
need to balance the data loss currently bnf with the data loss at
the end of the lifecycle beol.

The average energy consumption per unit of time is given by

pavg =
∑

i∈1...k bi · ptx(di)

T
. (4)

Assuming that the node will consume energy at its current
rate, the lifetime of the node will be as follows:

Tlife = Ptotal

pavg
= T

Ptotal∑
i∈1...k bi · ptx(di)

(5)

and the data loss at the end of the life cycle is given by

beol = min(0, r(Texp − Tlife)). (6)

Now we can design a variant of the CPP with a version
expressed only in terms of data loss as follows:

CPPdataloss = beol + bnt
min(Texp, Tlife)

T
. (7)

In this model, the free parameter is the expected lifetime of
the network Texp. This parameter is intuitive and easy to set
based on the functional specifications of the deployment.

2.2. Express the data loss in terms of alternative
forwarding techniques

The previous approach requires us to set the expected lifetime
of the network. In the case when the deployment model is a
traditional sensor network with a static sink augmented with
several mobile sinks (a reasonable assumption), we can express
the cost of the data not collected by the mobile sinks by the cost
of transmitting the data using traditional hop-by-hop routing to
the static sink. Let us assume that the hop count to the static
sink is nhops and the average distance between nodes is davg.
Then, we can express the penalty component of the CPP as
follows:

wp · bnt = bnt · nhops · ptx(davg) (8)

that is
wp = nhops · ptx(davg). (9)

In this case, there is no free variable at all in the expression
of the CPP, which can be calculated directly from the physical
properties of the deployment. Under these assumptions, the CPP
will differ from node to node. Sensor nodes close to the static
sink would have a relatively low penalty for data transmitted
through the hop-by-hop method. Sensor nodes many hops away
from the static sink would need to take more effort to send their
data through the mobile sinks.

3. RELATED WORK

The traditional view of wireless sensor networks was based
on the assumption of fixed sinks and multi-hop routing in
which every sensor node participates. However, forwarding
other nodes’ packets puts a very significant load on the limited
energy resources of the sensor nodes. Significant research effort
was spent on routing techniques that reduce and balance the
energy consumption of the sensor network.

Recently, several research groups proposed approaches based
on the assumption of mobile sinks. Whenever their deployment
is possible, mobile sinks can greatly extend the lifetime of the
sensor network. In the best case, the mobile sinks periodically
visit the vicinity of every sensor; in these conditions, all the
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communication happens in a single hop between the node and
the mobile sink.

Naturally, the use of mobile sinks opens a number of new
research challenges. In the following, we review some of
these efforts grouped by the research problems on which they
concentrate.

3.1. Routing toward mobile sinks

These types of networks assume that only a subset of sensor
nodes are visited by the sinks. The nodes that do not have direct
access to the sink are using hop-by-hop routing either toward
the mobile sink or toward sensor nodes that are periodically
visited by a sink.

The MULE (Mobile Ubiquitous LAN Extension), by Shah
et al. [3], architecture has the following three tiers: (i) a top
tier of WAN connected devices, (ii) a middle tier of mobile
transport agents and (iii) a bottom tier of fixed wireless sensor
nodes. The mobile transport agents, which are the equivalents
of mobile sinks, are opportunistic agents capable of short range
wireless communication with the sensors and wireless access
points. The agents use Markov chain theory to determine the
average values of the entities of interest.

Anastasi et al. [4] consider the transport layer implications
of a sensor transmitting data to a moving mobile sink. They
start from the observation that the lowest error rate occurs at the
point when the sink is closest to the sensor, which should be
at the midpoint of the contact interval. The proposed adaptive
data transfer protocol schedules the transfer symmetrically
around the estimated midpoint of the contact interval and uses
the automatic repeat request mechanism to recover from the
transmission errors.

Kim et al. [5] introduced scalable energy-efficient asyn-
chronous dissemination which is a distributed self-organizing
protocol that reduces the energy consumption by the construc-
tion of a dissemination tree (d-tree) and the dissemination of
the data to the mobile sinks.

Baruah et al. [6] aims to deliver sensor data toward a mobile
sink over multiple hops by hybrid learning-enforced time-
domain routing. The mobile sink does not query for data but
rather passively listens for data ‘pushed” by the source sensor.
The sensor nodes are forwarding their observations towards the
moles, sensor nodes located within the sink’s path.

3.2. Mobility models of the sinks

The mobility of the sink can be categorized into the following
three types: random, predictable and controllable. In case of
random mobility, the sink travels through the network in a
random walk fashion. In the case of predictable mobility, the
sensor nodes can learn the mobility pattern of the sink and
therefore can predict the location of the sink at any given point
in time. In the case of controlled mobility the sink mobility

is adaptively controlled based on specific parameters of the
network and/or the deployed applications.

A model for controlled mobility is presented in Basagni
et al. [7]. A linear optimization model is used to determine
which nodes the single mobile sink visits and for how long. The
authors find that the energy depletion was more balanced across
the network and the network lifetime was extended up to five
times compared with a network with a static sink.

The data collection process is modeled as a queuing system
in Chakrabarti et al. [8] to measure the impact of predictable
observer mobility (where the observers correspond to mobile
sinks). The network uses only single-hop communication. The
authors show that predictable mobility can save communication
power in the sensor network. Knowing the path of the sink
can help the sensor and the sink find positions where they can
exchange data with the lowest possible power.

Vincze et al. [9] proposes two sink location algorithms
to minimize the overall energy consumption in the network
(mintotal) as well as to minimize the energy consumption of
the most loaded sensor (minmax).

The SEnsor Networks with Mobile Agents (SENMA)
architecture, by Mergen et al. [10], is suitable for power-
constrained large-scale dense sensor networks. SENMA relies
on one-hop transmission between the sensor nodes and mobile
agents. For communication, the system uses a slotted time
division duplexing system with opportunistic ALOHA. The
opportunistic ALOHA turns off the sensor automatically when
the mobile agent is no longer in the proximity of the sensor.

The goal of the two-tier data dissemination (TTDD) protocol,
by Luo et al. [11], is to provide scalable and efficient data
delivery to multiple mobile sinks. TTDD uses a grid structure
in which only the sensors placed in the grid points are required
to obtain information for forwarding. Nodes nearby the grid
points (dissemination nodes) receive queries from the mobile
sink. The queries travel through the grid and data is forwarded
back to the sinks by tracing the reverse path. As TTDD forwards
data only to a fraction of the sensor nodes, it allows a lower
control overhead.

3.3. Mobility and routing

This category combines projects which consider not only the
mobility of the sink, but also routing of the sensed data towards
the sink.

The mobile enabled wireless sensor networks (mWSN)
architecture, introduced by Chen et al. [12], uses multi-hop
forwarding to form a cluster around the expected position of
the mobile sink. mWSN has two operational modes: local and
remote sensing. In local sensing, once a mobile sink receives
a response to a query sent to the fixed sensors, the collected
data is transferred to the base station for interpretation. The
query result will then be returned to the mobile sink. In the
remote sensing case, multiple mobile sinks help gather the data
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of interest. In this protocol, the sink trajectory is not controlled
but rather it can be estimated or learned.

Kansal et al. [13] proposed the use of controlled and
coordinated motion of network elements to alleviate resource
limitations and improve system performance by adapting to
deployment demands.

In Gandham et al. [14], multiple mobile stations are deployed
to extend the lifetime of the sensor network, which is divided
into equal periods of time known as rounds. Base stations are
mounted on unmanned remote-controlled vehicles to be moved
from one location to another and they can be located only at
specific places called ‘feasible sites’. At the beginning of every
round, the location of the base stations is determined using an
integer linear programming model.

Wang et al. [15] investigate various combinations of networks
with mobile sinks and/or mobile relays. The paper describes a
performance study comparing different routing algorithms in
three cases as follows: (i) the network consists of static nodes
only; (ii) there exists a single mobile sink; and (iii) there exists
a single mobile relay. A joint mobility and routing algorithm is
described which requires the entire network to know the current
location of the mobile node. The algorithm was then enhanced
such that only a small portion of the nodes were needed to be
aware of the location of the mobile node while still achieving
the same performance as the previous algorithm.

A combination of base station mobility and multi-hop routing
strategy are proposed by Luo and Hubaux [16] to maximize
network lifetime. The paper shows that data collection protocols
can be optimized, for instance for a better load balancing
among the nodes in the network, by considering the mobility
of the base station and multi-hop routing. The authors find that
the most desirable mobility pattern for the base station is to
follow the periphery of the network. The simulation results have
demonstrated that highly loaded nodes reduced their load by
a factor of five and the joint mobility and multi-hop strategy
improved the network lifetime by 500%.

The MobiRoute architecture [17], is a sensor network with
mobile sinks where the mobility is controlled and predictable
and the sinks have long pauses in their movement called
epochs. In a typical scenario, nodes send data via multi-hop
communication toward the mobile sink, which changes its
location based on route traces. A routing protocol forwarding
data toward a sink must carry out the following processes:
(i) inform the node when its communication link to the
sink is broken due to mobility; (ii) alert the entire network
of any topological variations; and (iii) reduce the packet
loss during the time when the sink moves to a different
position.

In Olariu et al. [18], the authors design, an AutoNomouS
netWorked sEnsoR system. The architecture assumes static
sensor nodes and (possibly mobile) aggregation and forwarding
nodes (AFNs). An important role of the AFNs is to organize
the sensors in their immediate vicinity into a dynamic virtual
infrastructure that depends on the current task. The AFN can

perform controlled mobility that balances the benefits of getting
closer to the nodes recording a certain action with the risks
of getting too close to potentially dangerous environments or
agents.

3.4. Transmission scheduling

The process of determining when to transmit the buffered
data.

Song and Hatzinakos [19] proposed a wireless MSSN that
utilizes a single-hop transmission to avoid expensive multi-
hop transmissions in sparsely deployed sensor networks. The
proposed transmission scheduling algorithm (TSA-MSSN) uses
the λ parameter to maintain the balance between maximizing
the probability of successful data retrieval while keeping the
energy consumption at a minimum. TSA-MSSN is a centralized
algorithm and executed only at the sink in order to make use of
the available resources.

Harras and Almeroth [20] makes use of a dedicated set of
messengers to deliver message bundles between different routes
(also defined as regions that are not connected). The regions
and the nodes in the regions may be stationary or mobile. The
authors have developed the following two messenger ownership
schemes: regional and independent. In addition, the three
message scheduling schemes introduced are periodic, storage-
based and on-demand.

4. THE ORACLE OPTIMAL ALGORITHM FOR
COMPLETE KNOWLEDGE TRANSMISSION
SCHEDULING

Let us consider the transmission scheduling problem in a
complete knowledge environment. As one of our assumptions
we have stated that the transmission always occurs between
the sensor node and the closest sink. Thus, we can characterize
the mobility pattern of the mobile sinks from the point of view
of a node through the vector D = (dtstart . . . dtstop), where dt

represents the distance of the closest sink at time t .
A transmission schedule is a set of k time points, such that

A = {tstart < a1, a2, . . . , ak = tstop}, ai < ai+1 and dai
≤ dtr ∀i,

where dtr is the transmission range of the sensor node. The
problem is to select the transmission schedule such that it
minimizes the CPP.

As the number of distinct schedules is 2(stop−start), a naive
solution-state search would have an exponential complexity.

In the following, we describe a graph-theoretic solution
for the transmission scheduling problem. Exploiting the
additiveness of the CPP, we construct a graph where the edge
weights correspond to the components of the CPP sum. We
create a directed acyclic graph G = (V , E) as follows. The set
of vertices vstart, vend correspond to the timepoints in the interval
tstart . . . tstop, vertices for which dt > dtr have no incoming or
outgoing edges (except the last vertex). For every edge eij with
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i < j , we associate a weight as follows:

wij =
⎧⎨
⎩

(j − i) · r · ptx(dj ) if i + tbf > j,

tbf · r · ptx(dj ) + (j − i − tbf)pw otherwise.
(10)

If the last vertex vstop has the associated distance dstop > dtr ,
it will exceptionally have incoming edges with the weight
wi,stop = pw(stop − i). This corresponds to the situation when
the considered time interval finishes at a moment when no
mobile sink is in the transmission range, and thus the data since
the last transmission would be lost. The construction of this
graph is illustrated on Fig. 1.

With this construction, the weight of an edge wij is the CPP
cost incurred by the node if it made a transmission at time
j such that the previous transmission was at i. The graph is
acyclic (as all the edges follow increasing indexes). The graph
is not fully connected, as vertices without any mobile sink in
the transmission range have neither outgoing nor incoming links
(exception the last vertex which has incoming edges even if it
corresponds to a situation where no sink is in the transmission
range). We can simply remove these unconnected vertices,
obtaining a fully connected graph.

The solution of the transmission scheduling problem is
the shortest path from vertex vstart to vstop. The vertices in
the shortest path are the timepoints where transmission is
made; the cost of the shortest path is the total CPP of the
solution.

The shortest path problem can be solved with Dijkstra’s
algorithm. The generated graph is not sparse, and thus the
complexity of the algorithm is O(|E|) = O(n2), where n is
the number of timepoints where there is a mobile sink in the
transmission range. Although this is relatively low complexity,
the practical deployment of the algorithm is dependent on the
advance knowledge of the schedule of future visits by the mobile
sinks.

ViVi-1Vi-2Vi-3Vi-bVi-b-1Vi-b-2V0 Vn

FIGURE 1. TheQ4 construction of the solution graph for the
transmission scheduling problem. Due to the density of the full
graph, only the connections of a single vertex vi are represented.
The edges represented by continuous lines have a weight of the form
(j − i) · r · ptx(dj ) while the edges represented by dotted lines have
weights of the form tbf · r · ptx(dj ) + pw · (j − i − tbf ).

5. THREE HEURISTICS

In the following, we propose three heuristic algorithms for
making the transmission decision. In contrast to the OrOpt
algorithm, these algorithms make their decision based on very
simple calculations and do not assume advance knowledge of
the movement patterns of the mobile sinks. In the remainder
of this section we shall use the following notation: M is the
current buffer content, Mfull is the size of the buffer, r is the
data collection rate, dtr is the transmission range, and d is the
current distance of the closest mobile sink.

5.1. H1: Human-inspired simple heuristics

The first heuristic was designed based on the observation
of several humans who were asked to play the transmission
scheduling problem as a game, and then asked to describe
their strategy. We found that humans are not comfortable doing
calculations during the game. The strategies deployed by the
human subjects were based on simple triggers based on the
levels of the buffer and the current distance of the mobile sink.
The subjects never described their approach as being stochastic,
although in the practical game they did not adhere rigidly to the
stated strategy. When asked directly whether they would base
their strategy on a ‘coin toss’, all the interviewed people said
that that does not appear to be a good strategy.

The heuristics is based on three parameters as follows:

dopt optimal distance. This is the distance that, for the human,
represents the intuition that the mobile sink is ‘as close
as it gets’ to the node. Note that this might not be the
absolute minimum of the distances, only a value that
is hit with a relative certainty during the maximum
collection interval.

ML buffer too low to transmit. Represents the level at which
the amount of collected data is too low to justify its
transmission.

MH buffer emergency level. This represents an amount of
collected data that puts the system in danger of losing
data. At values higher than this, the system will transmit
at the next available opportunity, regardless of the
distance.

The transmission rule of the system is shown in Algorithm 1.
Obviously, the approach needs to be calibrated by choosing
values for the dopt, ML and MH parameters. These values depend
on many factors. For instance, if the transmission overhead is
0, that ML = 0. If in the system there is always a mobile sink
in the transmission range of the sensor, then MH = Mfull (the
buffer capacity).

For cases when there is a chance that there is no mobile sink
in the range of the sensor, we need to fall back to our intuition
in determining the buffer emergency level. By interviewing our
experimental subjects, we found that humans start to become
alarmed about a possible data loss when the buffer reaches 90%
capacity. Thus we chose the value MH = 0.9 · Mfull.
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Algorithm 1 . H1: Human inspired simple heuristics.
Require: d, M , ML, MH, dopt

if M > ML then
if d < dopt then

return transmit
else if M < MH then

return transmit
else

return wait
end if

else
return wait

end if

5.2. H2: Stochastic transmission

The stochastic transmission heuristics transmits randomly with
a probability distribution that is affected by the buffer level
and the distance to the mobile sink. If the buffer is empty, this
contributes a 0 value, while if the buffer is full, it contributes a
1 value to the probability; which is given by

pb = M

Mfull
. (11)

The second factor is the distance of the mobile sink. We assume
that there is a minimum distance dmin, such that any distance
smaller than that cannot be translated into an energy advantage.
If the distance of the mobile sink is smaller than dmin, it
contributes 1 to the probability of the transmission, while if
it is dtr or larger, it contributes 0. One expression that achieves
these values is as follows:

pd = dtr − max(d, dmin)

dtr − dmin
. (12)

We express the probability of the transmission as a weighted
mixture of these two probabilities as follows:

p = w · M

Mfull
+ (1 − w) · dtr − max(d, dmin)

dtr − dmin
. (13)

The overall algorithm for the stochastic transmission method
is described in Algorithm 2.

Algorithm 2 . H2: Stochastic transmission.

Require: d, M , dmin, w

p ← w · M
Mfull

+ (1 − w) · dtr−max(d,dmin)

dtr−dmin
u ← U(0, 1) // generate random number
if u ≤ p then

return transmit
else

return wait
end if

5.3. H3: Constant risk

The reason for a node not to transmit is the hope that a
better opportunity would appear in the future. Naturally, this
decision carries a certain risk. The constant risk algorithm tries
to estimate based on historical information how much risk a
decision carries and then take decisions based on a constant
risk factor. The goal is to prevent the algorithm from being too
bold on one occasion and too cautious on others.

To implement this algorithm, the heuristics maintains a two-
dimensional risk estimation table OP , where OP [t][d] is the
fraction of the occasions in the history of the node when in a
time window of size t the mobile sink came closer than distance
d. We interpret this fraction as a future probability. The size of
the array depends on the accuracy at which we quantize the
distance and the buffer. Note that the measurements necessary
to maintain this table do not depend on the behavior of the node.

The algorithm followed by the node is as follows. We choose
a constant risk factor prisk which we are willing to accept.
Whenever we need to make a decision to send or not, we
calculate the quantization of the current remaining time tq and
the current distance to the sink dq, and look up the probability
that a better opportunity will appear before we run out of buffer
space OP [tq][dq]. If this probability is lower than prisk, the node
will send, otherwise it will wait.

Normally, prisk should be chosen a value very close to 1 (we
used 0.99 in our experiments). Note that even an OP value of
1 does not mean that there is no risk involved, but only that in
the history of the node, those types of situations finished ‘well’,
which might not be true in the future. The decision process is
described in Algorithm 3.

Algorithm 3 . H3: Constant risk.
Require: d, M , prisk

tq ← quantization of remaining time
dq ← quantization of distance to the sink
if OP [tq][dq] < prisk then

return transmit
else

return wait
end if

6. EXPERIMENTAL STUDY

6.1. Experimental setup and scenarios

We performed a series of experiments with a transmission
scheduling scenario involving a field in which a number of
mobile nodes are collecting the data from the sensor nodes using
a one-hop transmission. The mobility pattern of the mobile sinks
was random waypoint. We have assumed that the speed of the
mobile sink was 1 m/s or 3.6 km/h. This is a realistic speed for
a vehicle moving on rough terrain. We considered an area of
400 × 200 m, with 4–20 mobile sinks. The transmission range
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of the node was considered to be between 10–80 m, a realistic
range for a sensor node. Finally, we assumed a 32 kB buffer
and a data rate of 0.2 kB/s. The parameters of the simulation
environment are summarized in Table 1.

Let us now consider the evolution of the mobile sinks in
time. Even if the number of active mobile nodes is fixed, the

TABLE 1. The parameters of the simulation experiments.

General settings
Movement area 400 × 200 m
Simulation time 10000 s

Mobile sinks
Number 4–20 (10 default)
Velocity 1 m/s
Transmission range 80 m

Sensor nodes
Buffer size 32 kB
Data rate 0.2 kB/s
Transmission range 10–80 m (50 default)

Transmission power model
Path loss index n 4
α11 45 nJ/bit
α2 0.001 pJ/bit/m4

Policy
Cost of data loss equivalent to cost of transmitting

at maximum power

randomness of their movement patterns implies a randomness in
the distance of the closest mobile sink for a given sensor node. In
addition, in a practical application, it is unlikely that the number
of sinks would stay constant over a longer span of time. Even
if the mobile sinks are dedicated data collection devices, they
might get broken or reassigned to other tasks. In cases where
the mobile sinks are piggybacked on mobile entities such as
vehicles or humans, their number might vary drastically due to
circumstances or tasks unrelated to the data collection task of
the sensor network.

One of the questions we need to ask is whether different
transmission scheduling algorithms behave differently under
different patterns of variation of the number of mobile sinks. In
particular, we should avoid relying on algorithms that show high
performance under optimal conditions, but show significant
drops in performance as a response to changing conditions. To
investigate this, we designed four scenarios of the evolution of
the number of mobile sinks. Each scenario starts with a nominal
number of sinks N, which then evolves in time as follows:

Uniform: the number of sinks will remain at the nominal level
throughout the scenario (Fig. 2a). Note that this does not imply
a regularity of the visits, as the movement of the individual sinks
is random waypoint. This corresponds to a well-maintained
system in which the mobile nodes are replaced or repaired as
necessary.

Decreasing: this scenario starts with the nominal number
of nodes and decreases the number of nodes at a uniform
pace, ending the scenario with 10% of the initial number
(Fig. 2b). This corresponds to a system that is not maintained

T time

Mobile sink
count

N

T time

Mobile sink
count

N

0.1*N

gnisaerceD)b(mrofinU)a(

T time

Mobile sink
count

N

0.66*T time

Mobile sink
count

N

0.33*T T

0.25*N

0.5*N

pu-neht-nwoD)d(citarrE)c(

FIGURE 2. Scenarios for the evolution of the number of mobile sinks over time.
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after deployment, which is the case for systems deployed in
unaccessible or hostile locations.

Erratic: the number of mobile nodes varies erratically, with
sudden increases and drops over 10 time intervals (Fig. 2c).
This corresponds to cases where the nodes are piggybacked
over humans or vehicles whose presence is affected by factors
unrelated to the data collection task.

Down-then-up: the number of mobile sinks drops suddenly
to 25% in the second third of the scenario, but it is restored to
half its nominal value in the last third (Fig. 2d). This pattern
is characteristic for situations where the shifting interest of the
beneficiaries requires the temporary reallocation of resources
to other tasks.

Note that these scenarios are defined in terms of percentages
over nominal values of mobile nodes and scenario length, and
are adopted accordingly for varying number of initial nodes.

The environment and the proposed scheduling algorithms
have been implemented in theYAES simulator framework [21].

6.2. Compared algorithms

In our experiments we compare four different sensor
implementations:

Oracle Optimal (OrOpt): This implementation has advance
knowledge of the movements of the mobile sinks and calculates
an optimal schedule which minimizes the given CPP. The
implementation follows the description in Section 4.

As expected, the OrOpt algorithm always outperforms the
other approaches, and as such, serves as a baseline to the level
of performance that is possible for a given scenario. Note the
fact that the algorithm is optimal does not mean that, it cannot
lose data, as in certain scenarios the transmission of all the data
is not possible.

Human inspired (H1:HI): This is an implementation for the
algorithm described in Section 5.1 and the pseudo-code in
Algorithm 1. The free parameters were chosen as: ML = 0.2,
MH = 0.9 · Mfull and d = 0.5 · dmax.

Stochastic (H2:STO): This is an implementation for the
algorithm described in Section 5.2 and the pseudo-code in
Algorithm 2. The relative weight factor is chosen as w = 0.5.

Constant risk (H3:CR): This is an implementation for the
algorithm described in Section 5.3 and the pseudo-code in
Algorithm 3. The constant risk factor prisk was set to 0.99.

For each sensor model, we run the simulation with the same
scenario and the same location of the sensor. The experiment
was repeated 10 times, varying only the seeds of the random
movement of the mobile sinks. We performed measurements of
the total transmission energy and the data loss ratio, and retained
the averages calculated over the 10 experiments.

6.3. Results: data loss

The first set of measurements concern the data lost. There are
three components of the data loss: first, there is unavoidable data

loss due to the circumstances of the experiment. If no mobile
sink comes into the transmission range for a duration longer
than it takes to fill in the buffer, data will be unavoidably lost.
The second source of data loss is the policy that strikes a balance
between the cost of data lost and the cost of energy—even the
optimal algorithm will choose to lose data if its cost is larger than
the cost of transmitting. Finally, the third component is data loss
due to imperfect decisions made by the node. This component
does not exist for the OrOpt algorithm, and is responsible for
the differences between the different algorithms.

Figure 3 shows the data loss function of the transmission
range for the four considered scenarios. As expected, the
data loss decreases with the transmission range, because a
larger transmission range allows the mobile sinks to come into
range more often for the same movement pattern. The OrOpt
strategy, as expected, yields the best performance, followed
by the H2:STO and H3:CR (almost indistinguishable) and
H1:HI, at some distance. The differences between the various
scenarios are significant in magnitude (the decreasing, erratic
and down-then-up scenarios are harder than the uniform one),
but very similar in pattern and the relative performance of the
algorithms.

Figure 4 shows the data loss function of the nominal number
of sinks in the various scenarios. Again, the overall shape is
as expected, with the data loss decreasing with the increase
in the number of sinks in each scenario, and the order of
the performance remaining OrOpt as the best, followed by
H2:STO and H3:CR (almost indistinguishable), and H1:HI at
some distance. Overall, however, the differences in data loss are
not significant in relative terms between the algorithms.

6.4. Results: energy consumption

The results for the data loss values give the impression that
the transmission scheduling is an easy problem: the different
algorithms appear to be very close to each other, close to
the optimal algorithm and the different scenarios does not
significantly affect the performance rankings. The results for the
energy consumption, however, present a very different picture.

Let us first discuss our expectations about these values. A
larger transmission range might allow the node to transmit to
a farther sink, with a higher energy consumption. This can
increase the energy consumption even in an optimal algorithm
in situations when previously the choice was to lose packets.
Once a full transmission is achieved, however, the energy
consumption in an optimal algorithm would not depend on the
transmission range. In a suboptimal algorithm, however, energy
may be lost for unnecessary transmissions over longer distances.

Figure 5 shows the energy consumption function of
transmission range. We find that the energy consumption
increases with the transmission range for all the protocols, but
the protocol shows a large divergence in value. The optimal
protocol uses less than half the energy needed by the other
protocols.
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FIGURE 3. Data loss function of transmission range.
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FIGURE 4. Data loss function of number of mobile sinks.
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FIGURE 5. Energy consumption function of transmission range.
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FIGURE 6. Energy consumption function of number of mobile sinks.
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The next best is the constant risk algorithm H3:CR which
has a roughly 30% advantage over the other two for the
uniform scenario. However, we find that this advantage is much
smaller for the decreasing scenario, and virtually inexistent for
erratic and down-then-up. The reason for this phenomena is
that the constant risk algorithm uses a risk table computed
based on historical data in a uniform setting. Thus, the protocol
underestimates the risk in an erratic or down-then-up scenario,
yielding a comparatively lower performance.

Figure 6 shows the energy consumption function of the
number of sinks. There is no clear trend in these graphs.
Increasing the number of sinks might affect the energy
consumption in the following two different ways: it can increase
the energy consumption by letting the node transmit data that
otherwise would be lost and it can decrease the consumption
by providing more opportunities to transmit from a closer
distance. In practice we find that in the uniform scenario the
energy consumption decreases after the number of mobile sinks
exceeds six. For the other scenarios, the more difficult is the
scenario, the more the trend shifts toward the increase in the
energy consumption with the number of sinks. As a note, if we
would run these scenarios with a very large number of mobile
sinks, we would eventually reach a point where these values
would start to decrease as well.

Regarding the relative performance of the algorithms, we find
that the OrOpt has a commanding lead, in average consuming
50% less power than the other algorithms. The next best is the
constant risk algorithm H3:CR. Its advantage over H2:STO is
especially significant in the ‘easy’cases: in the uniform scenario
as well as the decreasing and down-then-up scenario with a large
number of mobile sinks. Its advantage is minimal for the ‘hard’
cases, such as the erratic scenario and the sections of the other
scenarios with a low number of nodes. As discussed above,
this is due to the fact that in these cases the H3:CR algorithm
underestimates the risk, as its risk table was obtained in the
uniform setting. The H1:HI algorithm is always the worst.

7. CONCLUSIONS

In this paper, we investigated the problem of transmission
scheduling in sensor networks where nodes transmit their
collected data with one-hop transmission to mobile sinks.
Modeling the node as an autonomous agent, each node tries
to maximize its utility by minimizing energy consumption and
data loss. We described a graph-theory-based optimal algorithm
that requires advance knowledge of the mobility patterns of the
mobile sinks. Then, we introduced three heuristics that rely only
on local and historical information.

Overall, the three heuristics managed to closely match the
data loss performance of the optimal algorithm, but at the
cost of a significantly higher power consumption. Consistently,
the human-inspired algorithm H1:HI performed worse than
the others. The constant risk-based algorithm H3:CR used

a risk table acquired from historical data. Using this, it usually
outperformed the stochastic H2:STO algorithm in scenarios
that closely matched the conditions in which the risk table was
acquired. In scenarios where the number of mobile sinks were
changing in time, the H3:CR and H2:STO algorithms performed
essentially identically. The H2:STO algorithm appears to be a
very good choice for implementation on devices with limited
computing capabilities, due to its extreme simplicity, low
memory requirements and the fact that it does not need any
learning or data acquisition process.

Let us now outline some directions for future work. In
this paper we took the approach of isolating the transmission
scheduling problem from the sensing behavior, as well as the
movement of the sinks—which we assumed to be random
waypoint. We also assumed that the sensor node does not make
any judgment on the value of the collected information. In a
practical deployment, there are many possibilities of making
more informed decisions. For instance, in the real world, truly
random movements are rare. If the mobile sinks are dedicated
data collection devices, their movement will be aligned with
the needs of the data collection task. If the mobile sink is
piggybacked on top of a vehicle or a human (such as a forest
ranger) its movement, although not strictly regular, would still
exhibit a certain structure that can be exploited. In addition,
the sensor node might need to make other decisions beyond
the simple send or wait considered in this paper. There is
an inevitable evolution of sensor nodes from devices that
simply collect and transmit data, to nodes which are aware of
their environment and make autonomous decisions to further a
higher-order goal.
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