
Putting Humpty-Dumpty Together: Mining Causal
Mechanistic Biochemical Models from Big Data

Faraz Hussain, Alvaro Velasquez, Emily Sassano, and Sumit Kumar Jha
Department of Electrical Engineering and Computer Science

University of Central Florida, Orlando FL
Email: {fhussain, velasquez, esassano, jha}@eecs.ucf.edu

Abstract—In traditional engineering disciplines, the construc-
tion of a system is usually preceded by a formal or informal
specification of the design of the system being developed. In
biochemical applications, however, a detailed specification of the
system’s structure and dynamics is usually unavailable. Thus,
mechanistic details of biochemical systems must be mined from
experimental observations. In this paper, we adopt a formal
methods approach towards deriving causal mechanistic models
from time-series observations of biochemical systems. The mined
model captures causality among multiple biological events and
also allows causal relationships between sets of events. We
exploit results from trace theory and use the power of powerful
constraint solvers to develop a new framework for causality
identification and reasoning that captures dynamic relationships
among species in biochemical reaction networks.

I. INTRODUCTION

A fundamental challenge in computational systems biology
is the algorithmic construction of mechanistic models from ex-
perimental observations. Traditionally, machine learning meth-
ods have been used to create predictive (but non-mechanistic)
computational models that can reproduce the behavior of the
biological experiments using in silico simulation. While such
models are important, they do not provide an insight into the
causal structure or the “engineering blueprint” of the biological
system being studied.

Over the last hundred years, biologists and chemists have
undertaken the painstaking task of putting together significant
fragments of mechanistic models that explain causality rela-
tionships among biochemical pathways. In recent years, this
process has accelerated due to the development of modern ex-
perimental methods and computational techniques that enable
researchers to perturb components of a biochemical system
and easily observe consequent behavioral changes [13].

By the beginning of this century, our ability to develop
models of biochemical systems has reached a significant
turning point because of three primary reasons:

• Modern computer-aided data acquisitions techniques,
such as flow cytometry, are creating a deluge of high-
dimensional data sets that cannot even be visualized
directly by human experts. Hence, biochemists are
forced to obtain statistical summaries from such huge
data sets - often losing valuable information in the
process.

• The human mind is not capable of analyzing complex
models and, hence, we engineer artificial systems us-
ing modular designs with limited but well-understood

interactions to gain a better understanding of these
models. Biology provides a unique challenge to this
modular and compositional design approach – where
small well-understood modules are composed to form
larger and more complex systems. While we have
achieved a lot of success in understanding individual
pathways using human intelligence, the asynchronous
cross-talk interaction among pathways makes it un-
likely that we can unravel large biochemical pathways
without significant computational support.

• Commodity computing clusters can easily deliver
TFLOPs of computational performance. Algorithmic
discovery of mechanistic biochemical models is com-
putationally expensive, but it is now within the grasp
of these modern high-performance computing clusters.
The rise of cloud-based computing and cyberinfras-
tructure that can be deployed across such elastic
clouds will permit biologists and other end-users to
employ algorithms for mining such causal mechanistic
models without owning or maintaining large comput-
ing clusters.

The problem of obtaining specifications from observations
of engineered systems has gained a lot of attention recently.
Specification mining has been studied in different domains
such as hardware design, web services, programming lan-
guages and software engineering. Most of these techniques
are targeted towards a narrow class of specifications, such as
decision-tree learning [11] (which produces a single output
for a sequence of decisions) or PROLOG/LISP learning tech-
niques [16] which use declarative languages. These techniques
introduce a learning bias and restrict mined specifications to
mostly functional properties. Our goal is to learn more expres-
sive specifications, and in particular, dependency constraints
among multiple biochemical species; such dependencies can
capture sequential constraints as well as concurrency.

Unlike many manually engineered systems, biochemical
systems are known to be composed of inherently concurrent
asynchronous components – often working together in a shared
space and exposed to noisy cross-talk. Thus, traditional meth-
ods for specification mining used in software and hardware
systems do not readily extend to biochemical systems. How-
ever, the mining of causal mechanistic models is important to
computational systems biology as such algorithms will aid in
the development of large and complex biochemical models.

In this paper, we are interested in identifying causal rela-
tionships among multiple biochemical events. In our frame-

978-1-4673-1321-6/12/$31.00 c©2014 IEEE 1

work, one or more reactant biochemical species may be the
cause of a biochemical reaction and, in turn, the reaction
causes change in the concentration of one or more product
biochemical species (besides the reactants). For many realistic
systems, including those in systems biology, it is difficult
to distinguish true dependencies from apparent dependencies.
A primary source for this confusion is the challenge of
disambiguating between the happens-before and the causality
relationship. A detailed capture of all dependencies in the
observed experimental traces of a biological system would also
identify many such fortuitous dependencies. Thus, weeding out
these incidental dependencies to capture true dependencies is
another important aspect of this problem. For example, in a
signaling pathway, some observations may correspond to the
simultaneous up-regulation of two proteins without any causal
link. The goal of dependency identification is to track causality
dependencies and filter out incidental dependencies from a set
of randomly observed traces.

Specifications that capture dependency relationships of
events in a biochemical system are of immense value to
researchers who want to calibrate a given biochemical model
to achieve desired behavior. Translational systems biologists
can then employ this causal structure to identify genes and
proteins that may be regulated to alter clinical outcomes.
Causal models can also be used to create clinical tests for
identifying diseases and precursors of diseases. The goal of our
work is to provide an algorithmic framework for automating
the learning of these causal dependencies.

We discuss related work in Section II. We then describe
an approach in Section III to mine dependency constraints
from observed traces of biological systems which abstracts
incidental dependencies and only summarizes dependencies
that are likely to correspond to causality. In Section IV, we
describe how we formulate the problem in order to harness
the power of modern SMT solvers [8]. We then describe
(Section V) how to use the set of binary causal relationships
generated by the constraint solver to construct a macro-model
of the biochemical system. and then describe our algorithm for
learning causal mechanistic models from experimental data. In
Section VI, we conclude by mentioning some limitations of our
technique and directions for future work.

II. RELATED WORK

Granger’s 2003 Nobel Lecture [4] highlights one natural
definition of causality that relies on temporal priority of the
cause as well as the causal event altering the probability of
occurrence of the effect:

• Temporal Priority: The cause occurs before the effect;
and

• Information Content: The cause contains information
about the effect that is unique and this information is
not contained in any other variable.

Thus, Granger defines a notion of causality where X is
said to cause Y if the past values of X can be used to predict
the future value of Y beyond what could have been done
with the past values of Y only. Granger causality has been
employed in a number of interdisciplinary areas, most notably
econometrics. It should be noted that Granger attributes his

own thoughts on the foundational principles of causality to
some of Weiner’s earlier works [3].

The ideas of temporal priority and predictive information
about the effect in the cause are also applicable to biochemical
pathways. However, Granger’s causality test is not directly ap-
plicable to the discovery of causal mechanisms in biochemical
reactions for two reasons:

• A cause in a biochemical reaction can be a subset of
the biochemical species and the effect can be another
subset of biochemical species. Thus, the number of po-
tential causes and effects that need to be explored can
be exponential in the number of biochemical species.
Further, Granger’s test is implemented primarily for
univariate time series data and such univariate imple-
mentations do not incorporate the notion of multiple
causes influencing multiple effects.

• Individual biochemical species in a mechanistic model
of a biochemical reaction pathway may not satisfy
Granger’s second condition of causality i.e. the in-
formation in the causal biochemical species about the
effected biochemical species may not be unique.

Mining of specifications from system traces has been
extensively studied in literature. The related work can be
classified across three dimensions. The first dimension is the
nature of learning techniques used for inferring dependency
relations. These include logical induction techniques such
as inductive logic programming or probabilistic techniques
such as Bayesian network inference. The second dimension
is the nature of the target model: temporal logic, PROLOG,
probabilistic graph models etc. The third dimension is the
domain in which it is applied since this problem has been
independently investigated across various domains including
hardware design, web-service optimization and software engi-
neering.

We discuss the existing specification mining techniques
across all the three dimensions. Inductive logic program-
ming [12] is a mature field which deals with learning inductive
logic rules from traces. Task networks [14] which are non-
probabilistic graphical models have been used to capture
dependencies from traces. Probabilistic graphical models have
also been used to infer dependencies for the purpose of
diagnosing faults in a circuit by Jha et al [7]. Learning
sequential dependencies from traces in software is also well-
studied in literature. Lau et al [10] propose a vector algebra
based approach to infer programs from traces. Yuan et al [17]
propose a diagnosis approach based on using system call
traces in operating systems to infer problematic system call
interactions. Inferring branching programs from examples has
also been explored in the program synthesis literature [5].

Our work differs from existing literature in the way de-
pendency or causality rules are learnt from observed traces of
biological systems. We employ a novel Satisfiability Modulo
Theory (SMT) based technique for studying the impact of
multiple causes on multiple effects that can automatically filter
out fortuitous dependencies.

2

III. INFERRING DEPENDENCY CONSTRAINTS FROM
TRACES

In this section, we discuss how observed experimental
data can be used to mine dependency constraints and hence
establish causality among different biochemical species.

A. Biochemical Events and Traces

We know that a biochemical reaction decreases the amount
of its reactants and increases the concentration of its products.
Hence, we consider two types of events – increase or decrease
of concentration of biochemical species. We will use sets of
these events to discover a set of causes (chemical reactants)
leading to a set of effects (chemical products).

Let the set of possible events in an experimental obser-
vation be E = {E1, E2, . . . , En}. Each event Ei indicates
an increase or decrease in the concentration of a biochemical
species. We denote by S all non-empty subsets of the set of
events E. In the context of mechanistic modeling of biochem-
ical systems, S indicates all possible collections of causes and
effects i.e. biochemical reactants and products.

Definition 1 (Trace as a sequence of event-(sub)sets).
〈(E11, E12, . . .), . . . , (Em1, Em2, . . . Emj), . . .〉 is called a
trace. Here, (Em1, Em2, . . . Emj) ∈ S denotes the m-th subset
of events in the trace and all the events Emj are events in E.
�

Thus, a trace of a biochemical system is a temporal
sequence of observations of increases and decreases in concen-
trations of biochemical species. At any time instant, the con-
centration of a biochemical species may increase or decrease,
thereby creating a recordable event, or the concentration may
remain unchanged. In the latter case, no event is recorded in
the trace.

Given a trace σ, its subtrace σi (0 ≤ i ≤ |σ|) is the
prefix of the trace up to the i-th event subset. Usually only
a small number of simultaneous events happen at the exact
same time, as a biochemical reactions often involves only a
small number of reactants and a small number of products. For
generality, we include the occurrence of simultaneous events in
our framework. Let us consider a biochemical system with four
biochemical entities - C1, C2, C3, and C4. Let Ei (1 ≤ i ≤ 4)
denote the event that the concentration of Ci (1 ≤ i ≤ 4) has
decreased in this time step and Ei (5 ≤ i ≤ 8) denote the
event that the concentration of Ci (1 ≤ i ≤ 4) has increased
(as compared to the previous time step). A few sample traces
from such a biochemical system are shown in Table I.

TABLE I: Traces from a sample biochemical system

trace 1 (E1, E6) (E2, E5) (E3, E4, E5)
trace 2 (E3, E4) (E5) (E6)
trace 3 (E2) (E5) (E2, E5)
trace 4 (E3, E4, E5) (E2, E1) (E5, E6) (E2, E5)

Note that while all observed traces of the biochemical
system are independent, each trace is obtained from the same
underlying biochemical mechanism. This stochasticity is a
reflection of the uncertainty inherent in the interactions of the
biochemical species in the system.

B. From Biochemical Traces to Parikh Maps

We now transform the sequence of sets of events describing
the trace of a biochemical system into a sequence of vectors
of integers. This is important as Satisfiability Modulo Theory
solvers are more efficient at computing linear arithmetic con-
straints. For this purpose, we first define a modified Parikh
vector projection of the traces. Such vectors were first used
by Parikh [15] to present a technique for deciding whether a
string with a given number of various literals is accepted by a
context-free language.

Definition 2 (Parikh vector over events). Given the set of
events E = {E1, E2, . . . , En}, the Parikh vector pE is a
mapping from E∗ → Nn

pE(w) = (#E1(w),#E2(w), . . . ,#En(w))

where #Ek(w) denotes the number of Ek events in a sequence
of events w ∈ E∗1. �

Thus, the Parikh vector summarizes the count of each event
in a given sequence of events. We now lift the Parikh vector
mapping to sequences of sets of events.

Definition 3 (Parikh vector over sets of events). Given the
set of events E = {E1, E2, . . . , En}, and with S = P(E) \ φ,
define the function pS : S∗ → Nn where:

pS(w) = (
∑
s∈w

#E1(s),
∑
s∈w

#E2(s), . . . ,
∑
s∈w

#En(s))

where #Ek(s) denotes the number of Ek events in a subset
s and

∑
s∈w #Ek(s) denotes the sum of the number of Ek

events in all the subsets s in a sequence of subsets w ∈ S∗. �

As an example, by slightly abusing notation to
let S(E) represent the power-set of E without
the empty set, for E = {E1, E2, . . . , E8},
pS(E)(〈(E1, E6), (E2, E5), (E3, E4, E5), (E2, E7, E8)〉) =
(1, 2, 1, 1, 2, 0, 1, 1).

We now extend the Parikh mapping to a trace. The key
idea is to consider all prefix sub-traces and apply the modified
Parikh vector mapping to each prefix of the trace to construct
a trace of Parikh vectors from a given event trace.

Definition 4. The modified Parikh vector mapping p of a trace
σ is defined as follows.

p(σ) = 〈pS(σ1) pS(σ2) . . . pS(σm) . . . pS(σ|σ|)〉

Here, σi is a prefix of the trace σ up to the ith event subset.
�

We now use the example in Table I to illustrate the Parikh
vector mapping of traces. The modified Parikh vector mapping
p(σ) of the traces in Table I is presented in Table II.

IV. SATISFIABILITY MODULO THEORY (SMT) FOR
CAUSALITY ANALYSIS

A. Causality Constraints from Biochemical Traces

The Parikh vector mapping p(σi) embeds each prefix of
every trace σi(1 ≤ i ≤ |σ|) into |E|−dimensional space.

1Given a set E of symbols, E∗ is the set of all possible finite-length strings
generated from E.

3

TABLE II: Parikh-mapping of the traces in Table I

trace 1 (E1, E6) (E2, E5) (E3, E4, E5)
(10000100) (11001100) (11112100)

trace 2 (E3, E4) (E5) (E6)
(00110000) (00111000) (00111100)

trace 3 (E2) (E5) (E2, E5)
(01000000) (01001000) (02002000)

trace 4 (E3, E4, E5) (E2, E1) (E5, E6) (E2, E5)
(00111000) (11111000) (11112100) (12113100)

The relation between the count of events can be written
down as constraints in this |E|−dimensional space. Let the
following constraint be satisfied by the elements of p(σ), where
cause, effect ⊆ E:(∑

i∈cause
#Ei

)
≥ #Ej (1)

The above constraint implies that Ej event happens to-
gether with or after Ei events in the set of events cause ⊆ E.
So, each of Ei events in cause can be a cause for Ej .

If we further generalize our constraint template to:∑
i∈cause

#Ei ≥
∑

j∈effect
#Ej (2)

The above constraint implies that the Ej events in the set
of events effect ⊆ E occurs together with or after Ei event in
the set of events cause ⊆ E. So one or more of the Ei events
in cause can cause one or more of Ej events in effect.

Using the example traces considered in Table I and the
Parikh mappings in Table II, we can study the 8−dimensional
event space and the mapping of the 4 traces and 13 Parikh-
maps arising from these four traces into the 8−dimensional
space.

We can make some observations about the number of
events for each Ei in all the components of the Parikh-map
p(σi) for each trace σi (1 ≤ i ≤ 4):

• The number of E1 events is no less than the number
of E6 events, that is, #E1 ≥ #E6. Hence, we can
conjecture that E6 is caused by E1.

• The number of E3 and E4 events is also no less
than the number of E5 events, that is, #E3 ≥ #E5,
#E4 ≥ #E5. So, we can conjecture from the traces
that E5 is caused by E3 and E4.

• The number of E2 events is no less than the number
of E5 events, that is, #E2 ≥ #E5. Hence, we can
conjecture that E5 is caused by E2.

• The number of E1 and E5 events do not have any
sustained relationship (≥ or ≤) between them. So, we
do not predict a causality relation between the events.

Generalizing from the above discussion, we observe that
we can mine dependencies between events by looking at the
relation between the count of events #Ei that hold on all
components of the Parikh map. So, deriving constraints similar
to Equation 1 and Equation 2 will yield causality dependencies

between the events. This is, essentially, a formal approach to
using happens before as an indication of causality. The relation
between the event counts helps us discover what events always
happen before other events. We formalize the finding of above
dependency constraints in the rest of the section.

Definition 5 (Octahedral constraints). An octahedral con-
straint is a linear inequality constraint over a set of variables
xi with all coefficients as 1, −1 or 0. Each constraint is of the
form

∑
i xi −

∑
j xj ≥ d for any constant d ∈ R. �

We define dependency constraints as octahedral constraints
over the count of events with the constant d in the inequality
as always 0.

Definition 6 (Dependency Constraints). A dependency con-
straint DCE(σ) on the trace σ is the set of octahedral
constraints over the set of the count #Eis of the events in E
such that (i) the constant term is 0, and (ii) all the elements of
the Parikh mapping p(σ) of the trace σ satisfy the dependency
constraint DCE(σ). Thus, dependency constraints take the
form ∑

i

#Ei −
∑
j

#Ej ≥ 0 (3)

�

Given a dependency constraint, we can accumulate all
events #Ei with coefficient 1 as cause events; and all the
events #Ej with coefficient −1 as effect events. Then, Equa-
tion 3 and Equation 2 are of the same form.

B. SMT-based Search of Causality Constraints

We note that the number of possible dependency con-
straints is 3|E| for |E| events. Enumerating each of these 3|E|

constraints and testing whether they are satisfied by all the
elements in p(σ) would be exponential in the number of
events, and hence impractical. We have designed a Satisfia-
bility Modulo Theory (SMT)-based search algorithm to search
the domain of possible dependency constraints that are satisfied
by the Parikh mapping of the traces.

Due to the presence of only integral coefficients in the
dependency constraints, the constraint satisfaction problem can
be solved using bit-vector satisfiability modulo theory solvers.
The constraints are reduced to bit-vector constraints since
all the variables are either 0, 1 or −1, and the constants
corresponding to the number of events are bounded by the
product of the length of the trace and the number of events,
that is, |E||σ|. In certain cases, an even tighter bound may
be computed for a particular trace σ, and can be used as the
upper bound for the event count. Given these bounds, we can
find the appropriate length bit-vector to represent the variables
and constants, and reduce the problem of finding dependency
constraints to a bitvector SMT solving problem [8], [2].

The overall SMT based dependency constraint mining
approach is show in Algorithm 1. The algorithm begins by
constructing a template of dependency constraints as shown
in Equation 2 and Equation 3. The unknown coefficients are
limited to the three values −1, 0 or 1. An SMT solver is used
to solve for these coefficients such that all the elements of
the Parikh-map p(σ) satisfy these constraints. The events with

4

Data: Set of events E, Parikh-map of a trace p(σ),
choice k

Result: Dependency Constraints DCKE (σ)
Construct the following SMT formula:

Φ =
∧
w∈σ

[
n∑
i=1

ci(#Ei(w)) ≥ 0)

∧ (

n∑
i=1

δ(ci == −1) ≤ k) ∧ (

n∑
i=1

δ(ci == 1) ≤ k)

]
(4)

where ci ∈ {−1, 0, 1}, Ei ∈ E and δ is a condition
variable which is 1 if the condition is true and 0
otherwise;
while (SMT(Φ) == SAT) do

ψ = True;
i = 1 ;
while (i ≤ n) do

if (ci == 1) then
add Ei as cause event;
ψ = ψ ∧ (ci == 1) ;

end
if (ci == −1) then

add Ei as effect event ;
ψ = ψ ∧ (ci == −1) ;

end
if (ci == 0) then

ψ = ψ ∧ (ci == 0) ;
end
i+ +;
Report cause and effect event dependency;

end
Extend Φ to eliminate the constraint found above:
Φ = Φ ∧ ¬ψ ;

end
Algorithm 1: SMT-based Mining of Dependency Constraints

coefficient 1 correspond to causes and those with coefficient
−1 are effects. This constraint is then blocked from the
formula, and the process is repeated till all the dependency
constraints have been derived.

We limit our search for dependency constraints to those
having only some constant number k of coefficients as 1 and
−1. We refer to these dependency constraints as DCkE(σ).
Our decision to search dependency constraints with a small
number of nonzero coefficients is guided by the intuition that
most events are caused by a small subset of events. This
significantly reduces our search space. Jha and Langmead have
earlier presented experimental evidence for this conjecture by
analyzing the Ecocyc and Biocyc databases [6]. The number
of possible dependency constraints is hence smaller than 3|E|.
In practice, we use small values of k which helps prune out
fortuitous complicated inequalities that involve a lot of events,
and are more likely to be incidental than real. The choice of
k for biochemical pathways is typically between 2 and 8.

V. UNCOVERING PATHWAYS FROM CONSTRAINTS

While Algorithm 1 produces a set of constraints in-
dicating causality relationships among biochemical entities

V = {V1, V2, . . . Vn}, it establishes a set of pairwise causal
relationships among biochemical entities. We model these
relationships using a directed graph G = (V,E). If vi has
a causal dependence on vj , we add the edge (vi, vj) to the list
of edges E in the directed network.

Consider a set of biochemical entities D1,
D2, D3, D4, D5 and causal relationships
(D1, D2), (D1, D3), (D4, D5), (D3, D4), (D1, D4), (D3, D5),
(D1, D5) obtained using SMT-based causal analysis.

D1

D2

D3

D4

D5

Fig. 1: A sample causal graph indicating the result of our
causal analysis.

It is clear such a causality analysis produces a causality
network G that does not bear any apparent similarity to
a mechanistic biochemical signaling or reaction model. If
(vi, vj) is a causal relationship and (vj , vk) is another causal
relationship, then our algorithm will also discover (vi, vk) as
a causal relationship. Given a causal graph G obtained by
our causal analysis algorithm, we will compute a reduced
graph G∗ such that the causality network G can be obtained
by computing the transitive closure of the reduced graph
G∗. Several efficient algorithms [1], [9] exist for computing
transitive reductions of directed networks.

D1

D2

D3

D4

D5

Fig. 2: A signaling mechanism obtained from the causal graph.

A single causal graph can produce multiple reduced net-
works (as indicated in Figure 2 and Figure 3). A search
through a database of known biochemical pathways can be
used to disambiguate among multiple biochemical mechanistic
models.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new methodology
for causality analysis of biochemical networks that uses a
combination of Parikh’s map on execution traces, satisfiability
modulo theory solving and transitive reduction of graphs.

5

D1

D2

D3

D4

D5

Fig. 3: Another biochemical signaling mechanism obtained
from the same causal graph.

Unlike traditional notions of causality that have been devel-
oped for mathematical equation based models and observed
experimental data sets, our approach treats the biochemical
processes as first-class objects and directly reasons about the
evolution of these processes.

Several opportunities for future work remain open. Our
algorithms are deterministic and do not use ideas of proba-
bilistic amplification; hence, they may not work well on those
biochemical data sets that arise from experimental observation
of stochastic biochemical systems. By combining Parikh’s map
on traces with probabilistic reasoning, we will be able to filter
out the noise and incidental “happens before” relationships
caused by the randomness inherent in many biochemical
systems.

Our focus on the use of traces obtained from a biological
process naturally allow the use of multiple experimental data
sets of varying veracity in the mechanism identification pro-
cess. In particular, our approach can be extended to account
for experimental data sets at different resolutions and with
different trustworthiness. Such an approach is perhaps not
easily feasible in a causality analysis method that does not
expose the computational nature of a biological process and
reasons about its observed traces (as opposed to flat time-series
data or statistical observation summaries).

We are investigating probabilistic extensions to our algo-
rithm that can be applied to recover mechanistic models from
their executions. Together with ongoing research into the dis-
covery of parameters for probabilistic computational models,
we believe that this method may be helpful in algorithmically
constructing big mechanistic models from big data.

REFERENCES

[1] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–
137, 1972.

[2] Clark Barrett, Aaron Stump, Cesare Tinelli, Sascha Boehme, David
Cok, David Deharbe, Bruno Dutertre, Pascal Fontaine, Vijay Ganesh,
Alberto Griggio, Jim Grundy, Paul Jackson, Albert Oliveras, Sava Krsti,
Michal Moskal, Leonardo De Moura, Roberto Sebastiani, To David
Cok, and Jochen Hoenicke. C.: The smt-lib standard: Version 2.0.
Technical report, 2010.

[3] Steven L Bressler and Anil K Seth. Wiener–granger causality: a well
established methodology. Neuroimage, 58(2):323–329, 2011.

[4] Clive W. J. Granger. Time Series Analysis, Cointegration and Applica-
tions, 2003. [Nobel Prize Lecture].

[5] Sumit Gulwani. Synthesis from examples: Interaction models and
algorithms. In 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2012. Invited talk paper.

[6] Sumit Kumar Jha and Christopher James Langmead. Poster: Synthesis
of biochemical models. In Computational Advances in Bio and Medical
Sciences (ICCABS), 2011 IEEE 1st International Conference on, pages
248–248. IEEE.

[7] Susmit Jha, Wenchao Li, and Sanjit A. Seshia. Localizing transient
faults using dynamic bayesian networks. In 14th IEEE International
High-Level Design Validation and Test Workshop, 2009.

[8] Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. Beaver: Engineer-
ing an efficient smt solver for bit-vector arithmetic. In 21st International
Conference on Computer-Aided Verification, pages 668–674, 2009.

[9] Johannes A La Poutr and Jan van Leeuwen. Maintenance of transi-
tive closures and transitive reductions of graphs. In Graph-theoretic
concepts in computer science, pages 106–120. Springer.

[10] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Learning programs
from traces using version space algebra. In Proceedings of the 2nd
international conference on Knowledge capture, K-CAP ’03, pages 36–
43, New York, NY, USA, 2003. ACM.

[11] Susan Lomax and Sunil Vadera. A survey of cost-sensitive decision tree
induction algorithms. ACM Comput. Surv., 45(2):16:1–16:35, March
2013.

[12] Stephen Muggleton. Inductive logic programming. New Generation
Computing, 8(4):295–318, 1991.

[13] Rami A. Namas, John Bartels, Rosemary Hoffman, Derek Barclay,
Timothy R. Billiar, Ruben Zamora, and Yoram Vodovotz. Combined
in silico, in vivo, and in vitro studies shed insights into the acute
inflammatory response in middle-aged mice. PLoS ONE, 8(7):e67419,
07 2013.

[14] Negin Nejati, Pat Langley, and Tolga Konik. Learning hierarchical
task networks by observation. In Proceedings of the 23rd international
conference on Machine learning, ICML ’06, pages 665–672, New York,
NY, USA, 2006. ACM.

[15] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581,
October 1966.

[16] Sheela Ramanna, Lakhmi C Jain, and Robert J Howlett. Emerging
paradigms in machine learning. Springer Publishing Company, Incor-
porated, 2012.

[17] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min
Wang, and Wei-Ying Ma. Automated known problem diagnosis with
event traces. SIGOPS Oper. Syst. Rev., 40(4):375–388, April 2006.

6

