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Abstract-- During the past few years distributed wireless 
sensor networks have been the focus of considerable 
research for both military and civil applications. Sensors are 
generally constrained in on-board energy supply therefore 
efficient management of the network is crucial to extend the 
life of the system. Sensors’ energy cannot support long haul 
communication to reach a remote command site, thus they 
require multi-tier architecture to forward data. An efficient 
way to enhance the lifetime of the system is to partition the 
network into distinct clusters with a high-energy node called 
gateway as cluster-head. Failures are inevitable in sensor 
networks due to the inhospitable environment and unattended 
deployment. However, failures in higher level of hierarchy 
e.g. cluster-head cause more damage to the system because 
they also limit accessibility to the nodes that are under their 
supervision. In this paper we propose an efficient mechanism 
to recover sensors from a failed cluster. Our approach 
avoids a full-scale re-clustering and does not require 
deployment of redundant gateways. 

Keywords: Network clustering, Fault-tolerance, Energy-
Aware Communication, Sensor networks.  

1. Introduction 
Recent advancements in integrated circuits have fostered the 
emergence of a new generation of tiny, inexpensive low-
power sensors. Due to their economic and computational 
feasibility, a network of hundreds and thousands of sensors 
has the potential for numerous applications in both military 
and civil applications such as combat field surveillance, 
security and disaster management. These sensing devices are 
capable to monitor a wide variety of ambient conditions such 
as: temperature, pressure, motion etc. The sheer number of 
these devices and their ad-hoc deployment in the area of 
interest brings numerous challenges in networking and 
management of these systems. Sensors are typically 
disposable and expected to last until their energy drains. 
Therefore, energy is a very scarce resource for such sensor 
systems and has to be managed wisely in order to extend the 
life of the sensors for the duration of a particular mission. 

Typically sensor networks follow the model of a 
command node or base station, where sensors relay streams 
of data to a command node either periodically or based on 
events. The command node is located faraway from the area 
where the sensors are usually deployed. In order to conserve 

energy consumed in communication with the command node 
various multi-hop and energy aware routing techniques have 
been suggested in the literature [5][6]. These techniques have 
overhead due to route discovery and to find optimum hops to 
communicate with the command node. In addition, there will 
be extra burden on the nodes, which are located around the 
command node, as most of the traffic will be routed through 
them.  

To avoid these overheads and unbalanced consumption 
of energy some high-energy nodes called “Gateways” are 
deployed in the network. These gateways, group sensors to 
form distinct clusters in the system, manage the network in 
the cluster, perform data fusion to correlate sensor reports 
and organize sensors by activating a subset relevant to 
required missions or tasks as shown in Fig 1. Clusters are 
formed based on the load on the gateways and the 
communication distance between sensors and the gateways 

[8]. Each sensor belongs to only one cluster and 
communicates with the command node only through the 
gateway of the cluster.  

 In sensor networks the effectiveness of data fusion 
depends not only on the sensed data but also on the coverage 
of sensors. In some mission critical applications such as 
disaster management it is essential to ensure good coverage 
to increase the potential of rescuing survivals and ensure the 
safety of the rescue crew. Therefore, dependability of the 
system becomes another very important factor for the 
efficient operation of the system. Sensors are susceptible to 
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device failures due to limited battery power but will also be 
inactive if the gateway in their cluster suffers from some 
faults. Reconfiguration of the system can be used to recover 
the sensors in a faulty cluster through re-clustering. Re-
clustering the system complicates the network setup and 
bootstrapping. Gateways have to stop data processing and 
communication in order to perform clustering. New 
communication schedules have to be set and transmitted to 
the sensors. Moreover, frequent faults will result in frequent 
re-clustering wasting precious energy and time.  Redundant 
gateways can also be deployed in the system to replace the 
faulty gateways. However, pre-deployment of redundant 
gateways makes them unutilized resource while replacement 
of faulty gateway can be impractical and slow. 

In this paper we investigate the dependability of sensor 
networks in the presence of faults in the gateways. We 
propose a run-time recovery mechanism based on consensus 
of healthy gateways to detect and handle faults in one faulty 
gateway. A two-phased detection and recovery mechanism is 
proposed to limit the performance impacts caused by a 
gateway failure. We use a simulation-based fault injection 
method, which assumes that errors occur according to a 
predetermined distribution. The sensors assigned to the faulty 
gateway are reorganized on the fly without bringing the 
system to a complete shutdown. The recovery information is 
created during clustering which facilitates the recovery 
process. Various communication fault scenarios are 
considered and handled during recovery. Our approach 
provided considerable improvement in the stability of the 
system and reduces the overhead of re-clustering and system 
reconfigurations.  

In the next two sections we define the architectural 
model of sensor networks and summarize the related work. 
Section 4 describes the fault-detection and recovery 
approach. Description of the simulation environment and 
validation of the experiments can be found in section 5. 
Finally section 6 concludes the paper and discusses our future 
research plan. 

2. System Model 
The system architecture for the sensor network is shown in 
Fig 1. There are only two kinds of nodes in the system; 
sensors and less-energy-constrained gateway nodes. The 
sensors and gateways are assumed to be of the same kind and 
have same properties respectively. All communication is over 
wireless links. A wireless link is established between two 
nodes only if they are in range of each other. Gateways are 
capable of long-haul communication compared to the sensors 
and are in direct communication range with the command 
node. Communication between nodes is over a single shared 
channel. Current implementation supports TDMA [7] 
protocol to provide MAC layer communication.  

In this paper we assume that the sensor and gateway 
nodes are stationary. In the future we plan to incorporate 
mobile gateways in the system. During the bootstrapping 
process, all the sensors and gateways are assigned unique 

IDs, initial energy and TDMA schedule. All nodes are 
assumed to be aware of their position through some GPS 
system. While the GPS consumes significant energy, it has to 
be turned on for a very short duration during bootstrapping.  
Sensors inform the gateways about their location during the 
clustering process. It is worth noting that most of these 
capabilities are available on some of the advanced sensors, 
e.g. the Acoustic Ballistic Module from SenTech Inc. [2].  

Initially all gateways are assumed to be in 
communication range with one another. Gateways form their 
own subnet to exchange status information about the clusters 
and to reach a consensus during recovery. The schedule of 
first inter-gateway communication is known to all the 
gateways during bootstrapping. No communication between 
the gateways and sensors is scheduled during inter-gateway 
communication.  

2.1 Fault Model  
A system failure occurs when the delivered service deviates 
from the specified service [17].  Hardware and software 
faults affect the system state and the operational behavior, 
such as memory or register content, program control flow, 
and communication links etc. We assume a fail silent model 
where any erroneous behavior does not affect the healthy 
components.  We assume that the communicated data is error 
free and semantic-related generic faults in the software are 
detected and removed by application-specific checks.  

Communication faults can be caused due to hardware 
failure or energy depletion. Communication can be disrupted 
due to environmental conditions like wind or rain. Hardware 
faults can also disrupt radio communication, ending all the 
communication to and from the gateway. A fault in 
transmitter can prevent the gateway to transmit tasks to the 
sensors as well as relay the data to the command node. Data 
send by the sensors will be lost if receiver of a gateway fails. 
We call all such failures as complete gateway failures 
because the gateway can no longer serve as a liaison between 
the sensors and the command node. Another kind of failures 
is caused due to faults in range of gateway. Faults in range of 
the device can affect its coverage. A gateway can experience 
communication link failure between the sensors in its cluster 
or with other gateways. A communication link failure with 
the sensors requires the sensors to be allocated to other 
gateways within communicate range.  Faults in inter-gateway 
communication are handled through forwarding approach 
explained later.  

Based on the temporal behavior of a fault it can be 
considered as permanent, intermittent or transient.  In our 
fault model we consider only permanent faults. A permanent 
fault once activated remains effective until it is detected and 
handled. We also assume that the system is not liable to 
Byzantine-type faults [20].  

3. Related Work 
Our work is motivated by a various research projects in 
sensor network domain. Researchers are exploring both 
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hardware and software aspect of sensor networks. Projects 
like Smartdust [9], WINS [10], PicoRadio [11] have given a 
new dimension to the size and capabilities of sensors.  Since 
sensors are typically battery-operated with limited energy 
supply, many research groups have focused on issues like 
energy aware routing [5], sensor coordination [6], and energy 
saving through activation of a limited subset of nodes 
[4][12].  

Many clustering approaches have been proposed for 
efficient selection of a cluster-head such as randomized [13] 
lowest cluster-ID [15], or highest degree of connectivity [16, 
17]. However, if load is not balanced among the cluster it can 
lead to increased latency in communication, inadequate 
tracking of targets or events and finally results in failure of 
the gateway. In our previous work a multi-gateway 
architecture is presented to cluster the network around high-
energy gateways while balancing load among the clusters [8].  

Moreover, these approaches do not focus on 
dependability and fault-tolerance in the system. Upon failure 
of a cluster-head either the role is reassigned to another node 
requiring re-configuration of the whole system or redundant 
hardware is used as replacement. Projects like LEACH [13] 
include redundancy in the system by periodically selecting a 
cluster-head from the sensors in the network but suffer from 
overhead of re-clustering. We believe that, significant 
performance gain can be achieved if efficient recovery is 
embedded in the system from the beginning. Faults should be 
detected and handled during the run-time. Analysis and 
modeling of faults is a well-researched field [20]. In this 
paper we present a run-time recovery mechanism, which 
detects faults in gateways and recover sensors from the failed 
clusters. 

4. Fault-Tolerance Mechanism 
The main objective of our approach is to perform run-time 
recovery of the sensors from the clusters in which the 
gateway has experienced some faults. The mechanism is 
divided in to two phases; detection and recovery. In order to 
recover the sensors from the failed cluster it is important to 
detect whether a fault has occurred in the system. We follow 
a consensus model of the gateways to agree on a particular 
fault in the system. A consensus is required to maintain the 
synchronization in the network with respect to the status and 
cardinality of a gateway. The cardinality of a gateway is the 
number of sensors that belong to the cluster of a gateway. In 
later sections we present scenarios where gateways can have 
conflicting knowledge about the status of a gateway and 
explain methods to avoid it. The second phase of fault-
tolerance identifies the type of fault and performs recovery of 
the sensors. 

4.1 Detection of gateway failure 
Detection is the first phase of fault-tolerance in our system.  
All the gateways in a sensor network are independent 
identities. A gateway is responsible only for the sensors in its 
own cluster. We adopt a method of periodic status updates 

through inter-gateway communication. Status updates inform 
all the gateways about the whereabouts of the rest of the 
clusters in the system. 

As mentioned in section 2, we are using TDMA MAC 
protocol for communication. TDMA schedules for sensors 
are decided by their respective gateways. Typically, gateways 
allocate slots for sensors to send data based in available 
energy, tasks, and priority [7]. Fig 2 shows a simple slot 
allocation for a gateway. Sensors are informed about the 
schedule and routing information in a “Route Update” slot. 
The dark slots represent the route update slots and the white 
slots are reserved for sensors to send data in that cycle. Along 
with the sensed data, sensors also provide their energy status 
to the gateways.  A cycle is completed when all the sensors 
send data and energy status to their respective gateways and 
wait for the next route update. At the end of every cycle each 
gateway constructs a “Status” containing information about 
the sensors in its cluster and the status of the gateways itself.  

Gateway status is exchanged in a “Status Update” slot 
(shown as grey slots in Fig. 2) whose period depends on the 
stability of the system. We use a Multiplicative Increase 
Linear Decrease (MILD) mechanism to schedule the status 
exchange. In the absence of faults, MILD increases the time 
period of the exchange by a multiplicative factor while 
linearly decreases the time period when a fault is detected. 
By this method we reduce the overhead of status exchange 
when the system is stable and recovers fast from the faults 
when the system is fragile. Status messages also act as 
heartbeat messages from the gateways informing about their 
presence. At the end of detection phase when a gateway “A” 
does not receives update from another gateway “B”, gateway 
“B” is considered to be faulty by “A”. Since the updates can 
be missed due to link failures between two nodes, a 
consensus has to be reached by all gateways before recovery 
commences. It is important to remember that a gateway 
should not be considered completely failed until even one of 
the gateways in the network is able to communicate with it. 

In case of link failures multiple hops have to be used to 
forward updates. Efficient routing can be used to forward 
these updates but they require maintenance and update of 
routing tables. For the purpose of this paper we adopt a 
simple forwarding approach. Each gateway forwards 
(broadcasts) every “new” update it receives to all the 
gateways in its range. This method will add redundant 
messages in the network when the network is fault-free but 
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Fig. 2:  Slot Allocation in Sensor Networks
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ensures that every gateway has the same status information of 
the system. A consensus is reached automatically since all 
the gateways share the same information. If a gateway has 
failed none of the other gateways will receive the update and 
can start the recovery. We describe two scenarios to explain 
the forwarding approach and introduce an experience-based 
enhancement to avoid redundant messages in the absence of 
faults. 
 
Case 1: No Faults, fully connected network 
 
 
 
 
 
 
 
 
 
 
 
Fig 3 shows a fault free fully connected gateway architecture 
where all gateways (G1-G4) are in direct communication 
range with one another. During the status update phase all the 
gateways will broadcast their updates. Since all the gateways 
are in direct communication range every gateway will receive 
the status and will conclude that no gateway has completely 
failed in the system. But, the forwarding algorithm will make 
the gateways broadcast the redundant status information of 
other gateways as well. 

In order to avoid such message redundancy in the 
absence of faults in the system we use an “experience” based 
model. Before forwarding updates from other gateways each 
gateway constructs an experience of the updates received. 
They first broadcast their experience about the connectivity 
with other gateways. After receiving the experience from 
other gateways, an experience table is constructed that shows 
the connectivity of different nodes in the system. For the case 
described above the experience table is shown in Table 1. 
When a gateway receive the experiences like the one shown 
in table below, it signifies that the network is fully connected 
and no forwarding of update message is required. 

 G1 G2 G3 G4 
G1 √√√√ 1 1 1 

G2 1 √√√√ 1 1 

G3 1 1 √√√√ 1 

G4 1 1 1 √√√√ 

Table 1: Experience Table for Case 1 

Where: 
√ signifies own update 
1 signifies that the update is received 
0 signifies that the update is missed  
 

Case 2: Multiple link failure and single complete failure 
 
 
 
 
 
 
 
 
 
 
 
Fig 4 shows the system architecture after link failures 
between gateway G1 and G3 followed by a complete failure 
of gateway G4. In the first status update slot no gateway will 
receive status from G4. Also, G1 and G3 will not receive 
status from each other and G2 will receive status from both 
G1 and G3.  

 G1 G2 G3 G4 
G1 √√√√ 1 0 0 

G2 1 √√√√ 1 0 

G3 0 1 √√√√ 0 

G4 0 0 0 0 

Table 2:  Experience Table for Case 2 

The experience table formed at gateway G2 is shown in 
Table 2.  After analyzing the experience table, gateway G2 
realizes that none of the gateways has received status update 
from gateway G4 and G4 had not send its experience to any 
of the gateways. This clearly indicates that G4 is not able to 
transmit any data to other nodes due to transmitter fault. 
Therefore, G4 is tagged as completely failed and all the 
sensors in the cluster of G4 have to be recovered.  

The zeros in the experience on G1 and G3 indicate the 
link failure between them. Since a consensus cannot be 
reached about the complete failure of Gateway G4 unless all 
the gateways receive the experience, G2 understand that it 
has to forward the update to G1 and G3. Once the gateways 
G1 and G3 receive all the update except from G4 they also 
concur to the complete failure of gateway G4.  

4.2 Recovery 
Once the gateways reach a consensus about the presence of a 
fault, the next step is to identify the type of faults and allocate 
the sensors to new clusters. The status message is parsed to 
extract the identity of sensors that cannot communicate with 
the gateway due to range faults in the gateways.  When a 
gateway is identified as completely failed all the sensors in 
its cluster are recovered. 

Clustering is based on the distance between the sensors 
and gateways. During clustering each gateway creates a 
range set based on the communication range of the sensors 
and the gateways. A sensor ‘Sj’ belongs to range set ‘RSet’ of 
gateway ‘Gi’ if it satisfies the following criteria:  

  G1 

  G1 

  G2 

  G3 

  Fig. 3: Fully Connected Gateway Model 

  G2  G1

 G4   G3 

  G2 

Fig. 4:  Multiple Link and Single Complete failure 
Model 
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  Sj ∈ RSetGi ⇔[( RGi > dSj->Gi ) Λ (RSj,max  > dSj-->Gi)]     

Where, RGi is the range of gateway Gi, RSj,max is the maximum 
range of sensor Sj  and    dSj->Gi  is the distance between sensor 
Sj and Gateway Gi. A final set (FSet) is constructed based on 
the minimum communication cost between sensors and 
gateways [8]. For the purpose of recovery each gateway 
constructs another set containing nodes that do not belong to 
the cluster of the gateway but are included in its RSet. This 
set is called a Backup set (BSet). Each node only belongs to a 
single FSet but can be part of many BSets. The definition of 
BSet is defined as: 

  Sj ∈ BSetGi ⇔[( Sj ∈ RSetGi) Λ (Sj ∉  FSetGi )]         

When a sensor has to be recovered all the gateways check 
their own BSets for the sensor. The sensor is recovered if it is 
present in the BSet of the gateway. If a sensor is present in 
multiple BSets, it is accommodated by the gateway, which 
has the minimum communication cost with the sensor other 
then one failed. Once the sensor is associated with the backup 
gateway, it is removed from the BSet of the backup gateway 
as well as the RSet of the faulty gateway. 

Due to previous schedule the receivers of the sensor are 
turned on during the route update slot to receive the new 
update from the gateway. Therefore, the backup gateway 
informs the sensor about the new association in the same slot. 
New TDMA schedules are given to the sensor according to 
the cardinality of the new gateway and the sensor becomes a 
part of the backup cluster.  

5. Experimental Validation 
The effectiveness of our recovery approach is validated 
through simulation. This section describes simulation 
environment, fault injection technique and validation of the 
protocol. 

5.1 Environmental Setup 
Experiments are performed on simulations with 1000 sensors 
and 3 gateways uniformly distributed in a 10 × 10 square 
kilometer area. Each sensor is assumed to have an initial 
energy of 5 joules. A node is considered non-functional if its 
energy level reaches 0 joules. The sensor energy 
consumption model used in our system is discussed in [8] 
[13].The maximum range of the sensors is set to 0.5 times the 
maximum distance between two nodes in the system. Initial 
range of the gateways is considered enough to cover the 
whole area. It is assumed that the channel is collision free 
and packets are not dropped in the medium. Sensors are 
given IDs in random fashion. Sensors are informed about the 
first TDMA schedules by their respective gateways. Schedule 
for first inter-gateway communication is decided during 
bootstrapping. Nodes switch on their transmitter if needed 
and receiver circuitry only during their allocated slots.  

 Fault injection is used to test the robustness and 
behavior of the sensor network. Fault injection allows 
studying the effectiveness fault detection and recovery 

capabilities of our system. We use a simulation-based fault 
injection methodology to inject communication faults in the 
gateways. We created a fault library of possible link, range 
and complete failures. We then created a timely ordered 
failure list using Poisson distribution for occurrence of faults. 
Faults are picked from the library based on a Uniform 
distribution for the type of failure and Normal distribution for 
the location of the fault.  

We implement a fault-injector module to trigger the 
faults as events. The fault-injector keeps a check on the 
system time and compares it with the timestamp of the next 
entry in the failure list. Whenever the system time equals a 
fault event time, the fault-injector selects the fault from the 
library, reads the fault destination (gateway id) and inserts 
the fault in the event queue of the gateway. When a gateway 
encounters the fault in the event queue, it simulates the fault. 
The consequences of a fault experienced by the system are 
based on its type.   

Fig 5 describes the design of the fault-injection environment. 
It shows a link fault being injected by the fault-injector in 
gateway G3. Previously, gateway G2 stops all operation due 
to complete failure. Also, gateway G1 is suffering from a 
range fault. In order to measure the performance of our 
approach we calculate the coverage of the algorithm. 
Coverage is the ability of the system to detect and recover 
from the occurrence of a fault during normal system’s 
operation [17].  
 

Coverage = Probability [system recovers/fault occurs] 

We have injected 1000 faults in order to measure the 
coverage of our algorithm. Since, complete failures are less 
common compared to other faults, we have inserted them 
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Fig 5. Design of the fault injection environment
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with lower frequency than range and link failures. All 
complete failures are detected instantaneously during the 
status period. We injected faults to decrease the range of 
gateway G1 by 2% every 15 min of operation. On all 
occasion our detection mechanism detects the faults and 
identifies the sensors that have gone out of range from the 
gateways. Sensors are successfully recovered to other 
gateways till the range of G1 drops below a threshold and 
only the sensors very close to G1 are left in the cluster. After 
every subsequent range fault in G1 coverage decreases 
because the algorithm fails to find any gateway to 
accommodate the sensors. 

Link failures are injected in gateway G3 to study the 
impact on number of status messages in the system. Due to 
link failures status messages are not received by other 
gateways and forwarding scheme is activated. Total number 
of message per gateway in the forwarding scheme is N+1, 
where N is the total number of gateways in the system. Each 
gateway will transmit one status message, one experience 
message and forward N-1 status messages. The period of 
status updates is controlled by MILD algorithm until we 
inject a burst of faults making the recovery more frequent. 
The coverage of link failure has been observed to be 100% 
throughout the simulation until all the incoming/outgoing 
links from a gateway fails. After all link fails, any fault on 
G3 are detected as a complete failure by other gateways. 
Recovery of sensors in the cluster of G3 is only done on the 
first complete failure.  

The results of the fault injection experiments clearly 
demonstrate that the system is resilient to communication 
faults and recovers efficiently without re-configurations or 
manual repairs.  

6. Conclusions and future work 
High-energy gateway node acts as a centralized manager to 
handle the sensors and serves as a hop to relay data from 
sensors to a distant command node. In this paper we have 
introduced a two phase; detect and recover fault-tolerance 
approach to recover sensors from the failed gateways without 
shutting down or re-clustering the system. Gateways can 
suffer from complete, link or range failures caused due to 
software or hardware faults. Our approach enables fault-
tolerance in the system by performing periodic checks on the 
status of the gateways. Sensors managed by a faulty gateway 
are recovered by re-associating them to other clusters based 
on backup information created during the time of clustering.  

Our future plan includes extending the clustering model 
to allow gateway mobility. Also, we plan to integrate 
bootstrapping and energy-aware routing to our approach.  
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