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Abstract
Coevolutionary algorithms are variants of traditional evolutionary algorithms and
are often considered more suitable for certain kinds of complex tasks than non-
coevolutionary methods. One example is a general cooperative coevolutionary frame-
work for function optimization. This paper presents a thorough and rigorous intro-
ductory analysis of the optimization potential of cooperative coevolution. Using the
cooperative coevolutionary framework as a starting point, the CC (1+1) EA is defined
and investigated from the perspective of the expected optimization time. The research
concentrates on separability, a key property of objective functions. We show that sep-
arability alone is not sufficient to yield any advantage of the CC (1+1) EA over its
traditional, non-coevolutionary counterpart. Such an advantage is demonstrated to
have its basis in the increased explorative possibilities of the cooperative coevolution-
ary algorithm. For inseparable functions, the cooperative coevolutionary set-up can
be harmful. We prove that for some objective functions the CC (1+1) EA fails to locate
a global optimum with overwhelming probability, even in infinite time; however, in-
separability alone is not sufficient for an objective function to cause difficulties. It is
demonstrated that the CC (1+1) EA may perform equal to its traditional counterpart,
and may even outperform it on certain inseparable functions.
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1 Introduction

An increasingly more common extension to traditional evolutionary algorithms is co-
evolution. In so-called coevolutionary algorithms (CEAs) individuals obtain fitness
values corresponding to how well they behave in conjunction with other individuals.
These algorithms seem to offer a great deal of promise, providing many potential ad-
vantages over traditional evolution. For example, there is reason to believe that they
may be well-suited for problems with very large (perhaps infinite) search spaces. Ad-
ditionally, coevolution is often attractive for problems that have no intrinsic objective
measure. Also, in the case of cooperative coevolution, there is reason to believe they
may be well-suited for problems with certain kinds of complex structural characteris-
tics. The driving appeal for coevolution is the idea that an arms race can be established,
where steady progress is made by mutual and reciprocal adaptations between different
groups of individuals.
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While it is clear that one can apply coevolution to tasks such as optimization, it is
unclear how efficient it may be when compared to traditional evolutionary algorithms
(EAs). The contextual nature of the fitness evaluation in coevolutionary algorithms
has frequently presented researchers with a great deal of consternation. Coevolution-
ary dynamics can be very complicated (Ficici and Pollack, 2000; Wiegand, Liles, and De
Jong, 2002b) and even relatively straight forward issues in a traditional EA surrounding
representation and progress measurement can be quite difficult in many types of coevo-
lutionary algorithms (Cliff and Miller, 1995; Ficici and Pollack, 1998; Stanley and Mi-
ikkulainen, 2002). As a result, most analytical efforts of coevolutionary algorithms have
focused on aspects of coevolutionary dynamics, representation, and progress measure-
ment, while very little effort has been placed on establishing the efficiency of coevolu-
tionary approaches as optimization methods. In this paper, we seek to bridge this gap
by concentrating our attention on the analysis of the performance of a specific coevolu-
tionary algorithm as an optimizer.

1.1 The CCEA

Cooperative CEAs seem particularly well-suited for optimization problems having cer-
tain kinds of structural characteristics that can be exploited by its decompositional na-
ture. The idea is that problems may benefit from partitioning potential solutions into
smaller components that can be solved separately. One way of looking at this is that
coevolutionary algorithms adaptively search projections of a complete problem space in
parallel, and therefore allow for smaller search spaces in a given generation. Advan-
tages such as this are leading researchers to apply CCEAs ever more frequently, often
quite successfully. For example, cooperative coevolution has been successfully applied
to problems such as function optimization (Potter and De Jong, 1994; Leung, Wong,
and King 1998; Iorio and Li, 2002), job-shop scheduling (Eriksson and Olsson, 1997),
concept learning for classification tasks (Potter and De Jong, 1998; Potter and De Jong,
2000), and behavioral learning for autonomous agents (Moriarty and Miikkulainen,
1997; Potter, Meeden, and Schultz, 2001).

In order to focus on the question of optimization, we adopt the well-known coop-
erative coevolutionary framework provided by Potter and De Jong (1994), which has
several advantages for our interests. First, questions of objective progress measurement
are greatly simplified. Also, the framework provides a very general architecture for op-
timization applications. Finally, the framework allows any evolutionary algorithm to
be used as a part of the architecture.

These cooperative coevolutionary algorithms (CCEAs) work by applying several
EAs in an almost independent way to components of a larger, objective problem. Fitness
is assessed by assembling an individual component with representative components
from other EA populations. This process is static and symmetric in the sense that each
EA has a specific role to play in the problem that does not alter during a given run, and a
specific assembled string will receive the same reward, regardless of which component
is currently being evaluated. As a result, objective progress measurement is not an
obstacle to our analysis.

1.2 Problem Decomposition

What remains an important issue, however, is representation. How one divides the
problem representation into these static components is still very much a part of the
design engineer’s duties, and will certainly impact the efficiency of the optimization
process in many cases. Historically, problem separability has been considered the de-
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mon of CCEAs. The intuition behind this is that breaking up strongly-related problem
components will damage a CCEA’s adaptive search capabilities. However, recently
questions regarding the effects of interactivity among problem components have be-
come a major focus of attention in empirical studies (Bull, 1997; Wiegand, Liles, and
De Jong 2001; Bull, 2001; Wiegand, Liles, and De Jong, 2002a). While most of these
studies suggest that problem separability is somehow related to problem difficulty, all
of them state that the role of problem separability in predicting CCEA performance is
far from clear. What is clear is that researchers applying these algorithms want to un-
derstand how to decompose problems for CCEA representational purposes and what
effects such choices in conjunction with inherent problem properties have on CCEA
performance. We believe that the best way to answer this is with rigorous run time
analysis.

Specifically, our goal is to simplify the algorithm and investigate the effects that
decompositional properties of certain problem classes have on run time performance
in a context that is as clear and intuitive as possible. As a result, we concentrate our at-
tention on maximization of pseudo-Boolean functions, f : {0, 1}n 7→ R, and make fairly
natural and obvious decompositional decisions with respect to assignment of roles of
the various EA populations. A bit string is divided into k disjoint components. Thus,
there are k EAs, each operating on one of these k components. The choice of the under-
lying EA is of obvious importance, and will undoubtedly influence the performance of
the CCEA. We concentrate our attention on the well-known (1+1) EA since it is perhaps
the simplest EA that still shares many important properties with more complex EAs.

The main question with respect to decomposition is how run time performance
is affected by the degree to which such representational choices match the true sep-
arability of the problem. Since the individual components are in some sense treated
almost independently of one another, it is plausible to believe that a CCEA may be able
to exploit this property of f when it is appropriately divided, or may be hindered by
properties of interdependency when f is poorly decomposed. Indeed, intuitively one
might expect that the advantage of a CCEA over an EA grows with the degree of sepa-
rability of the problem; however, we will show that separability alone is insufficient for
the CCEA to gain an advantage. Moreover, we investigate this property of separability
of the objective function both in the case when the problem is separable across popula-
tion boundaries, as well as when it is not. In combination with problem division, the
CCEA brings with it the potential for more focused exploration of the individual com-
ponents. Important parameters such as the mutation probability are often related to the
length of the string being searched (e.g, 1/n for string length n). Since individuals in the
populations represent only components of a complete solution, and are therefore only
a fraction of the search space, parameters like mutation probability often have more
dramatic potential due to their increased rates. This enables the CCEA to search these
components with greater exploratory power, while protecting the other components
from the added disruption of this exploration by the nature of the problem decomposi-
tion. We will present a class of functions where this becomes very clear. Moreover, we
present an example where we achieve an exponential separation between the EA and
the CCEA in terms of optimization performance.

1.3 Paper Organization

In the next section, we give precise definitions of the (1+1) EA, the CC (1+1) EA, the
notion of separability, and the notion of expected optimization time. Furthermore, we
give an overview of the analytical tools and proof methods used throughout the paper.
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In the third section, we consider problems that are separable with respect to the pop-
ulation boundary. We first show that the CC (1+1) EA has surprisingly no advantage
over the (1+1) EA on linear functions, despite the fact that such functions are fully sep-
arable. Then we present a class of functions that demonstrates that it is the explorative
advantage in conjunction with the problem decomposition that can lead to CC (1+1) EA
superiority. We conclude this section by constructing an example that illustrates that
it is possible for the (1+1) EA to perform better than the CC (1+1) EA, even when the
problem is separable across the population boundaries. In Section 4, we consider the
situation in which the problem is not separable across the population boundaries. We
first demonstrate that there exist inseparable problems for which the CC (1+1) EA can-
not find the global optimum. We follow this by next demonstrating that inseparability
itself is an insufficient obstacle to performance by identifying a class of inseparable
problems that are no more difficult for the CC (1+1) EA than for the (1+1) EA. We con-
clude this section by showing that there remain advantages to the CC (1+1) EA on some
problems, despite inseparability, and that this advantage can be exponential. In our fi-
nal section, we offer a short summary of the things learned by this research and a brief
discussion of possible future directions for research.

2 Fundamentals

2.1 Definitions

We choose to instantiate the cooperative coevolutionary function optimization frame-
work of Potter and De Jong (1994) with the (1+1) EA as the underlying search heuris-
tic. This extremely simple evolutionary algorithm uses a population of size one, pro-
duces one offspring in each generation via bit-wise mutation and applies plus-selection
known from evolution strategies: the offspring replaces its parent iff its fitness is at
least as large. The advantage of choosing such a simple EA as the underlying search
heuristic is that the resulting cooperative coevolutionary algorithm (CCEA) is easier to
analyze. Our motivation for choosing the (1+1) EA stems from the wealth of known an-
alytical results (see for example Rudolph (1997), Garnier, Kallel, and Schoenauer (1999),
Droste, Jansen, and Wegener (2002)) and tools and methods (see for example Wegener
(2002)). We present a formal definition of the (1+1) EA in a form that is suitable for the
maximization of a pseudo-Boolean function f : {0, 1}n → R.

Algorithm 1 ((1+1) Evolutionary Algorithm — (1+1) EA).

1. Initialization
Choose x0 ∈ {0, 1}n uniformly at random.

2. t := 0
3. Mutation

Create y ∈ {0, 1}n by copying xt and, independently for each bit,
flip this bit with probability min{1/n, 1/2}.

4. Selection
If f(y) ≥ f(xt), then set xt+1 := y, else set xt+1 := xt.

5. t := t + 1
6. Continue at line 3.

We consider the (1+1) EA without stopping criterion and are mainly interested in
the first point of time when a global optimum of f is encountered. We measure time
by counting function evaluations and assume that the number of function evaluations
is an accurate measure for the actual computation time. Note that the function value
of the parent f(xt) can be assumed to be known in line four since it will have been
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computed in the previous generation. Thus, the number of function evaluations is
larger than the number of generations by exactly one. Definition 2 below formally
describes the focus of attention in our analysis.

Definition 2. Consider some randomized algorithm A optimizing some function f : {0, 1}n →
R. Let the random variable T denote the number of function evaluations A makes before eval-
uating some f -optimal x ∈ {0, 1}n for the first time. We call T the optimization time of A
on f and E (T ) the expected optimization time of A on f . We call Prob (T ≤ t) the success
probability of A on f after t steps.

In this work, the (1+1) EA is used as the underlying search heuristic and we obtain
a cooperative coevolutionary (1+1) EA. We choose to use a numbering for the indepen-
dent EA populations and make them active in this ordering, considering this to be the
most natural implementation for a sequential computing environment. We always use
an even division of a bit string x = x1 . . . xn ∈ {0, 1}n into k pieces x(1), . . . , x(k) of
equal length l with x(i) = x(i−1)l+1 · · ·xil and assume l := (n/k) ∈ N.

Algorithm 3 (Cooperative Coevolutionary (1+1) Evolutionary Algorithm — CC (1+1)
EA).

1. Initialization

Independently for each i ∈ {1, . . . , k} choose x
(i)
0 ∈ {0, 1}l uniformly at

random. t := −1
2. a := 1; t := t + 1
3. Mutation

Create y(a) by copying x
(a)
t and, independently for each bit,

flip this bit with probability min{1/l, 1/2}.
4. Selection

If f(x
(1)
t+1 · · · y(a) · · ·x(k)

t ) ≥ f(x
(1)
t+1 · · ·x

(a)
t · · ·x(k)

t ), set x
(a)
t+1 := y(a),

else set x
(a)
t+1 := x

(a)
t .

5. a := a + 1
6. If a > k, then continue at line 2, else continue at line 3.

Note that each (1+1) EA may have to make two function evaluations in each gen-
eration. Since the current version of the component from the other EAs is used to
compute the function value, each EA may use a different parent bit string for the selec-
tion. Thus, the number of function evaluations is almost twice as large as the number
of generations summed over all (1+1) EAs. After k consecutive generations, each (1+1)
EA was active exactly once. Therefore, we denote k consecutive generations as a round.
Obviously, the number of function evaluations can be estimated quite accurately by
2k times the number of rounds. However, the factor of two is not important since we
employ asymptotic analysis (see Definition 6).

When optimizing a pseudo-Boolean function f : {0, 1}n → R using a CCEA, each
bit string is divided into different components. It is well known that for some functions
it is possible to find such a division so that the separate components do not interfere
with each other. These functions are called separable. Since separability is a key issue
that must be discussed when analyzing the performance of the CC (1+1) EA, we give a
precise formal definition.
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Definition 4. A function f : {0, 1}n → R is called (r, s)-separable, where r, s ∈
{1, 2, . . . , n}, if there exists a partition of {1, . . . , n} into r disjoint sets I1, . . . , Ir, and if there
exists a matching number of pseudo-Boolean functions g1, . . . , gr with gj : {0, 1}|Ij | → R such
that

∀x = x1 . . . xn ∈ {0, 1}n : f(x) =

r
∑

j=1

gj

(

xij,1
xij,2

· · ·xi
j,|Ij |

)

holds, Ij =
{

ij,1, . . . , ij,|Ij |

}

and |Ij | ≤ s for all j ∈ {1, . . . , r}.
We say f is exactly (r, s)-separable if f is (r, s)-separable but not (r′, s′)-separable for

any r′ > r or s′ < s.

Obviously, the two parameters r and s are related. We have n/r ≤ s ≤ n − (r −
1). We consider s to be the more important parameter with respect to the potential
performance of an evolutionary algorithm optimizing f . The parameter s gives an
upper bound on the dimension of the search space for each of the sub-functions gj . It
is obvious that this dimension of the search space has a large influence on the potential
difficulty of f . Consider for example the case where we have s = O(log n). Then
the size of each search space of the r sub-functions is polynomial in n and f can be
optimized using an exhaustive search of the separate search spaces in polynomial time.

Note, however, that a high degree of separability corresponds to a small value of
s. For (n, 1)-separable functions, the function value can be computed depending on
single bits. An exactly (1, n)-separable function is not separable at all, the values of all
n bits have to be known together in order to compute the function value.

Since we concentrate on the division of a bit string x ∈ {0, 1}n into k separate
components of equal size n/k, (k, n/k)-separable functions are of special interest to us.
Cases with a division into sub-functions of varying dimension can be analyzed based
on the results for the homogeneous decomposition.

When discussing the separability of a function, it is useful to note that each pseudo-
Boolean function f : {0, 1}n → R has a unique representation as a polynomial

f(x) =
∑

I⊆P({1,...,n})

wI ·
∏

i∈I

xi

with wI ∈ R, where P({1, . . . , n} denotes the set of all sub-sets of {1, . . . , n}. The wI

are called weights and it is obvious that a non-zero weight wI implies that all the bits
xi with i ∈ I cannot be separated.

Since an important part of our research concentrates on the relationship between
the separability properties of a function and the decomposition chosen when imple-
menting a CC (1+1) EA, it is often necessary to distinguish between these two concepts.
We use the term component to mean a part of a representation given by the algorithm,
while we use the term piece to mean portions of the problem itself. The difference be-
tween these terms is more obvious in some places than others since the algorithm’s
decomposition may be closely aligned with the problem’s true separation, or it may
not. It will be helpful to provide terms to distinguish between such cases.

Definition 5. Let a function f : {0, 1}n 7→ R be exactly (r, s)-separable as in Definition 4.
We say that a decomposition matches the separability of f if all bits that belong to one index
set Ij are in one population.

We say that the decomposition exactly matches the separability of f if there are r compo-
nents, each EA operating on the bits contained exactly in one of the index sets Ij .

Informally, we may also use the phrase separable across population boundaries to de-
scribe situations in which the algorithm’s decomposition matches the separability of the
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problem. When the decomposition does not match the problem separation, we use the
phrase cross-population nonlinearities to refer to the existence of nonlinear relationships
between components resulting from decompositions that place portions of inseparable
pieces in different populations.

2.2 Analytical Methods

Concentrating on the expected optimization time of evolutionary algorithms is similar
to concentrating on the expected run time of randomized algorithms. Therefore, it
is not surprising that the tools and proof methods applied throughout this paper are
similar to proofs on the expected run times of randomized algorithms. Since they are
not standard in all parts of the evolutionary algorithm community, we give a short
overview on the main tools applied. Almost all these tools are implicit or explicit in the
excellent text book by Motwani and Raghavan (1995). For the sake of completeness,
we begin by providing definitions of the well-known notions we use to describe the
asymptotic growth of functions.

Definition 6. Let f, g : N0 → R be two functions. We say f = O(g), if

∃n0 ∈ N, c ∈ R
+ : ∀n ≥ n0 : f(n) ≤ c · g(n)

holds. We say f = Ω(g), if g = O(f) holds. We say f = Θ(g), if f = O(g) and f = Ω(g) both
hold. We say f = o(g), if lim

n→∞
f(n)/g(n) = 0 holds. We say f = ω(g), if g = o(f) holds.

The optimization time T = T (A, f, n) of an evolutionary algorithm A on a prob-
lem f on a search space with size parameter n is a random variable. We are mostly
interested in its mean value E (T ). Since T cannot take negative values, Markov’s
inequality holds and we have Prob (T ≥ t) ≤ E (T ) /t for all t ∈ R

+. For any ran-
dom variable T we have E (T ) =

∑

A

Prob (A) · E (T | A). The immediate consequence

E (T ) ≥ Prob (A) ·E (T | A) is often helpful in obtaining a lower bound on the expected
optimization time: The expected optimization time may be easy to estimate given that
some (typical) event A occurs. Thus, we have a lower bound on E (T | A) and get a
good lower bound on E (T ) if we can prove that Prob (A) is not too small.

We consider pseudo-Boolean functions f : {0, 1}n → R. Thus, bit strings x ∈
{0, 1}n of length n are of special interest. Often, some property A holds independently
for each bit with some probability p. Then, Chernoff bounds are extremely useful for
obtaining sharp bounds on the probability that the collection of bits deviates from its ex-
pected behavior. In particular, let X be the number of bits that have the property A. The
random variable X is binomially distributed with parameters n and p, thus we have

E (X) = pn. Chernoff bounds yield that Prob (X ≥ (1 + δ)E (X)) ≤
(

eδ/(1 + δ)1+δ
)E(X)

for any δ > 0 and that Prob (X ≤ (1 − δ)E (X)) ≤ e−E(X)δ2/2 for any 0 < δ < 1.
Another useful tool in a similar context is the coupon collector’s problem. As-

sume one is interested in getting n different coupons. The coupons are obtained one
after the other and each coupon is obtained with equal probability 1/n at each step.
We are interested in the number of coupons C one has to obtain until a collection
of all n different coupons is complete. It is known that E (C) = n lnn + O(n) and
Prob (C > βn lnn) ≤ n1−β for any β ≥ 1 hold. When you think of the n bits of a bit
string as coupons and of obtaining a coupon as mutating the corresponding bit, then
the connection to evolutionary algorithms becomes apparent.

Evolutionary Computation Volume x, Number x 7
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3 Exploiting separability

When using the CCEA framework for function optimization one has to decide how
to separate a bit string into different components that are distributed to the separate
EAs. In this section we concentrate on cases where the decomposition matches the
separability of the objective function.

It makes sense to begin the investigation with an extreme case. If one believes
that the CCEA framework is advantageous due to (explicitly) exploiting the sepa-
rability of the objective function, one may speculate that this becomes most visi-
ble when the objective function is separable to an extreme degree. Thus, we begin
our investigations with (n, 1)-separable functions. Such functions can be written as
f(x) = w0 +w1 ·x1 + · · ·+wn ·xn with fixed weights w0, w1, . . . , wn ∈ R and are known
as linear functions. A particularly well known and well investigated linear function is
ONEMAX, which can be defined by w0 = 0 and w1 = · · · = wn = 1. We will see in
the next sub-section that in spite of the maximal degree of separability the CC (1+1) EA
has no advantage over the traditional (1+1) EA on linear functions. This motivates the
search for reasons why the cooperative coevolutionary optimization framework fails to
provide an advantage on linear functions. We define a class of functions in Section 3.2
that are exactly (k, n/k)-separable, where k is a parameter. We will see that the CC
(1+1) EA possesses increased explorative possibilities, which can lead to an impressive
speed-up compared to the (1+1) EA. The results of Sections 3.1 and 3.2 significantly
extend work already published (Jansen and Wiegand, 2003a). Finally, in Section 3.3, we
investigate whether the attempt to exploit the separability of an objective function by
means of the cooperative coevolutionary framework can possibly lead to an increase in
expected optimization time.

3.1 Linear functions

For linear functions, the expected optimization time for the (1+1) EA is O(n log n) and
this upper bound matches the lower bounds for typical linear functions, as derived by
Droste, Jansen, and Wegener (2002).

Theorem 7. The expected optimization time of the (1+1) EA on a linear function f : {0, 1}n →
R is O(n log n). If f only has non-zero weights, the expected optimization time of the (1+1) EA
on f is Θ(n log n).

We consider the CC (1+1) EA on linear functions. Obviously, any decomposition
matches the separability of linear functions since they are exactly (n, 1)-separable. We
consider any homogeneous decomposition where the number of components k divides
n. This allows us to ignore special cases where the last component is either larger or
smaller than all the other components and which have no properties of special interest.
Since we are especially interested in seeing how much the cooperative coevolutionary
function optimization framework increases the efficiency, we begin our investigations
with a lower bound on the expected optimization time of the CC (1+1) EA on a linear
function.

Theorem 8. The expected optimization time of the CC (1+1) EA on a linear function
f : {0, 1}n → R with only non-zero weights is Ω(n log n).

Proof. Since all weights are non-zero there is a unique global optimum x∗. Let xt denote
the current string of the CC (1+1) EA after t complete rounds. Let pt be the probability
that xt 6= x∗ after t complete rounds, thus E (T ) ≥ pt · t · k holds.

After random initialization with probability at least 1/2, at least ⌊n/2⌋ of the bits

8 Evolutionary Computation Volume x, Number x



The Cooperative Coevolutionary (1+1) EA

in the initial string differ from x∗. Each of these bits must be mutated at least once in
order to find the global optimum x∗.

First, we assume that k < n holds. This implies l = (n/k) ≥ 2. We con-
sider the situation after (l − 1) lnn complete rounds, so each (1+1) EA was active
(l − 1) lnn times. The probability that a specific bit is not mutated (l − 1) lnn times
equals (1 − 1/l)(l−1) ln n. Thus, the probability that this bit is mutated at least once in
that time equals 1 − (1 − 1/l)(l−1) ln n. The probability that ⌊n/2⌋ bits all do so equals
(

1 − (1 − 1/l)(l−1) lnn
)⌊n/2⌋

. So, finally, the probability that among ⌊n/2⌋ bits that need
to be mutated at least once there is at least one that is not within (l − 1) lnn complete

rounds equals 1 −
(

1 − (1 − 1/l)(l−1) ln n
)⌊n/2⌋

. We see that we have

E (T ) ≥ 1

2
·



1 −
(

1 −
(

1 − 1

l

)(l−1) ln n
)⌊n/2⌋



 · ((l − 1) lnn) · k

for k < n. For each l we have (1 − 1/l)l−1 ≥ 1/e. Thus, 1 − (1 − 1/l)(l−1) lnn ≤ 1 − 1/n
holds. This yields

E (T ) ≥ 1

2
·
(

1 −
(

1 − 1

n

)⌊n/2⌋
)

· ((l − 1) lnn) · k

≥ 1

2
·
(

1 − e−1/2
)

· (n − k) lnn = Ω(n log n)

for k < n.
For k = n we have n (1+1) EAs each operating on exactly one bit. Each bit has a

unique optimal value. We are waiting for the first point of time when each bit has had
this optimal value at least once. This is equivalent to throwing n coins independently
and repeating this until each coin came up head at least once. Obviously, on average
the number of coins that never came up head is halved in each round. It is easy to see
that on average Θ(log n) rounds are needed. This implies E (T ) = Ω(n log n) in this
case.

Theorem 8 may be surprising: regardless of the way we choose the decomposition,
the decomposition will always match the separability of the linear function; yet, regard-
less of the decomposition, the CC (1+1) EA has no advantage over the traditional (1+1)
EA working on the complete problem. Before we discuss how this can be explained,
we try to get a complete picture of the performance of the CC (1+1) EA on linear func-
tions. In order to derive an upper bound, we describe an upper bound technique that
depends on the probability that the (1+1) EA takes longer than expected to optimize a
linear function.

Lemma 9. Let pf(t, n) denote the probability that the (1+1) EA does not optimize the lin-
ear function f : {0, 1}n → R within t · n lnn generations. The expected optimization time
of the CC (1+1) EA on f with k (1+1) EAs operating on l := n/k bits each is E (T ) =
O ((tn ln l) − tn(ln l)(ln k)/ ln pf (t, l)).

Proof. We consider periods of time that consist of tl ln l rounds (tn ln l generations) each.
Each (1+1) EA is active tl ln l times in each such period. The probability that it finds an
optimal bit string equals 1 − pf (t, l). If an optimal bit string is found by a (1+1) EA,
it cannot be lost again. Thus, after one such period the expected number of (1+1) EAs
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that are not yet optimal decreases from s to pf (t, l) · s. Markov’s inequality yields that
the probability of having at least 2 · pf(t, l) · s such (1+1) EAs is bounded above by 1/2.
We conclude that on average after at most 2tl ln l rounds we decrease the number of
(1+1) EAs that are not yet optimal from s to at most 2pf(t, l). We call such a sequence
of 2tl ln l rounds a phase. After r such phases we have at most (2pf (t, l))r · s (1+1) EAs
that are not yet optimal if we started with s such components. We have s ≤ k and
are interested in a small value of r such that (2pf (t, l))r · k ≤ 1 holds. We see that
r ≥ (ln k)/ ln(1/(2pf(t, l))) is sufficient. This proves the lemma.

The proof of Theorem 7 holds for arbitrary initial bit strings. Since the expected
optimization time is O(n log n), there is a constant c such that it is less than cn lnn.
Markov’s inequality yields that after 2cn lnn generations the probability not to have
optimized f is bounded above by 1/2. Due to the independence of the initial bit string
we can consider the next 2cn lnn generations as another run of length 2cn lnn. Thus, we
have pf (2ct, n) ≤ 2−t for any linear function f and any t ∈ N. Inserting pf (2ct, n) ≤ 2−t

in the expression for E (T ) from Lemma 9 implies the following result.

Theorem 10. The expected optimization time of the CC (1+1) EA on a linear function
f : {0, 1}n → R is O(n ln l(1 + ln k)) = O(n log2 n).

ONEMAX is a special linear function which can give us a better bound on
pONEMAX (t). The Hamming distance to the global optimum can never increase and
the probability of increasing the function value from i to i + 1 is bounded below by
(n−i)/(en). Therefore, we can apply results from the coupon collector’s problem (Mot-
wani and Raghavan, 1995). This yields pONEMAX (2et) ≤ n−t for any t ∈ N and we can
conclude the following result.

Theorem 11. The expected optimization time of the CC (1+1) EA on ONEMAX : {0, 1}n → R

is O(n log n).

We see that for ONEMAX the expected optimization time of the CC (1+1) EA is
Θ(n log n). Although the cooperative coevolutionary approach is not better than the
traditional approach, it is at least not doing worse. For general linear functions, we can-
not prove that the CC (1+1) EA is not doing worse in general. For very large and very
small values of k (k = Ω(n), k = O(1)), we already have an optimal bound from Theo-
rem 10. For values in between (like k =

√
n) we only get the weaker bound O(n log2 n)

from Theorem 10. However, we conjecture that an upper bound of O(n log n) can be
proved for all linear functions.

Conjecture 12. The expected optimization time of the CC (1+1) EA on a linear function
f : {0, 1}n → R is Θ(n logn).

3.2 Exploring the explorative advantage

In spite of the complete separability of linear functions, the CC (1+1) EA has no advan-
tage over the (1+1) EA. Linear functions can be optimized by mutations of single bits
alone. And since restricting the (1+1) EA to mutations of single bits does not slow it
down on linear functions, we may speculate that linear functions are optimized using
mainly mutations of single bits. One important aspect of the CC (1+1) EA is the in-
creased mutation probability. What is expected from an increased mutation probability
is, of course, an increased number of mutations. To see this more clearly we classify a
mutation by the number of mutated bits. A comparison is made between one round of
the CC (1+1) EA, when each (1+1) EA was active once, and k generations of the tradi-
tional (1+1) EA. We concentrate on the first component only and calculate the expected
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number of mutations of exactly b bits. For a single (1+1) EA operating on l bits, this

number equals
(

l
b

)

(1/l)b(1 − 1/l)l−b. Thus, for the (1+1) EA operating on n bits for k

generations, this number equals k ·
(

l
b

)

(1/n)b(1 − 1/n)l−b; the term
(

l
b

)

stems from the
fact that we only count mutations of exactly b bits in the first component. Considering
the quotient of the two we get

(

l
b

) (

1
l

)b (
1 − 1

l

)l−b

k
(

l
b

) (

1
n

)b (
1 − 1

n

)l−b
= kb−1 ·

(

1 − 1

l

)l−b

·
(

1 − 1

n

)−(l−b)

= kb−1 ·
(

n − k

n − 1

)l−b

.

The term is governed by kb−1. It is interesting to note that for b = 1 the quotient does
not grow. In spite of the increased mutation probability, the expected number of single
bit mutations is not significantly larger for the CC (1+1) EA. This changes with muta-
tions of at least two bits. The expected number grows exponentially in (b − 1) ln k. For
small values of b > 1 even mutations of b specific bits occur in a polynomial number of
generations. Hence, we expect to see significant differences in the performance of the
traditional (1+1) EA and its cooperative coevolutionary counterpart when such muta-
tions are important. This motivates the definition of a family of functions where such
mutations are crucial.

We start with a function that is exactly (1, n)-separable. The definition is inspired
by the well-known LEADINGONES problem.

Definition 13. For n ∈ N and b ∈ {1, . . . , n} with n/b ∈ N, we define the function
LOBb : {0, 1}n → R (short for LeadingOnesBlocks) by

LOBb(x) :=

n/b
∑

i=1

b·i
∏

j=1

xj

for each x = x1 · · ·xn ∈ {0, 1}n.

The function LOBb is identical to the so-called Royal Staircase function introduced
by van Nimwegen and Crutchfield (2001) in a different context. The function value
equals the number of consecutive blocks of size b that have all bits set to 1 (scanning x
from left to right). Nevertheless, it is not clear that mutations of b bits in one step are
needed in order to optimize LOBb. Since the initial bit string is chosen uniformly at
random, it may be the case that on average b/2-bit mutations are sufficient. In order
to overcome technical difficulties that arise from such uncertainties, we embed LOBb

in another function. In this function we give leading ones blocks a higher weight and
subtract ONEMAX in order to force all the other bits to be set to 0. Finally, we use a
well-known technique to achieve a controllable degree of separability: we define the
function CLOBb,k as k concatenated copies of this function.

Definition 14. For n ∈ N, k ∈ {1, . . . , n} with n/k ∈ N, and b ∈ {1, . . . , n/k} with
n/(bk) ∈ N, we define the function CLOBb,k : {0, 1}n → R by

CLOBb,k(x) :=

(

k
∑

i=1

n · LOBb

(

x(i−1)l+1 · · ·xil

)

)

− ONEMAX(x)

for all x = x1 · · ·xn ∈ {0, 1}n, with l := n/k.

Since LOBb is exactly (1, n)-separable, it is obvious that CLOBb,k is exactly (k, l)-
separable. Since we are interested in finding out whether the increased mutation prob-
ability of the CC (1+1) EA proves to be beneficial, we concentrate on CLOBb,k with
b > 1 and use a decomposition that exactly matches the separability of the problem.
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Theorem 15. The expected optimization time of the CC (1+1) EA on the function
CLOBb,k : {0, 1}n → R is Θ

(

klb
(

l
b + ln k

))

with l := n/k, if the CC (1+1) EA exactly
matches the function’s separability with k (1+1) EAs, and 2 ≤ b ≤ n/k, 1 ≤ k ≤ n/4, and
n/(bk) ∈ N hold.

Proof. We have k components x(1), . . . , x(k) of length l = n/k each. In each component
the size of the blocks relevant for CLOBb,k equals b and there are exactly l/b ∈ N such
blocks in each component.

We begin with the upper bound and consider the first (1+1) EA operating on x(1).
As long as x(1) differs from 1l, there is always a mutation of at most b specific bits that
increases the number of leading ones blocks by at least one. After at most l/b such
mutations x(1) = 1l holds. The probability of such a mutation is bounded below by
(1/l)b(1−1/l)l−b ≥ 1/(elb). We consider k·10e·lb((l/b)+lnk) generations. The first (1+1)
EA is active in 10e · lb((l/b) + ln k) generations. In each of these generations, we have
such a mutation with probability at least 1/(elb) and call the actual, random number of
such mutations M . We have E (M) ≥ 10((l/b) + ln k) and can apply Chernoff bounds.

This yields Prob (M ≤ (1 − 9/10)E (M)) ≤ Prob (M ≤ (l/b) + ln k) ≤ e−E(M)(9/10)2/2 ≤
e−(81/20)((l/b)+ln k) ≤ e−4((l/b)+ln k) ≤ min{e−4, k−4}. In the case k = 1 this immediately
implies the claimed upper bound. Otherwise, the probability that there is a component
different from 1l is bounded above by k·(1/k4) = 1/k3, which again implies the claimed
upper bound.

The proof of the lower bound consists of two parts. First, we prove that, with
probability close to 1, there are Ω(k) populations where x(i) = 0l holds after o

(

k · l2
)

generations. Second, we prove that for these populations x(i) 6= 1l holds with a proba-
bility that is sufficiently large for the proof of the lower bound.

Each component equals 0l with probability 2−l after random initialization. If
l = O(1), this yields that each population is initialized 0l with probability Ω(1). If l
grows with n, we consider the first component. With probability 1/4 the first two bits
have value 0 after random initialization. The probability that x(1) does not have the
form 1jb0l−jb for some j ∈ N0 after t · k · 2el log l generations is bounded above by 2−t.
The probability that the first two bits are mutated in the first t · k · 2el log l generations
is bounded above by (t · 2el log l)/l2. Thus, we have x(1) = 0l after k · 10el log l gen-
erations with probability at least 1 −

(

(3/4) + 2−5 + (10e log l)/l
)

= Ω(1). Application
of Chernoff bounds yields in both cases that with probability close to 1 the number of
populations equal to 0l is Ω(k) after O(n log l) generations.

For the second part of the proof, we distinguish two cases. First, assume ln k ≥ l/b
holds. We consider a population with x(i) = 0l. We consider the first k(lb − 1) ln k
generations after this is the case. Note that l ≥ 2 implies k(lb − 1) ln k = Ω(klb ln k).
Obviously, if there is no mutation of the first b bits in x(i) in these generations, x(i) 6= 1l

still holds afterwards. The population is active for (lb − 1) lnk generations during the
considered time interval. Therefore, the probability for such an event is bounded below

by
(

1 − 1/lb
)(lb−1) ln k ≥ e− ln k = 1/k. We know from the first part of the proof that

there are at least ck such populations for some positive constant c < 1. They all are
independent due to the definition of the CC (1+1) EA. Therefore, the probability that at

least one population has x(i) 6= 1l is bounded below by (1 − 1/k)ck > e−c

2 . This yields
Ω
(

klb ln k
)

as lower bound on the expected optimization time.
Now we deal with the case ln k < l/b. Again, we consider a population with

x(i) = 0l. We consider the first (klb · l/b)/2 generations after this is the case. In order to
increase the number of leading ones blocks by i, a mutation of i specific bits is necessary
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and sufficient. Such a mutation occurs with probability l−ib. Since i/lib is maximal for
i = 1, it suffices to consider mutations of b bits. The population is active for (lb · l/b)/2
generations. By Chernoff bounds, the probability to have at least l/b such mutations
is bounded above by (e/4)l/(2b) <

√
3/2. Thus, with probability at least 1 −

√
3/2 the

global optimum is not found after Ω
(

klb(l/b)
)

generations.

The expected optimization time Θ(klb((l/b)+ ln k)) grows exponentially with b, as
could be expected. Note, however, that the basis is l, the length of each piece. This sup-
ports our intuition that the exploitation of the separability together with the increased
mutation probability help the CC (1+1) EA to be more efficient on CLOBb,k. We now
prove this belief to be correct by analyzing the expected optimization time of the (1+1)
EA.

Theorem 16. The expected optimization time of the (1+1) EA on the function
CLOBb,k : {0, 1}n → R is Θ

(

nb (n/(bk) + ln k)
)

, if 2 ≤ b ≤ n/k, 1 ≤ k ≤ n/4, and
n/(bk) ∈ N hold.

For the poof of Theorem 16 it is useful to have a tool similar to, and slightly more
general than, the coupon collector’s problem. We state and prove this tool in the more
common language of balls and bins.

Lemma 17. Consider balls that are thrown independently and uniformly at random into k
bins. Let M denote the minimal number of balls thrown such that each bin contains at least h
balls.

E (M) = Θ (k ln k + kh)

Proof. For k = 1 the process is deterministic and the statement obviously true. Thus,
we assume k > 1. We begin with a lower bound on E (M). If we have at least h balls
in each bin, the sum of all balls is at least kh. Thus M ≥ kh holds. Now, consider
the situation after (k − 1) lnk balls. The probability that the first bin is empty equals
(1 − 1/k)(k−1) ln k > e− lnk = 1/k. The probability that there is an empty bin among
the k bins is bounded below by 1 − (1 − 1/k)k ≥ 1 − e−1. Thus, we have E (M) ≥
(1 − 1/e) · (k − 1) lnn. Together, we have E (M) = Ω(kh + k ln k).

For the upper bound, consider the situation after 4kh + 4k ln k balls. Let B1 denote
the number of balls in the first bin. We have E (B1) = 4h + 4 ln k. Using Chernoff
bounds we get

Prob (B1 < h) = Prob

(

B1 <

(

1 − 3h + 4 lnk

4h + 4 lnk

)

(4h + 4 lnk)

)

< e−(4h+4 ln k)((3h+4 ln k)/(4h+4 lnk))2/2 < e−(1/2)·(3/4)·4 ln k

= k−3/2.

Thus, with probability at most k ·k−3/2 = 1/
√

k there is a bin with less than h balls after

4kh + 4k ln k balls. This yields E (M) ≤
(

1 − 1/
√

k
)−1

· (4kh + 4k ln k) =

O(kh + k ln k).

Proof of Theorem 16. We begin with a proof of the lower bound. This proof consists of
two main steps. First, we prove that with probability at least 1/8 the (1+1) EA needs to
make at least ⌈k/8⌉ · l/b mutations of b specific bits to find the optimum of CLOBb,k.
Second, we estimate the expected waiting time for this number of mutations.
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Consider some bit string x ∈ {0, 1}n. It is divided into k pieces of length l = n/k
each. Each piece contains l/b blocks of length b. Since each leading block that contains
1-bits only contributes n − b to the function value, these 1-blocks are most important.

Consider one mutation generating an offspring y. Of course, y is divided into
pieces and blocks in the same way as x. But the bit values may be different. We dis-
tinguish three different types of mutation steps that create y from x. Note that our
classification is complete, i.e., no other mutations are possible.

First, the number of leading 1-blocks may be smaller in y than in x. We can ignore
such mutations since we have CLOBb,k(y) < CLOBb,k(x) in this case and y will not
replace its parent x.

Second, the number of leading 1-blocks may be the same in x and y. Again, mu-
tations with CLOBb,k(y) < CLOBb,k(x) can be ignored. Thus, we are only concerned
with the case CLOBb,k(y) ≥ CLOBb,k(x). Since the number of leading 1-blocks is the
same in x and y, the number of 0-bits cannot be smaller in y compared to x. This is due
to the −ONEMAX part in CLOBb,k.

Third, the number of 1-blocks may be larger in y than in x. For blocks with at least
two 0-bits in x the probability of any one becoming a 1-block in y is bounded above
by 1/n2. We know that the −ONEMAX part of CLOBb,k leads the (1+1) EA to all zero
blocks in O(n log n) steps. Thus, with probability O((log n)/n) such steps do not occur
before we have a string of the form

1j1·b0((l/b)−j1)·b1j2·b0((l/b)−j2)·b · · · 1jk·b0((l/b)−jk)·b

as current string of the (1+1) EA.
The probability that we have at least two 0-bits in the first block of a specific piece

after random initialization is bounded below by 1/4. It is easy to see that with proba-
bility at least 1/4 we have at least ⌈k/8⌉ such pieces after random initialization. This
implies that with probability at least 1/8 we have at least ⌈k/8⌉ pieces that are of the
form 0l after O(n log n) generations. This completes the first part of the lower bound
proof.

Each 0-block can only become a 1-block by a specific mutation of b bits all flipping
in one step. Furthermore, only the leftmost 0-block in each piece is available for such
a mutation leading to an offspring y that replaces its parent x. Let i be the number of
0-blocks in x. For i ≤ k, there are up to i blocks available for such mutations. Thus, the
probability for such a mutation is bounded above by i/nb in this case. For i > k, there
cannot be more than k 0-blocks available for such mutations since we have at most one
leftmost 0-block in each of the k pieces. Thus, for i > k, the probability for such a
mutation is bounded above by k/nb. This yields

1

8
·





k
∑

i=1

nb

i
+

⌈k/8⌉l/b
∑

i=k+1

nb

k



 ≥ nb

8
·
(

ln k +
kl

8bk

)

Ω
(

nb ·
( n

bk
+ log n

))

as lower bound on the expected optimization.
For an upper bound, we apply a method similar to f -based partitions (Droste,

Jansen, and Wegener, 2002). We have k pieces x(1), . . . , x(k) of length l := n/k each. In
each piece, there are b bits in each of the blocks rewarded by CLOBb,k and there are
exactly l/b ∈ N such blocks in each piece.

For i ∈ {1, . . . , k}, x ∈ {0, 1}n we define the following. The set of first-bit positions
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in every block of the ith piece is given by

Bi :=

{

j · b + 1|j ∈
{

(i − 1)
l

b
, (i − 1)

l

b
+ 1, . . . , i

l

b
− 1

}}

.

The set of bit positions in the jth block of the ith piece that are 0 is given by

Zi,j(x) := {h|j ≤ h ≤ j + l − 1 ∧ xj = 0}

for j ∈ Bi. The first-bit position of the left-most block in the ith piece that is not the all
one string is given by

zi(x) := min {{j ∈ Bi|Zi,j(x) 6= ∅} ∪ {maxBi}} .

Note that zi(x) indicates the first-bit position of the right-most block of the piece if the
entire piece is the all one string. Finally, we define the event A(x), an advancing step,
to be the situation in which there exists exactly one i ∈ {1, . . . , k} such that all bits in
Zi,zi(x)(x) mutate and all other bits in x do not mutate.

First observe that, for all x, Prob (A(x)) ≥
(

k
1

)

n−b (1 − 1/n)
n−b ≥ k/(enb) and that

each event A(x) belongs to exactly 1 piece. Observing that there are l/b blocks in each
piece, for symmetry reasons it is sufficient to see that the global optimum is reached
after at most l/b events in all pieces.

Since the A(x) events are independent and we are interested only in bounding the
waiting time to obtain a specific number of such events in each piece, we can consider
this process to be equivalent to a generalized form of the coupon collector’s problem
where we wait for the first point of time with at least l/b balls in each bin. Here the
pieces are bins and the advancing step events are balls. Applying Lemma 17 we see that
O(k ln k + k l

b ) steps are on average sufficient to insure that each piece has experienced
at least l/b of the A(x) events. Since we expect to wait O

(

nb/k
)

generations for each
advancing step, the total expected waiting time until the global optimum is reached is
O(nb ln k).

We have argued above that it may be beneficial to apply the increased mutation
probability in a directed way due to the cooperative coevolutionary approach. We
have analyzed the CC (1+1) EA and the (1+1) EA on the same problem to investigate
this idea. Thus, our interest is not specifically concentrated on the concrete expected
optimization times. Rather, we are much more interested in a comparison between the
two algorithms. When comparing (expected) run times of two algorithms solving the
same problem, it is most often sensible to consider the ratio of the two (expected) run
times. Therefore, we consider the expected optimization time of the (1+1) EA divided
by the expected optimization time of the CC (1+1) EA, both on CLOBb,k. We see that

Θ
(

nb ·
(

n
bk + ln k

))

Θ
(

klb
(

l
b + ln k

)) = Θ
(

kb−1
)

holds. We can say that the CC (1+1) EA has an advantage of order kb−1. The parameter
b is a parameter of the problem. In our special setting, this holds for k, too, since we
divide the problem as much as possible. Using c components, where c ≤ k, would
reveal that this parameter c influences the advantage of the CC (1+1) EA in a way k
does in the expression above. Obviously, c is a parameter of the algorithm. Choosing
c as large as the objective function CLOBb,k yields the best result. This confirms our
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intuition that the separability of the problem should be exploited as much as possible.
We see that for some values of k and b this can decrease the expected optimization time
from super-polynomial for the (1+1) EA to polynomial for the CC (1+1) EA. This is, for
example, the case for k = n(log log n)/(2 logn) and b(log n)/ log log n.

It should be clear that simply increasing the mutation probability in the (1+1) EA
will not resolve the difference. Increased mutation probabilities lead to a larger num-
ber of steps where the offspring y does not replace its parents x since the number of
leading ones blocks is decreased due to mutations. After some time it will be nec-
essary not to mutate at least half of the bits in order to further increase the function
value. Using the same mutation probability for the (1+1) EA as for each population of
the CC (1+1) EA, i. e. 1/l, the waiting time for only one such mutation is on average
(

(1 − 1/l)n/2
)−1 ≈ ek/2 generations. As a result, the CC (1+1) EA gains clear advan-

tage over the (1+1) EA on this CLOBb,k class of functions. Moreover, this advantage is
drawn from more than a simple partitioning of the problem. The advantage stems from
the coevolutionary algorithm’s ability to increase the focus of attention of the mutation
operator, while using the partitioning mechanism to protect the remaining components
from the increased disruption.

3.3 Separability considered harmful

We have seen that the CC (1+1) EA can achieve a tremendous speed-up compared to
the (1+1) EA on separable functions. However, separability by itself is not sufficient to
make the cooperative coevolutionary approach beneficial. Could there even be disad-
vantages due to this approach on separable functions?

We should be careful about what we want to call a disadvantage. First of all, we
assume that the considered objective function is separable, and that the decomposition
of the problem for the CC (1+1) EA matches this separability. We know that the different
mutation probabilities employed by the CC (1+1) EA compared to the (1+1) EA can
cause huge performance differences. Moreover, it is known that the most common
mutation probability 1/l for strings of length l is not optimal for all functions (Jansen
and Wegener, 2000). Different mutation probabilities can mean the difference between
polynomial and exponential expected optimization time. We saw that the superior
performance of the CC (1+1) EA on CLOBb,k was not due to the increased mutation
probability alone. Thus, here we are not satisfied with an example where the (1+1) EA
is superior due to the use of a more appropriate mutation probability.

Our goal is to investigate the following. Is it possible that the CC (1+1) EA is
outperformed by the (1+1) EA on a separable problem, where the CC (1+1) EA makes
full use of this separability and where for each component the CC (1+1) EA uses an
optimal mutation probability? In order to answer this question we define an example
problem where this is exactly the case. However, the possible advantage of the (1+1) EA
is limited. If the (1+1) EA has polynomial expected optimization time, then the CC (1+1)
EA optimizes this problem within a polynomial number of steps with a probability that
quickly converges to 1. Assume the objective function f : {0, 1}n → R is (r, s)-separable
and the expected optimization time of the (1+1) EA on f is E (T ) = t(n). Since f is (r, s)-
separable, there exist index sets I1, . . . Ir and functions g1, . . . , gr such that

f (x1 . . . xn) = g1

(

xi1,1
· · ·xi1,|I1|

)

+ · · · + gr

(

xir,1
· · ·xir,|Ir |

)

for all x1 · · ·xn ∈ {0, 1}n. We consider functions f1, . . . , fr that we define by

fj (x1 . . . xn) = gj

(

xij,1
· · ·xij,|Ij |

)
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for all j ∈ {1, . . . , r}. Obviously, E (Tj) ≤ t(n) holds for the expected optimization
time E (Tj) of the (1+1) EA on fj for each j ∈ {1, . . . , r}. We divide a bit string into
components exactly matching the separability of f but use 1/n as mutation probability
for each component. We consider r · n2 · t(n) = O(n3t(n)) generations of the CC (1+1)
EA. Note that since t(n) is polynomial, O(n3t(n)) is polynomially bounded, too. For
each component we apply Markov’s inequality and see that with probability at most
1/n2 this component is not optimized. Thus, with probability at most r/n2 ≤ 1/n there
is a component that is not optimized. We conclude that, with probability 1 − O(1/n),
the CC (1+1) EA optimizes f within O(n3t(n)) generations.

Definition 18. For l ∈ N, we define the function gl : {0, 1}l → R by

gl(x) :=











l + i if x = 1i0l−i with i ∈ {0, 1, 2, . . . , l}
l + i if x = 0l−i1i with i ∈ {4} ∪ {6, 9, . . . , 3 ⌊l/3⌋}
l − ONEMAX(x) otherwise

for each x = x1 · · ·xl ∈ {0, 1}l. For l ∈ N and k ∈ N we define n := l · k and the function

fk,l : {0, 1}n → R by fk,l(x) :=
k
∑

i=1

gl

(

x(i−1)l+1 · · ·xil

)

for each x = x1 · · ·xn ∈ {0, 1}n.

It is easy to see that gl is exactly (1, l)-separable, thus fk,l is exactly (k, l)-separable.
We claim that the (1+1) EA outperforms the CC (1+1) EA on fk,l when performance
is measured by expected optimization time and the CC (1+1) EA makes full use of the
separability of fk,l, even if the CC (1+1) EA uses optimal mutation probabilities for each
component.

Theorem 19. The expected optimization time of the (1+1) EA on the function fk,l : {0, 1}n →
R is O(n · l) for each k, l ∈ N with l = Ω(log n) and n = k · l.
Proof. First, we prove that the expected optimization time of the (1+1) EA with mu-
tation probability 1/n on gn is O(n2). We consider a run of the (1+1) EA on gn. Let
P denote the set of points {0n−i1i | i ∈ {4} ∪ {6, . . . , 3 ⌊n/3⌋}. Let F denote the
event that we have x ∈ P for the current string x at some point of time during the
run before reaching the global optimum 1n. Let F denote the event that this is not
the case. Using the method of f -based partitions we see that for the expected opti-
mization time of the (1+1) EA on gn E

(

T | F
)

= O(n2) and E (T | F ) = O(n4) hold.

We have E (T ) ≤ E
(

T | F
)

+ Prob (F ) · E (T | F ). Therefore, it is sufficient to prove
Prob (F ) = O(1/n2).

After random initialization, we have x /∈ P with probability exponentially close
to 1. We consider a run of the (1+1) EA until we have x ∈ P or x ∈ {1i0n−i | i ∈
{0, 1, . . . , n}} for the first time. The function value is then given by n − ONEMAX(x).
Consider Bi := {x ∈ {0, 1}n | ONEMAX(x) = i}. For symmetry reasons, each point
y ∈ Bi has equal probability of becoming the current search point x of the (1+1) EA.
We conclude that we have x ∈ P at the end of this phase with probability O(1/n3).
Let x denote the current string of the (1+1) EA and let x = 1i0n−i hold for some i ∈
{0, 1, . . . , n − 1}. Let x′ denote the first offspring with gn(x′) > gn(x). The Hamming
distance between x and the closest point in P equals i + 3 for i > 0 and 4 otherwise.
The second closest point in P has Hamming distance i + 6. The next point with larger
gn-value has Hamming distance 1. Thus, the probability to have x′ ∈ P is bounded
above by

(1/n)i+3 + n · (1/n)i+6

1/(en)
= O

(

1

ni+2

)
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for i > 0 and O(1/n3) otherwise. This implies Prob (F ) = O(1/n3) +
n−1
∑

i=1

O(1/ni+2) =

O(1/n3).
Obviously, on fk,l the expected time until the first of the k gl-pieces becomes all 1

is bounded above by O(n · l). Furthermore, we see that, with probability 1 − O(1/n3),
the first piece becomes all 1 within O(n · l) generations. Finally, if we have that the
(1+1) EA enters P in the first component, the expected number of generations before
this piece becomes all 1 is bounded above by O(n3 · l). All this holds for all k pieces.
The probability that there is one piece that is different from 1l after O(n · l) generations
is bounded above by O(k/n3). Thus, the expected optimization time is bounded above
by

O(n · l) + O

(

k

n3
· n3 · l

)

= O (n · l) .

Theorem 20. For l ∈ N, k := l4, and n := k · l, the expected optimization time of the CC
(1+1) EA on fk,l : {0, 1}n → R with k components that match the function’s separability is
Ω(n · l · l1/3) regardless of the mutation probabilities used for the k components.

Proof. We start our analysis with the CC (1+1) EA using standard mutation probability
1/l in each component. We know from the proof of Theorem 19 that for each component
we have x = 0n−41111 with probability Θ(1/l3). The probability of having this in at

least 1 of the k independent components is p(l, k) := 1−
(

1 − Θ(1/l3)
)k

. Since we have
k = l4 ≫ l3, we know that p(l, k) converges to 1 exponentially fast as l grows. Then
Θ(l) mutations of exactly 3 bits are needed to reach the global optimum. This implies
E (T ) = Ω(k·l ·l3) = Ω(n·l3) = ω(n·l ·l1/3) as lower bound on the expected optimization
time.

We may use mutation probabilities different from 1/l. Larger mutation probabil-
ities can only increase the probability of reaching 0n−41111. It is easy to see that the
probability for 3-bit mutations is maximal for the mutation probability 3/l. But mu-
tation probabilities Θ(1/l) do not lead to a smaller lower bound on the expected op-
timization time. Mutation probabilities o(1/l) can decrease the probability of entering
any point in P (see proof of Theorem 19 for a definition of P ). But as long as Ω(1/l4/3)
is a lower bound on the mutation probability, the probability of having x = 0n−41111
at some point of time is still bounded below by some positive constant. Now, we take
into account that smaller mutation probabilities increase the expected time spent on the
1i0n−i path. For l = O(1/l4/3) we already have Ω(k · l · l4/3) = Ω(n · l · l1/3) as lower
bound on the expected optimization time.

Using k = l4 and n = k · l the expected optimization time of the (1+1) EA is O(n6/5)
whereas it is Ω(n19/15) for the CC (1+1) EA. Thus, the performance advantage of the
(1+1) EA is a factor of Ω(n1/15). We could get a larger relative performance advantage
if we chose a more complicated example function.

While knowing the asymptotic results of the theory is extremely useful, without
knowing the specific constants involved, we cannot know how large the problem space
must be before we see a noticeable difference in performance. In fact, in this case the
problem need not be particularly large at all. To justify this assertion, we construct ex-
periments that apply both algorithms to the fk,l problem for varying parameter values
of l ∈ {2, . . . , 8}, where k = l4, resulting in 14 experiments (7 per algorithm). There are
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30 independent trials run for each group, where each trial reports the number of func-
tion evaluations needed until the first time the optimum is reached. Figure 1 below
plots the mean results for each algorithm as a function of n = l5.
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Figure 1: Results from experimental comparison of (1+1) EA and CC (1+1) EA for the
fk,l problem, where l ∈ {2, . . . , 8} and n = l5. Points on the graph represent mean
number of evaluations needed to obtain the global max for 30 independent runs.

In all cases of this experiment (n ∈ {32, . . . , 32768}), the performance of the (1+1)
EA is statistically significantly better than the CC (1+1) EA within a 99% level of confi-
dence. These statistical tests were performed by making 7 pair-wise Welch t-test com-
parisons (one for each value of n), then using the Bonferroni adjustment to allow for
valid multiple comparison testing (Hancock and Klockars, 1996).

We now turn our attention to a discussion of how larger relative performance dif-
ferences can be achieved. The idea of gl is that there are two paths leading to the global
optimum. The expected time spent on the paths is very different, the “slower” path sig-
nificantly less likely. Since the path probability depends on the mutation probability,
the CC (1+1) EA is much more likely to use the “slow path” in at least one component.
The relative advantage is not too impressive since, with increasing mutation probabil-
ity, time spent on the slow path decreases. The reason for this is easy to see: we need
3-bit mutations in order to advance on the slow path. We know from Section 3.2 that
the CC (1+1) EA is much faster in finding appropriate b-bit mutations than the (1+1)
EA for all b > 1. If we can replace the slow path by another kind of slow path, we
can increase the relative performance difference. We want a path where the time spent
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on the path is long but still polynomial and where the advance on the path is mainly
caused by single-bit mutations. Generalized long paths (Horn, Goldberg, and Deb,
1994; Rudolph, 1997) have this property. It is known that the (1+1) EA operating on√

n − 1-long paths defined on n bits takes Θ(
√

n · 2√n) steps on the path and that only
mutations of at least

√
n−1 bits can decrease the time on the path significantly (Droste,

Jansen, and Wegener, 1998). Defining such a
√

c − 1-long path on c bits with c = logj n,
where j ∈ N is an arbitrarily large constant, yields a relative performance difference
that can be arbitrarily large, yet polynomial. Since the construction is complicated, the
analysis is tedious, and the results are purely asymptotic in the sense that they are un-
likely to occur for reasonably small values of n, we do not discuss this further. Note,
that the claimed relative performance ratio of Θ(nc) for c ∈ N does not contradict our
reasoning above: with probability close to 1 the relative performance ratio in a single
run is bounded above by O(n3).

4 Coping with inseparability

Though the presence of separability may not be sufficient to guarantee that the CC (1+1)
EA outperforms the more traditional (1+1) EA, it remains to be seen whether or not its
absence may in contrast produce unique challenges for coevolution. Indeed, much em-
pirical research has focused on the question of whether or not the cross-population non-
linearities of a problem require the special attention of a design engineer who chooses
to use coevolution (Bull, 1997; Wiegand, Liles, and De Jong, 2001; Wiegand, Liles, and
De Jong 2002a).

It isn’t hard to imagine why researchers have focused on this issue. Applying a
CCEA typically involves a static partitioning of the problem space by the algorithm’s
designer. This partitioned decomposition is exactly what allows the CC (1+1) EA to
leverage its increased mutation for superior performance when the problem separation
is commensurate with the algorithm’s internal decomposition. When the decomposi-
tion is not related to the problem, or when the problem cannot be separated, coevolution
may suffer as a result of an inappropriate decomposition.

As such, the exact nature and extent of the effects of inseparability on coevolution
is an important research topic. Is it the case that the CC (1+1) EA will perform much
worse than the (1+1) EA when the problem cannot, or is not, decomposed appropriately
across the population boundaries? Alternatively, perhaps the property of inseparability
makes little difference, and provides no real disadvantage to the CC (1+1) EA? Or, is it
possible that the CC (1+1) EA can still gain advantage over the (1+1) EA, in spite of the
presence of strong cross-population nonlinearities? In fact, all three of these can be true
depending on the problem at hand, as we will show in this section.

4.1 Difficulties due to inseparability

It is clearly the case that the property of inseparability may give a performance ad-
vantage to the (1+1) EA over its coevolutionary analog, though the degree of the effect
depends on the function being optimized. This being the case, perhaps the most inter-
esting question might be: how severe can the difference become?

To try to get a clearer perspective, we look more closely at what the CC (1+1) EA
is doing when it traverses the search space. In some sense, it is essentially a kind of
line search, moving only along a particular projection of the space at any given step.
Given this, intuition tells us that a coevolutionary algorithm as naive as our (1+1) mech-
anism may easily get “tricked” by a fitness landscape and become locked away from
the global optimum in a way in which the traditional EA would not.
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This is the case for some inseparable functions. Definition 21 below describes the
very well-known, exactly (1, n)-separable TRAP function. There we can not only justify
our intuition, but also give it a little more clarity.

Definition 21. For n ∈ N, we define TRAP : {0, 1}n → R by
TRAP(x) := n − ONEMAX(x) + (n + 1) ·∏n

i=1 xi for all x = x1 · · ·xn ∈ {0, 1}n.

Theorem 22. Let TRAP : {0, 1}n → R, be decomposed into k ≥ 4 equal sized components of
length l ≥ 2, such that n = kl. The sequential CC (1+1) EA will fail to converge to the global
optimum of TRAP with probability 1 − 2−Ω(n).

Proof. We define the term solved component to mean a component that is the all one
string, 1l, and the term unsolved component to mean a component that contains at least
one 0.

The proof consists of two basic parts. First, we prove that with a probability expo-
nentially approaching 1, there are at least two populations of the sequential CC (1+1)
EA whose individual is an unsolved component. Next we show that, given there are
at least two unsolved components, the algorithm cannot accept mutations leading it to
the global optimum.

We begin by observing that the probability that a given population’s individual
contains the all one string after initialization equals 2−l, so the expected number of such
individuals in k populations equals k/2l. Chernoff bounds yield that the probability
that more than half of the k populations are solved initially is at most

[

e2l−1−1

(2l−1)2l−1

]k/2l

=
1

ek/2l

( e

2l−1

)k/2l·2l−1

=
1

ek/2l

(

2e

2l

)k/2

= 2k/2−kl/2 · ek/2−k/2l

= 2−Ω(kl) = 2−Ω(n).

So the probability that at least half of the k populations are unsolved is 1− 2−Ω(n).
With k ≥ 4 this means at least two unsolved components.

Now, let us suppose that, after initialization, all the populations contain the
all one string except for two of them, one that is the current active population un-
der consideration by the algorithm, population a, and another that has yet to be
considered during the current round, population b. Suppose that the necessary
mutations are performed in x(a) such that the offspring, y(a) is the all one string.
The offspring y(a) can be accepted if and only if TRAP(x(1) · · · y(a) · · ·x(b) · · ·x(k)) ≥
TRAP(x(1) · · ·x(a) · · ·x(b) · · ·x(k)), which cannot be true since x(b) does not contain the
all one string. Therefore the offspring will not be accepted. Since the parent, x(a) was
not the all one string, the same event will be true symmetrically for x(b). Having more
than two unsolved components cannot resolve the problem since an offspring that con-
tains more ones than the parent will have a lower fitness than the parent if at least one
other component is unsolved.

Here the very partitioning mechanism of the CC (1+1) EA that helps gain advan-
tage over the (1+1) EA in the previous section now works against it. In order to solve
the TRAP function, an algorithm must be able to make that final n-bit leap out of the
trap, and this cannot be done in a single step by the CC (1+1) EA. Although exceedingly
unlikely, it can be done for the (1+1) EA. Thus, while the expected waiting time for the
(1+1) EA on TRAP is exponential with respect to the size of the trap, it will eventually
find the unique global optimum, whereas the CC (1+1) EA will almost certainly not
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do so. The difference in their performance, in terms of expected waiting time until the
global optimum is reached, is infinite.

One may be tempted to believe that the coevolutionary algorithm did quite well: it
found the second best point in the search space, and it did so just as quickly as the (1+1)
EA (since the function is essentially ONEMAX when the global optimum is omitted).
However, for other fitness functions the gap between the point found and the global
optimum can easily be quite large. Imagine a set of concatenated TRAP functions, for
instance, such that there are several populations working on each TRAP. The global
optimum still cannot be reached, and the best reachable point may be quite far from
the optimum.

Additionally, one may be tempted to imagine that it was simply the degree of sep-
arability since the TRAP function is exactly (1, n)-separable. However, the same effect
can be produced when the degree of separability matches the size of the individual
components represented in the algorithm. Imagine a concatenation of Traps, each of
length l, but a decomposition of the problem for the CC (1+1) EA that forces the TRAP

functions to be split across the population boundaries. Again, the global optimum can-
not be reached (as long as l is sufficiently large), but the problem is no less separable in
degree than was the CLOBb,k problem discussed in the last section.

Though our proof demonstrates only that a particular CCEA cannot find the global
optimum for certain kinds of problems, it is not difficult to see that the this difficulty
affects a much larger class of such algorithms. For example, modifying our essentially
sequential selection and update mechanism of populations to one that is more parallel
will not resolve the difficulty (Jansen and Wiegand, 2003b). Simply adding a popula-
tion will also not resolve the difficulty since retaining poorly performing components
near the global optimum would imply populations of exponential size. Likewise, for
populations of constant or polynomial sizes, adding crossover will not help since the
populations will not retain components having genetic material that can be produc-
tively recombined. Of course, one could come up with a CCEA tailored towards this
example function, but that is not the point. It should come as no surprise that the
advanced exploratory capability of the cooperative coevolutionary framework has its
price.

4.2 When inseparability is irrelevant

Our intuition is assuaged: the property of separability seems to have definite relevance
to the performance of coevolution for some problems. In the case where we have prob-
lems that are separable along population boundaries, we are comforted by the knowl-
edge that reaching the global optimum is possible; whereas, we have no such guar-
antee when problems are inseparable. Still this discovery is hardly surprising, and it
says nothing about whether or not inseparability is a sufficient enough property to be
considered a general foil to coevolutionary effectiveness. Indeed, as we will show in
this section, it is not.

Consider the well-known LEADINGONES problem, which is identical to LOB1.
This problem is exactly (1, n)-separable, so there exists no way to partition it into
smaller, separable components. The expected waiting time for a (1+1) EA to find the
global optimum can be tightly bound by Θ(n2) (Droste, Jansen, and Wegener, 2002).
But the CC (1+1) EA’s expected optimization time is Θ(n2), too.

Theorem 23. The expected optimization time for the CC (1+1) EA on the function
LEADINGONES is Θ(n2).
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Proof. For the upper bound, we pessimistically assume that the algorithm solves its
components from left to right, one at a time. We know from Droste, Jansen, and We-
gener (2002) that the expected number of active steps needed for a given component
of length l to reach the all string can be bounded above by 2el2. Since a component is
active every k steps, it will require a given component at most 2el2k steps to reach 1l.
Components are solved one at a time, so we can take the sum of the expectations to

find the expected waiting time for the entire process,
∑k

i=1 2el2k = O(n2).
For the lower bound, we begin by defining the term progressive component to mean

the left-most component that is not the all one string. We note that all of the compo-
nents to the right of the progressive component evolve without influencing the function
value. Since the original string is drawn at random, and the mutation events are gener-
ated independently and uniformly at random, the result for each of these components
to the right of the progressive component must contain random strings. Thus we can
treat the process as the successive solutions of the leading ones problems for each com-
ponent. The lower bound for a given component can be obtained from Droste, Jansen,
and Wegene (2002), except that now we must show that no advantage can be obtained
from the partition.

First, we prove the lower bound for the case l > 3. Since the string is random
until the component becomes progressive, a component that becomes progressive has r
leading ones with probability 2−(r+1) for r < l and 2−r for r = l. Thus, with probability
1 − 2−(2/3)l the progressive component starts with less than 2/3 leading ones. From
Droste, Jansen, and Wegener (2002) we know that then the lower bound of the expected
number of active steps is Ω(l − 2

3 l)2) = Ω(l2/9). A step is active every k generations,
there are Ω(kl2/9) such generations. We can slow the algorithm down by assuming
that after reaching 1l in the progressive component, there are no more mutations in the
current round. Since each component becomes all one only once, this slows down the
optimization by less than k2. Now, in each round at most one component can be solved

that yields
∑k

i=1 kl2/9 = n2/9 as lower bound. Altogether this yields n2/9−k2 = Ω(n2)
for l > 3.

For l ≤ 3 it suffices to see that the expected number of leading ones gained in one
round is constant. This implies that there are on average Ω(k) = Ω(n) rounds before
the optimum is reached. In each round there are Ω(n) function evaluations.

Interestingly, it is impossible for a function to be less separable than this
LEADINGONES problem, and yet this fact poses neither a general difficulty for solv-
ing the problem, nor a specific disadvantage to the coevolutionary algorithm.

In fact, it is not hard to envision a general technique capable of demonstrating
run time performance similar to ONEMAX for a variety of inseparable functions by
simply aggregating ONEMAX to an inseparable function. For example, consider the
NEEDLEOMc function below.

Definition 24. For any c > 0, the function NEEDLEOMc : {0, 1}n → R is defined by
NeedleOMc(x) := c · ONEMAX(x) + n ·∏n

i=1 xi for all x = x1 · · ·xn ∈ {0, 1}n.

It is clear that both algorithms behave on this function as they would on ONEMAX,
even with an arbitrarily small positive constant c. With this technique it is easy to see
that there may be a large number of inseparable functions that remain relatively easy
to solve by both the (1+1) EA and the CC (1+1) EA.

Regardless, even though inseparability has a part to play in understanding how
and why coevolutionary algorithms perform the way they do, it is clear there is some-
thing more than this at work here.
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4.3 An exponential gap between CC (1+1) EA and (1+1) EA performance

We have seen that, though inseparability can prove to be a stumbling block to CC (1+1)
EA success in terms of optimization, there are also some inseparable problems that are
no more or less difficult for the CC (1+1) EA than for its more traditional analog. As it
turns out, it is also true that the CC (1+1) EA can preserve its advantage over a (1+1)
EA in spite of the existence of inseparability in the problem.

Here, we want to prove an exponential difference in performance between the CC
(1+1) EA and the (1+1) EA. We do so using a general technique that delivers such results
(Witt, 2003). Assume that you have two randomized search heuristics A and A′ and you
want to demonstrate an exponential difference in performance of the two algorithms
used as function optimizers. Assume that you know two functions g : {0, 1}n → R and
g′ : {0, 1}n → R with the following properties. Algorithm A is clearly faster on g than
on g′, whereas algorithm A′ is clearly faster on g′ than on g. Assume that both, g and
g′, have a unique global optimum. Let xopt be the optimal solution for g and x′

opt be the

optimal solution for g′. Now, define a function f : {0, 1}2n → R with

f(x) =



















g (x1 · · ·xn) + g′ (xn+1 · · ·x2n)
if x1 · · ·xn 6= xopt or

H
(

x′
opt, xn+1 · · ·x2n

)

< ∆

2
(

g
(

xopt

)

+ g′
(

x′
opt

))

− H
(

x′
opt, x

)

otherwise

where x′
opt denotes the bit-wise complement of x′

opt and x = x1 · · ·x2n ∈ {0, 1}2n. Since
algorithm A is significantly faster on g than on g′, we expect it to reach xopt, the global
optimum of g, while still having a Hamming distance of more than ∆ to x′

opt. Then

“the landscape changes”: the algorithm is encouraged to stay on xopt and is lead to x′
opt.

Therefore, it will be easy to find the global optimum of f , which is the concatenation of

xopt and x′
opt. Algorithm A′ is expected to find x′

opt before xopt. Then, the only way to
find the global optimum of f is to flip at least ∆ bits simultaneously. For large ∆ this is
very unlikely. All our considerations implicitly assumed that changes are only made to
the first n bits or to the last n bits. Changes affecting both, the front and the rear part,
may cause unwanted effects. This may make changes to this general setup necessary.

This technique can obviously be applied to separate the CC (1+1) EA and the (1+1)
EA. The two functions used here are LOB2 and LEADINGONES. We know that the CC
(1+1) EA clearly outperforms the (1+1) EA on LOB2. We also know that the advan-
tage is larger on CLOBb,l with larger b, but that is not necessary for this technique.
Therefore, this simpler function is our preference.

Definition 25. For any constant ε ∈ (0, 2/3), any constant δ ∈ (max{ε, 3ε− 1}, 1), and any
n ∈ N with n ≥

⌈

21/ε
⌉

, we define m := ⌈nε⌉ and the function fε,δ by

fε,δ(x) :























nεLOB2 (x1 · · ·xm)

−ONEMAX (x1 · · ·xm)

+nLEADINGONES (xm+1 · · ·xn)

if x1 · · ·xm 6= 1m or

LEADINGONES(xm+1 · · ·xn)

≥ nδ

n3 − ONEMAX (xm+1 · · ·xn) otherwise

for all x = x1 · · ·xn ∈ {0, 1}n.

Theorem 26. For any constant ε with 0 < ε < 2/3, and any constant δ ∈ (max{ε, 3ε−1}, 1),
the CC (1+1) EA operating with the two components x(1) = x1 · · ·xm and x(2) = xm+1 · · ·xn
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on the function fε,δ : {0, 1}n → R has optimization time T with

Prob
(

T = O
(

n1+ε log n
))

= 1 − 2−Ω(nε).

Proof. We consider a run of the CC (1+1) EA on fε,δ with 0 < ε < 2/3 and max{ε, 3ε −
1} < δ < 1. We describe conditions C1, C2, . . . , C5 for a run. If a run satisfies all these
conditions, then it is a run where the global optimum is reached within O

(

n1+ε log n
)

generations. For each condition, we give an upper bound on the probability that it is
violated. Showing that the sum of these upper bounds is 2−Ω(nε) completes the proof.

C1: After random initialization, ONEMAX
(

x(2)
)

≤ 3nδ/4 holds.

C2: Within the first 2en3ε generations, we have that x(1) = 1m holds for the first current
string x(1).

C3: Within the first 2en3ε generations, the leftmost bit with value 0 in x(2) is mutated
at most nδ/12 times. This condition assumes that C1 is not violated.

C4: In up to nδ/12 generations where the leftmost bit with value 0 in x(2) is mutated,
the number of leading ones in x(2) is increased by at most nδ/6. This condition
assumes that C3 is not violated.

C5: Let x(1) = 1m and LEADINGONES
(

x(2)
)

< nδ hold for the current strings of the
CC (1+1) EA. Then the global optimum of fε,δ is reached within 4en1+ε log n gen-
erations.

If C2 holds, we have x(1) = 1m within the first 2en3ε generations. Due to the
definition of fε,δ and the CC (1+1) EA, this will never change again. If C1, C3 and C4

additionally hold, we have x(1) = 1m and LEADINGONES
(

x(2)
)

≤ 11nδ/12 within the
first 4en3ε generations. If C5 holds, within the next 4en1+ε log n generations the global
optimum is reached. We see that T = O

(

n1+ε log n
)

holds in this case. Now we derive
upper bounds on the probability that a condition is violated.

C1: Initially, x(2) is drawn uniformly at random from {0, 1}n−m. Chernoff bounds yield

that with probability 2−Ω(nδ) condition C1 is violated.

C2: As long as x(1) 6= 1m holds, there is always a mutation of at most two specific bits
that increases the number of leading ones by at least two. The probability for such
a mutation when x(1) is active is bounded below by e−1 · (1/m2). When x(1) is
not active, it cannot change. Thus, after at most m/2 such mutations, x(1) = 1m

holds. In 2en3ε generations, x(1) is active en3ε times. Chernoff bounds yield that
the probability not to have at least m/2 such mutations in this time is bounded
above by 2−Ω(nε).

C3: Within the first 2en3ε generations, x(2) is active en3ε times. The probability of mu-
tating a specific bit equals 1/(n−m) < 2/n. It follows by Chernoff bounds that the

number of such mutations is larger than nδ/12 with probability at most 2−Ω(nδ).

C4: We consider up to nδ/12 steps where the number of leading ones in x(2) is increased
via a direct mutation of the left most bit with value zero. We follow the analysis
of the (1+1) EA on LEADINGONES (Droste, Jansen, and Wegener, 2002). In r such
steps, the number of leading ones is increased by r + a where a is the number of
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bits right to the mutated bit with value 0 that happen to have value 1. The key
observation is that all bits that are right of the leftmost bit with value 0 are random
at all times. Thus, E (a) ≤ nδ/24 holds. This implies that C4 is violated with

probability 2−Ω(nδ).

C5: The expected number of generations the CC (1+1) EA needs to optimize
ONEMAX : {0, 1}n−m → N is bounded above by c(n − m) log(n − m) ≤ cn log n
(Rudolph, 1997). Markov’s inequality yields that x(2) = 1n−m is achieved within
2cn logn generations where x(2) is active with probability at least 1/2. Thus, with
probability 2−Ω(nε) this is not the case after 4cn1+ε log n generations.

Theorem 27. For any constant ε with 0 < ε < 2/3, and any constant δ ∈ (max{ε, 3ε−1}, 1),
the (1+1) EA on the function fε,δ : {0, 1}n → R has optimization time T with

Prob
(

T ≥ nn−2nδ
)

= 1 − 2−Ω(nε).

Proof. It is convenient to use the notation x(1) := x1 · · ·xm and x(2) := xm+1 · · ·xn. Af-
ter random initialization we have ONEMAX

(

x(1)
)

≤ 2m/3 with probability 1−2−Ω(nε).

As long as x(1) 6= 1m holds, the number of leading ones in x(2) cannot decrease due to
the definition of fε,δ .

It is easy to see that for LOB2 all bits that are right of the left most block that is not
all 1 are random at all times. Obviously, in nεLOB2 − ONEMAX there is an increased
probability for these bits to have value 0. Thus, after the first O

(

n1+ε log n
)

generations
after random initialization we have at most m/4 leading ones blocks and at least m/8
blocks that are all 0 in x(1) with probability 1 − 2−Ω(nε). This implies that for the next
O
(

n2
)

generations x(1) 6= 1m holds with probability 1 − 2−Ω(nε).
From the results of Droste, Jansen, and Wegener (2002) it follows that with prob-

ability at least 1 − 2−Ω(n) we have x(2) = 1n−m within O
(

n2
)

generations. Then, a
mutation of at least n − m − nδ bits simultaneously is necessary. Such a mutation has

probability at most n−n+nε+nδ

. The probability for such a mutation within nn−2nδ

steps
is bounded above by 2−Ω(nε).

5 Conclusions

While the application of coevolutionary algorithms towards optimization problems
has gained increased popularity, our understanding of how such algorithms work and
when they should be applied has, until recently, made less progress. This paper begins
to bridge this gap by bringing traditional run time analysis tools to bear on a simple
(1+1) form of the general cooperative coevolutionary architecture introduced by Potter
and De Jong (1994). Such work helps demonstrate when and how the CC (1+1) EA
may perform better than a (1+1) EA, as well as some of the reasons of when and how
it may not. We have performed our analysis in the context of the important property
of separability, commonly believed to be especially important for the success or failure
of coevolutionary algorithms in general. The results are the beginnings of a deeper
understanding of how cooperative coevolutionary algorithms work on optimization
problems.

Perhaps the most important issue uncovered by this research is the clear dismissal
of the property of separability as the main deciding factor in coevolutionary perfor-
mance. We have provided analysis that clearly shows that the property of separability
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is neither a sufficient one to imply an advantage to the CC (1+1) EA over the (1+1) EA,
nor is inseparability a sufficient enough property to imply a disadvantage.

With respect to separability, we have shown that for linear functions there is no
advantage to the CC (1+1) EA in spite of full separation of the problem.

With respect to inseparability, we have shown that there exist inseparable prob-
lems that can still easily be solved by the CC (1+1) EA, as well as the (1+1) EA. How-
ever, it should be noted that the inseparability property is not totally irrelevant. One
can only guarantee that a global optimum can be found when independent optimiza-
tion of the components results in global optimization.

The coevolutionary advantage does not arise from the presence of the separability
property, but arises when problems benefit from both the partitioning and the increased
exploratory focus of the genetic operators of the CC (1+1) EA. Problems that may bene-
fit from these two elements working in conjunction with one another may be separable
or inseparable, but the advantage is likely to increase as the need for greater exploratory
power increases. In the case of the CLOBb,k problem, the CC (1+1) EA is advantageous
because a b-bit mutation is far more likely for it than for its EA analog. Increasing
the mutation rate for the (1+1) EA will not help since there will be significantly more
disruption in the total string. For problems with such properties, the partitioning of
coevolution can act as a protection against disruption.

With this in mind, we constructed a function with cross-population nonlinearities
that intentionally separates these two algorithms. There we prove that the CC (1+1) EA
outperforms the (1+1) EA exponentially in time in spite of the presence of inseparable
problem pieces.

The cumulative result of this research is a much clearer picture of how the CC
(1+1) EA works, as well as its relationship to a more traditional evolutionary approach.
Moreover, many of the ideas discussed here clearly reflect more generally on the na-
ture of CCEAs as applied to optimization tasks. For example, now that we know that
separability is not the defining property for problem difficulty for the CC (1+1) EA, it
is easy to see that this fact will be true for more complex CCEAs. Additionally, we pre-
sented a better understanding of when many types of coevolutionary algorithms can
fail to find the global optimum. Finally, we identified problem properties that allow
CCEAs to gain advantage over EAs, which we believe are far more general than the
(1+1) algorithms discussed here.

We have laid the groundwork for future analysis by applying run time analysis
tools to these questions of coevolution. With these tools, we would like to continue
looking at the CCEA further, turning our attention towards examining population-
based approaches. It will also be interesting to consider adaptive problem decomposi-
tions and explore ways in which the separability of a function may be estimated from
sample points taken during the run. In combination, we hope that such efforts will
yield algorithms that are not only useful optimization methods, but are also quite well
understood.
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