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Biasing Coevolutionary Search for Optimal
Multiagent Behaviors
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Abstract—Cooperative coevolutionary algorithms (CEAs) offer
great potential for concurrent multiagent learning domains and
are of special utility to domains involving teams of multiple agents.
Unfortunately, they also exhibit pathologies resulting from their
game-theoretic nature, and these pathologies interfere with finding
solutions that correspond to optimal collaborations of interacting
agents. We address this problem by biasing a cooperative CEA in
such a way that the fitness of an individual is based partly on the re-
sult of interactions with other individuals (as is usual), and partly
on an estimate of the best possible reward for that individual if
partnered with its optimal collaborator. We justify this idea using
existing theoretical models of a relevant subclass of CEAs, demon-
strate how to apply biasing in a way that is robust with respect
to parameterization, and provide some experimental evidence to
validate the biasing approach. We show that it is possible to bias
coevolutionary methods to better search for optimal multiagent
behaviors.

Index Terms—Biased coevolution, coevolution, cooperative co-
evolution, multiagent learning, multipopulation symmetric coevo-
lution, optimal collaboration.

I. INTRODUCTION

COEVOLUTIONARY ALGORITHMs (CEAs) are pop-
ular augmentations of traditional evolutionary algorithms

(EAs). The basic elements of these augmentations lie in the
adaptive nature of fitness evaluation in coevolutionary systems:
individuals are assigned fitness values based on interactions
with other individuals. Of particular interest are CEAs that have
a kind of compositional nature that lend themselves toward
learning behaviors for multiple, interacting agents. The most
obvious CEAs for such problems are so-called cooperative1

CEAs, which are typically formulated such that multiple inter-
acting individuals succeed or fail together as a team.

One would imagine that cooperative CEAs may be effec-
tive for problems with certain structural properties among
interacting components, such as those problems that can be
decomposed appropriately to limit particular types of nonlinear
relationships [2], [3]. The intuition behind this advantage is
that the algorithm searches only projections of the space at any
time (one projection per population), thus reducing the search
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1The term “cooperative” is problematic for reasons we discuss later in this
paper. A better general term might be “compositional” [1].

in a given generation from one exponentially large joint space
to multiple simpler subspaces. Each decomposed subproblem
may be cast as a projection of the (joint) problem space. Unfor-
tunately, a great deal of information is discarded when basing
an individual’s fitness only on a projection of the joint space.
One consequence of this is that a population’s estimate of this
projection is strongly influenced by the particular makeup of
other populations, and this makeup is largely out of the original
population’s control. The result is that it is easy for a poor
sample set to mislead the algorithm about the search space
as a whole. This often leads to a preference for the kind of
individual that partners well with a broad range of individuals
from the other populations, whether or not that individual can
form a globally optimal partnership.

The obvious countermeasure would be to bias the algorithm
to seek optimal collaborations. In this paper, we explore this
option. We justify this idea by using existing theoretical models
of certain cooperative CEAs, show how to apply biasing in a
way that is robust with respect to parameterization, and provide
some experimental evidence to validate the biasing approach.
We show that it is possible to improve coevolutionary search
for optimal multiagent behaviors using a biasing method.

Section II provides a brief background in multiagent learning
and compositional approaches to multipopulation coevolution,
as well as a dynamical systems approach for analyzing these
types of algorithms. Here, we describe precisely the subset of
cooperative coevolutionary algorithms of interest to us, which
we term multipopulation symmetric coevolutionary algorithms
(or MPS-CEAs). Section III then proposes our approach to ex-
plicitly incorporating bias into MPS-CEAs, and provides a lim-
ited theoretical justification for our approach. In Section IV, we
describe a visualization method for observing basins of attrac-
tion in a multidimensional space, which allows us to demon-
strate the efficacy of this biasing. In Section V, we show that
our biasing method is highly sensitive to a key parameter, and
propose a modification of the method to mitigate this sensitivity.
In Section VI, we provide experimental results for the applica-
tion of our biased cooperative CEA using a simple rote learning
method for developing the bias over the run of the algorithm. We
show that biasing enhances both a traditional MPS-CEA algo-
rithm, as well as spatially-embedded MPS-CEAs. We complete
the paper with a discussion of our conclusions and future work.

II. BACKGROUND

A. Concurrent Multiagent Learning

A large portion of multiagent research may be divided neatly
according to whether or not it involves multiple learners [4].

1089-778X/$20.00 © 2006 IEEE
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TABLE I
EXAMPLES OF COORDINATION GAME PAYOFF MATRICES: (a) THE 3 � 3

CLIMB GAME; (b) THE 3 � 3 PENALTY GAME. BOTH AGENTS RECEIVE THE

SAME PAYOFF FOR A GIVEN JOINT ACTION, AS SHOWN IN THE MATRIX.
PAYOFFS MARKED “PENALTY” ARE FILLED WITH SOME NEGATIVE

NUMBER DEPENDING ON THE EXPERIMENT

Some research applies a single learner to improve the per-
formance of an entire team of agents (for example, [5]–[7]).
Other research applies separate learning processes to individual
agents, while still assessing the quality of the agents as a team.
The material in this paper concerns these latter approaches,
which we will term concurrent multiagent learning.

The primary advantage of concurrent multiagent learning is
that it projects the large joint team search space onto separate,
smaller, component search spaces. If the problem can be de-
composed such that individual agent behaviors are relatively
disjoint, then this can result in a dramatic reduction in search
space. A second, related advantage is that breaking the learning
process into smaller chunks permits more flexibility in the use
of computational resources because these chunks may, at least
partly, be learned independently of one another.

Coordination games are standard problem domains for con-
current multiagent learning. A coordination game consists of a
series of stages. At each stage, each agent is asked to choose
an action without knowing which actions the other agents will
choose. After each agent has decided on an action, they all per-
form their actions concurrently. A reward is then given to all
agents, its value depending on their joint action. In some games,
the agents may observe the other agents’ actions upon receiving
the reward.

Claus and Boutilier [8] introduced two simple benchmark co-
ordination games, Climb and Penalty. The domains are difficult
because of the penalties associated with miscoordinated actions
and the presence of suboptimal collaborations that avoid such
penalties. The joint payoff matrices for the two 3 3 coordina-
tion games are presented in Table I. If Agent 1 performs action 1
and Agent 2 performs action 2, we will refer to the joint action
with the form (1,2).

Agents in the Climb domain receive maximum payoff when
they both choose action 1. However, the joint reward matrix has
a second equilibrium: when both agents choose action 2. This
is a suboptimal equilibrium, because the team reward is lower
than at (1,1). The Penalty domain has two optimal equilibria,
at (1,1) and (3,3). However, there are significant penalties asso-
ciated with agents choosing (1,3) and (3,1). Additionally, (2,2)
is a third equilibrium. This point is suboptimal, but there is no
penalty for miscoordination if only one agent chooses action 2.

Claus and Boutilier [8] showed that a concurrent reinforce-
ment learning algorithm is not guaranteed to find the optimal
team behaviors for these games, even in the case when agents
are able to observe other agents’ actions. The authors then sug-
gested that the search could be improved by using more opti-
mistic exploration actions; this direction was further explored

in [9] and [10]. We will use the Climb and Penalty games later
in this paper as two of our multiagent learning testbeds.

B. Cooperative Coevolution

Cooperative coevolutionary systems are often a good fit for
concurrent multiagent learning problems. When agents are
working together as a team to perform some joint task, it is
often very natural to represent individual behaviors separately
and evolve multiple populations of such agents working in col-
laboration with one another. For examples of such cooperative
CEAs, see Husbands and Mill [11] and Potter and De Jong [12].

Here, we assume the use of the architecture defined by Potter
[13]. The cooperative CEA works as follows. Each population
is assigned to search for a component of the solution (e.g., an
agent in a multiagent team), and individuals represent candi-
date solutions for such components. One member from each
population is needed in order to assemble a complete solution
(e.g., the team). Evaluation of an individual from a particular
population is performed by assembling that individual with
collaborating individuals from other populations and testing
the resultant full solution. To combat noise in the evaluation
process due to choice of collaborators, multiple evaluations are
usually performed, each with different collaborator sets. An
individual’s fitness could be the maximum (or the minimum or
the average) over such evaluations, among other approaches.
The effects of different evaluation schemes on performance
are studied in [3] and [14]–[16]. Aside from evaluation, the
populations are evolved independently. Applications of this
method include optimization of inventory control systems [17],
learning constructive neural networks [18], multiagent systems
[19]–[21], and rule learning [22], [23].

An example may serve to clarify this process. Suppose we
are optimizing a three-argument function . Here, ,
and represent possible strategies for three agents, and is a
function that indicates the performance of the team. One might
assign individuals in the first population to represent the ar-
gument, the second to represent , and the third to represent .
Each population is evolved separately, except that when evalu-
ating an individual in some population (e.g., ), collaborating
individuals are chosen from the other populations ( and ) in
order to obtain an objective function value with a complete so-
lution, . This function value is the payoff that the eval-
uated individual (in this case ) receives. An individual’s fitness
is computed from the combination of payoffs from one or more
evaluations with various sets of collaborators.

One simple method is to choose collaborators by using the
most-fit individual from each of those populations as determined
by the previous round of evaluations. Another approach is to
pick collaborators at random from the other populations. Once a
complete solution is formed, it can be evaluated and the resulting
score can be assigned to the individual. We also assume that
learning in the populations is performed concurrently. That is,
all populations advance to the next generation at the same time.

Though historically the term “cooperative” has been applied
to such algorithms, “cooperative coevolution” is a confusing and
ambiguous term, and as noted in [24], it is used inconsistently in
the literature. The term has been variously applied to describe
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the emergent dynamics of systems [25], properties of the un-
derlying payoff of the problem [26], and the compositional ap-
proach of the design engineer [13]. All these cases lack a clear
definition for the term.

For this reason, for the rest of this paper we focus on a spe-
cific, well-defined subclass of cooperative CEAs that we call
MPS-CEA. Such algorithms are symmetric, in a sense similar
to “symmetric games” in game theory. When a particular indi-
vidual is being evaluated as part of a particular collaboration (a
set of components, a team, a solution, etc.), the individual will
receive some payoff. In a symmetric cooperative CEA, if that
same collaboration is used to evaluate one of the other compo-
nent individuals in the set, the same payoff will be awarded. That
is, a given is the same value regardless of whether ,

, or is the payoff recipient.
In a traditional EA, when solutions have a genetic basis for

their expressed behavior, increasing the explorative powers of
the genetic operators in order to expand the search of some part
of the space comes at the cost of increased destruction of the ex-
isting learned genetic material. In the MPS-CEAs, the decom-
position of the solution in a sense protects some components of
the solution while the search is being performed on a given com-
ponent, thus allowing the operator to focus its search on each
component separately [27]. This kind of a priori partitioning
may have severe consequences if the true problem decomposi-
tion is poorly matched with the representational decomposition
[3], [28], [29]. However, a well-matched decomposition may
still perform admirably even with significant nonlinear inter-
action among components [2]. Consequently, MPS-CEAs may
well benefit multiagent learning even when dependencies exist
among agents [2], [3].

C. Modeling Multipopulation Symmetric Coevolution

An appealing abstract mathematical model for multipopula-
tion symmetric coevolution comes from the biology literature:
evolutionary game theory (EGT) [30], [31]. EGT provides a for-
malism based on traditional game theory and dynamical systems
techniques to analyze the limiting behaviors of interacting pop-
ulations under long-term evolution. EGT has been previously
applied to the analysis of single population competitive coevolu-
tion [32]–[34] and multipopulation symmetric CEAs [26], [35].
To a certain degree, the EGT model bears some similarity to
Markov models for coevolutionary systems [15], [36]–[38].

In this paper, we consider only two-population models. In
such models, a common way of expressing the rewards from in-
dividual interactions is through a pair of payoff matrices. Since
we are concentrating solely on symmetric CEAs, we may as-
sume that when individuals from the first population interact
with individuals from the second, one payoff matrix is used,
while individuals from the second population receive rewards
defined by the transpose of this matrix . In our theoretical
exploration of EGT in this paper, we will use an infinite popula-
tion: thus a population can be thought of not as a set of individ-
uals, but rather as a finite-length vector of proportions, where
each element in the vector is the proportion of a given individual
configuration (popularly known as a genotype or, as we will term
it, a strategy) in the population. As the proportions in a valid

vector must sum to one, all legal vectors make up what is com-
monly known as the unit simplex, denoted , where here is
the number of distinct genotypes possible, ,

. In a two-population model, the domain space
of the system is a Cartesian product of two such simplexes,

.
Formally we can model the effects of evaluation and propor-

tional selection over time using a pair of difference equations,
one for each population. The proportion vectors for the two pop-
ulations are and respectively. Neglecting the breeding issue
and concentrating only on the effects of selection, we can define
the dynamical system of a two-population symmetric CEA as

(1)

(2)

(3)

(4)

where and represent the new population distributions for
the next generation. Here, it is assumed that an individual’s fit-
ness is the mean payoff over pairwise collaborations with every
member of the cooperating population. We call this complete
mixing. The equations above describe a two-step process. First,
the vectors and are derived; these represent the fitness as-
sessments in the two population. Then, selection is performed
by computing the proportion of the fitness of a specific indi-
vidual over the average fitness of the entire population.

Using such a model, one may begin to answer questions about
where long-term system trajectories will go. In dynamical sys-
tems parlance, this translates to questions about the existence of
fixed points in the system, the stability of those points, and the
basins of attraction that map to them. A fair amount is known
formally about the fixed points and their stability [26]. For ex-
ample, in the absence of variation, all basis vector points are
fixed points, though most are unstable. Pure Nash equilibria are
stable, attracting fixed points in the system. Since a Nash equi-
librium does not necessarily imply global optimality, there may
exist stable fixed points at basis vectors associated with subop-
timal payoff values. This means that the number of stable at-
tracting points is linearly bounded by the number of strategies
available to one of the populations. The semantic interpretation
of these facts becomes clearer in the context of performance
questions about the algorithm when something is known about
the basins of attraction of relevant fixed points. Unfortunately,
such knowledge is difficult to come by analytically, and most re-
search on the properties of the basins of attraction has been em-
pirical in nature. The visualization of trajectories in our formal
model (Section IV) falls in this empirical vein.

D. The Relative Overgeneralization Pathology

Coevolution can exhibit a number of pathologies such as loss
of gradient [39] and focusing [40]. The focus of this paper is on
another prominent pathology that is called relative overgener-
alization [24]. In this pathology, an MPS-CEA can prefer not
optimal individuals but rather “jack-of-all-trades” individuals
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that dovetail nicely with most of the current individuals from
the other population. While relative overgeneralization suggests
that MPS-CEAs might inherently favor robust solutions, it also
means that MPS-CEAs are not necessarily optimizers in the
sense that one might intuitively expect them to be. This is grim
news for practitioners wanting to coevolve “optimal” (or per-
haps, even “good”) cooperative strategies using a CEA—what
might be referred to as the optimal collaborations.

The dynamics of relative overgeneralization may be de-
scribed in this way. When applying coevolution to coordination
problems, the goal of practitioners is usually to find the optimal
joint strategy, that is, the set of strategies, one for each agent,
that yields the highest payoff. This point is a stable attracting
fixed point of the coevolutionary system, as well as a Nash
equilibrium. However, the search space may contain additional
Nash equilibria with possibly lower payoff. For example, the
coordination game in Table I(b) has two Nash equilibria: the
optimal (1,1) point with a payoff of 11, and the suboptimal (2,2)
point with a lower payoff of 7. Unfortunately, it is possible that
most, if not all, learning trajectories may be pulled toward the
suboptimal points because relative overgeneralization produces
large attractive “bowls” around the suboptima.

Here, we should be clear: this pathology is not the same as the
typical local convergence problems that plague many heuristic
methods, nor is it due to stochastic sampling errors. A genetic
algorithm, under the same theoretical conditions including in-
finite populations, will be attracted to parts of the space asso-
ciated with a unique maximum. The relative overgeneralization
pathology says that, even in the very idyllic conditions of infinite
populations and no genetic operations of any kind, MPS-CEAs
are still not necessarily attracted to the optimum.

E. Memory Mechanisms

Attempts to augment CEAs to address their many challenges
include a wide range of methods, often employing certain types
of memory mechanisms. In competitive coevolution, explicit
memory methods have been used to retain outstanding oppo-
nents [41], to keep track of currently known Nash equilibria
[42], and to maintain as many informatively distinguishing test
cases as possible [43]. Additionally, similar kinds of explicit
memory methods have been recently applied to cooperative co-
evolution in an attempt to address the relative overgeneralization
pathology via Pareto dominance [44]. Our biasing technique,
when applied to “realistic” applications as discussed later, also
uses a memory mechanism.

In addition to these direct approaches, memory can be
implicitly added to an evolutionary system by embedding
the populations into a spatial geometry. Researchers in the
field of evolutionary computation have studied these models
in some detail [45]–[47]; however, until recently, analysis of
coevolutionary spatial models has focused primarily on general
CEA performance measures [48]. Nevertheless, applications
of spatially distributed coevolutionary systems have proven
effective [49]–[51], sometimes demonstrating clear advantages
over nonspatial CEAs [52]. Still, the underlying reasons for
these advantages have only begun to be explored [53], [54] and
though there is no reason to believe they specifically address
relative overgeneralization, there is evidence that they may help

maintain adaptive gradients for certain kinds of problems. Since
memory is an important element in our approach, though, we
will experiment with such spatial models later in this paper in
order to provide a contrast between these explicit and implicit
memory mechanisms.

III. BIASING TOWARD OPTIMAL COLLABORATION

How might the MPS-CEA be modified such that it is more
suitable for optimization tasks? Our approach to solving the rel-
ative overgeneralization issue is to bias the search by computing
an individual’s fitness based on two components: its immediate
reward while interacting with individuals in the population, and
a heuristic estimate for the reward it would have received had
it interacted with its optimal collaborators. The first part of this
reward will be called the underlying objective function, and the
second will be called the optimal collaborator estimate. We will
use to denote the degree of emphasis the fitness places on the
optimal collaborator estimate.

We note that this notion of bias toward maximum possible
reward has also been used in literature in subtly different ways
than we use it here. Maximum reward has been used in multi-
agent reinforcement learning by [8]–[10]. To some extent, the
“Hall of Fame” method introduced by [41] for competitive co-
evolution is also related to biased coevolution; however, that
technique samples randomly in the Hall of Fame to increase
robustness, while we tend to deterministically select the ideal
partners.

Although several experiments in this paper use an exact com-
putation for the optimal collaborator estimate, we refer to a
heuristic estimate because in practice it is highly unlikely that
the algorithm will be able to easily compute the actual ideal col-
laborators. We envision a variety of approaches to computing a
heuristic estimate. The estimate might be based on partnering
with the most successful collaborators known so far in the pop-
ulation; or with collaborators chosen (or constructed) based on
the success they have had with individuals that are structurally
“similar” to the test individual; or with collaborators chosen
based on past history with the individual’s ancestors; and so
forth. We reserve comparison of such approaches to future work.
Here, we will concentrate on the foundations of the approach
itself.

Our first, and perhaps the most obvious, approach to biasing is
a modified fitness assessment method that is simply a weighted
sum of the result of the collaborations and the result of the es-
timated maximum projection. Equation (5) describes this idea
mathematically. Here, the fitness of argument is being as-
sessed by combining the result of the underlying objective func-
tion, , with the optimal collaborator estimate,

(5)

At one extreme, when , the algorithm will trust only
the estimate, and the states of the other populations are entirely
irrelevant. It is no longer a coevolutionary system at all; there
are rather EAs searching the -projected component spaces
independently in parallel. At the other extreme, when , the
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algorithm trusts only the underlying objective function. This is
the traditional MPS-CEA.

Using this definition of , we may now modify the dynam-
ical system model; however, the specifics of the modification
depend on how evaluation with “typical” collaborators is per-
formed. One simple approach is to use as “typical collaboration”
the evaluation model applied previously. Recall, we stated that if
an individual’s fitness is based on its immediate interaction with
individuals from the other population, then and

, as described in (1) and (2). Now, let us consider a func-
tion that returns a column vector corresponding to
the maximum value of each row in matrix . If an individual’s
fitness is based on its maximum possible performance in con-
junction with any individual from the other population, then we
may modify (1) and (2) to be
and .

In this modified system, the tendency to optimize perfor-
mance is clear when and there is a unique global
optimum. At each iteration of the model, the fitness of each
component will be its best possible fitness. If there is a unique
global maximum, its components will have the highest fitness
in each population, and so the proportion of the corresponding
components will increase in the next step. When there are
multiple global maxima, setting is not necessarily a good
choice because it provides no incentive for the joint populations
as a whole to converge to a single solution. Furthermore, setting

may place too much faith on an inaccurate heuristic esti-
mate for the optimal collaborators. When is set appropriately,
however, biasing can have a considerable (positive) effect, as
we will demonstrate next.

A crucial issue remains: what are the effects of choice of ?
As it turns out, naive approaches to defining can result in high
sensitivity to the exact value of . This is a serious problem if (as
would usually be the case) the experimenter does not know the
best value of beforehand, or chooses to adjust it dynamically
during the run. In Section V, we will construct a class of problem
domains intended to demonstrate this sensitivity, and propose an
alternative biasing mechanism that does not have this sensitivity
problem.

IV. VISUAL DEMONSTRATION OF BIASING BENEFITS

In [55], we developed a novel approach to visualizing the
degree to which collaborative techniques will tend to converge
to various equilibria. We now use this technique to argue for
the benefit of biasing. We do so by augmenting a common
MPS-CEA fitness-assessment method (the maximum return
over collaborations), and compare this augmentation against
this fitness-assessment method alone.

A. Maximum of Collaborations

The maximum of collaborations method is a common way
to perform fitness assessment in an MPS-CEA. The idea is to
evaluate an individual not with one collaborator, but with some

collaborators, and return the maximum reward obtained. In
some sense, this method might be seen as a kind of bias toward
collaboration with more optimal partners. But as we will see,
it alone may not be as effective as when augmented with the

proposed biasing method (or indeed as effective as the proposed
biasing method alone).

The evolutionary game theory model used here assumes that
an individual’s fitness is the average of its rewards obtained
when involved in all possible collaborations with individuals
from the other populations. We may modify this definition of
fitness to reflect the maximum of collaborations method as
follows.

Theorem 1: Let the payoff for individual when teamed with
individual be , and be the probability distribu-
tion for the individuals in the population of collaborators for

(here, is the number of distinct genotypes in the popula-
tion of collaborators). If the values are sorted in increasing
order , the expected maximum payoff
of over pairwise combinations with random collaborators

chosen with replacement from the other population is
.

Proof: We appeal to order statistics. The expected max-
imum payoff is a linear combination of the actual payoff
times the probability that it is the maximum of pairwise com-
binations with random collaborators. As the values are
sorted, then the probability that a collaborator is chosen with
payoff is simply . Likewise, the probability that
a collaborator is chosen with payoff is . Thus,
the probability that all collaborators have payoff is

and the probability that all collaborators have
payoff is .

Now, the probability that is the maximum of collabo-
rators is the probability that the collaborators are chosen only
from the individuals minus the probability that they are
chosen from that set excluding , that is, . This
is . Thus, the expected maximum
payoff is .

Unfortunately, there are two reasons why this method alone is
insufficient to correct the relative overgeneralization pathology.
First, in order to increase the (supposed) bias, one must increase
the number of collaborators chosen, which will have severe
computational consequences (particularly when the number of
populations is large). Second, though this type of collaboration
method certainly biases the current search sample, there is
no retained memory of particularly good collaborations that
were identified previously. The chief difficulty remains: the
algorithm searches only a projection of the problem at a time
and that projection is always changing—we are merely biasing
how we look at that projection.

B. Visualizing the Basins of Attraction

We use a visualization method to show that selecting the
maximum of collaborators will not always properly bias the
system toward optimal collaboration, and that augmenting with
explicit biasing helps considerably. To do so, we employ the
EGT model with expected maximum fitness as described in
Sections II and III, using fitness proportionate selection and no
variation operators. We iterate the model until the proportion of
one of the genotypes in each population exceeds a threshold of
0.99995, or until 50 000 generations. Given the initial configura-
tion, EGT models the coevolutionary search as a deterministic
process. That is, for each initial point in the search space, we
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Fig. 1. Basins of attraction in the Climb problem when using (a) traditional and (b) biased coevolution at � = 0:5, with 1, 3, 5, and 7 collaborators per population.
White and black mark the basins of attraction for the (1,1) and (2,2) equilibria.

can approximate the equilibrium to which it converges. As [24]
shows, the populations are expected to converge to pure Nash
equilibria in the payoff matrix (elements that are maximal on
their row and column).

The visualization approach we will take is detailed in [55].
In summary, we will present a two-dimensional (2-D) graph of
white, gray, and black points, representing convergence to the
various Nash equillibria of the Climb and Penalty games. In
the Climb game, the white points indicate convergence to the
optimal equilibrium, and the black points likewise indicate the
suboptimal equilibrium (gray points indicate those few places
where convergence did not occur within 50 000 iterations of the
model). In the Penalty game, the white and gray points corre-
spond to the two optimal equilibria, and the black points indi-
cate the suboptimal equilibria. In both cases, the crucial desired
feature is a decrease in black points.

Each axis of the 2-D graph is the simplex of one or the other
population. We have employed a special ordering of this simplex
in order to cluster the points around the relevant Nash equilibria
to make the graph more clear. Complete details on this ordering
may be found in [55]. In summary, the simplex is divided into
three areas: the initial populations containing more 1s, more 2s,
and more 3s, respectively. Each of these areas is then allocated
a segment in the projection: the first 1/3 contains results for ini-
tial populations with more 1s, while the last 1/3 of the projection
contains results for initial populations with more 3s. Then, each
area is divided in two such that, when projected, the degenerated
populations containing a single genotype appear in the middle
of the segment. For example: the top 1/3 area in the 2-D visu-
alization refers to initial first populations with a majority of 1s,
while the right-most 1/3 area refers to initial second populations
with a majority of 3s.

C. Visualization of Maximum of Collaborations

Fig. 1(a) shows the basins of attraction for the Climb coor-
dination game when using different numbers of collaborators in

each population for the traditional MPS-CEA. The images show
that the “deceptiveness” of the problem domain decreases as the
number of collaborators is increased. When using a single col-
laborator, it appears that the coevolutionary search will find the
global optimum if at least one of the populations starts with a
large number of 1s. As the number of collaborators is increased,
we observe that the basin of attraction for the suboptimal equi-
librium reduces to areas where at least one of the initial pop-
ulations has a very large proportion of 2s or 3s: as more col-
laborators are used, the proportion required to converge to the
suboptimum increases.

Fig. 2(a) presents the basins of attraction for the Penalty
game. We observe that the two global optima cover most of the
space even when a single collaborator is used; the suboptimal
equilibria covers mainly areas where at least one population
started with a high percentage of 2s, and the other population
has 1s and 3s equally distributed—this increases the percentage
of miscoordinations. As the number of collaborators is in-
creased, the basin of attraction for the (2,2) point reduces to
areas where both populations start with almost all 2s.

D. Visualization of Maximum of Collaborations Augmented
with a Biased MPS-CEA

Using collaborations alone does help reduce penalties due
to miscoordination and helps the system find more optimal equi-
libria. However, augmenting this with a more explicit biasing
can have a considerable (positive) effect on the resulting basins
of attraction. Indeed, the augmented biased MPS-CEA using a
very small is superior to a traditional MPS-CEA using larger
values for .

Our augmented biased MPS-CEA works as follows. The fit-
ness will be based partly on the maximum of collaborations
with randomly chosen partners (the underlying objective func-
tion), and partly on the reward obtained when partnering with
the optimal collaborator. We set to 0.5—although we assume
the optimal collaborator is known for any individual, setting
to 1.0 would cause the biased MPS-CEA to converge to mixed
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Fig. 2. Basins of attraction in the Penalty problem when using (a) traditional and (b) biased coevolution with � = 0:5, with 1, 3, 5, and 7 collaborators per
population. White, black, and gray mark basins of attraction for the (1,1), (2,2), and (3,3) equilibria.

equilibria in the Penalty domain due to the presence of two equal
global optima.

Figs. 1(b) and 2(b) show the basins of attraction for the equi-
libria for the biased algorithm. The figures strongly suggest that
this augmentation of the best-of- approach further reduces the
basins of attraction for suboptimal equilibria, and when biasing,
increasing the number of collaborators helps even further. In
fact, in the Penalty domain, the basins of attraction for the two
globally optimal equilibria cover the entire space, even with a
single collaborator.

V. ANALYSIS OF SENSITIVITY TO THE BIASING RATE

As we will show, the current formulation of the explicit bi-
asing method is very sensitive to . This is important because
it is not immediately apparent what value of the experimenter
should use. Large amounts of bias may be unwise if optimal-col-
laborator estimates are poor. But depending on problem prop-
erties, small amounts of bias may have almost no effect. Fur-
thermore, certain system settings may decrease an algorithm’s
sensitivity to the degree of bias, or exacerbate it. A smooth, rel-
atively insensitive biasing procedure is necessary for the suc-
cess of biased coevolution, as it mitigates radical, unexpected
changes in the algorithm properties due to changes in choice of
.

To examine this sensitivity to , we make two relatively
straightforward and obvious simplifications. In Section VI, we
will then relax both simplifications to account for more realistic
problems and algorithms. First, we consider only a static value
for throughout a run and focus our attention on how different
static values affect final runtime performance. Though a more
realistic algorithm (such as in Section VI) would likely adjust
the degree of bias dynamically throughout the run, it is unclear
how best to do this. Second, we take a big step and assume that
the biasing information (the optimal collaborator for each indi-
vidual) is known a priori. In other words, we assume that the
function is known beforehand. This simplification is made
in order to reduce the variables involved in the experiment, and

it is reasonable because important sensitivity issues remain and
require to consideration, even with this simplification.

The results of these experiments will lead us to propose an
alternative approach to applying the bias. As we shall see, this
alternative significantly reduces the sensitivity of the algorithm
to the effects of changing the degree of bias.

A. Problem and Algorithm Properties

We begin by constructing the maximum of two quadratics
(MTQs) class of problem domains, which can offer a range from
simple to very difficult instances. MTQ is a class of 2-D func-
tions loosely defined as , where and are two
quadratic polynomials. Such a class may of course be used for
a variety of optimization problems in both traditional EAs and
CEAs. If we view the axis as representing strategies for one
agent (and thus assign a population to coevolve it), and the axis
as representing the strategies for a second agent (and similarly
assign it to another population), the MTQ class may be seen as
defining a game payoff for an abstract multiagent problem.

The reason we construct the MTQ class is that these problems
can generate payoff matrices that resolve or exacerbate the rela-
tive overgeneralization pathology of MPS-CEA by adjusting the
relative contributions of joint rewards implicitly [24]. Another
advantage of this particular problem class is that the maximum
projection can be determined easily from the derivatives of the
two underlying quadratic functions.

The MTQ class is defined as

(6)

where and take values ranging between 0 and 1. Fig. 3 illus-
trates some example MTQ problem instances. Different settings
for , , , , , , , and affect the difficulty of
the problem domain in one of the following aspects.
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Fig. 3. Example MTQ problems, illustrating (S = 1:6, S = 0:5) and (S = 0:5, S = 0:5).

a) Peak height: and affect the heights of the two
peaks. Higher peaks may increase the chances that the al-
gorithm converges there.

b) Peak coverage: and affect the area that the two
peaks cover: a higher value for one of them results in a
wider coverage of the specific peak. This makes it more
probable that the coevolutionary search algorithm will
converge to this peak, even though it may be suboptimal.

c) Peak relatedness: The values , , , and affect
the locations of the centers of the two quadratics, which in
turn affect the relatedness of the two peaks: similar values
of the or coordinates for the two centers imply higher
overlaps of the projections along one or both axes.

Aside from the impact of the properties of the problem do-
main, our sensitivity study targets three algorithmic settings.

d) Biasing rate: We are interested in how performance de-
grades as the biasing rate changes. We set to various
rates in the range [0,1].

e) Population size: The population size affects how much the
coevolutionary algorithm samples the search space. It is
easy to show that coevolution using a bias rate of 1.0,
combined with infinite populations and perfect knowl-
edge of maximal projections, will converge to the unique
optimum with probability 1. We expect similar results for
large populations as well.

f) Collaboration scheme: The MPS-CEA algorithm tries to
simplify the search process by decomposing the candidate
solutions into components and coevolving them in sepa-
rate populations. The only information such a population
can obtain about the overall progress of the search process
is through collaborators—samples that are usually repre-
sentative of the status of the other populations. For some
spaces, an increased number of collaborators may better
capture the intricacies of the search space [14], [16].

Though the MTQ class is capable of generating challenging
problems (with respect to the relative overgeneralization
pathology), it lacks some characteristics that may have im-
portant effects on the performance of algorithms under more
realistic conditions. For example, though there is some element

of nonlinearity present in the problem, this effect is produced
by our somewhat artificial maximization of two, otherwise
linearly separable quadratics. It is unclear the degree to which
more realistic problems with truly nonlinear relationships be-
tween represented components will have similar characteristics.
However, the problem class does allow us very explicit control
over a wide range of salient properties for our study (discussed
below), and it does demonstrate a kind of coevolutionary de-
ception (when broad suboptimal peaks are more attractive than
narrow optima) [24].

B. Sensitivity Results

All experiments here used the MTQ class of problems. The
coevolutionary search process used two populations, one for
each variable. Each such population used a real-valued represen-
tation, with individuals constrained to values between 0 and 1
inclusive. Nonadaptive Gaussian mutation (mean 0 and standard
deviation 0.05) was the only variational operator. Each popula-
tion used tournament selection of size 2, and the best individual
survived automatically to the next generation. The search lasted
for 50 generations, after which the best individuals in each pop-
ulation were at, or very near, one of the two peaks. Each point
in Figs. 4–7 was computed over 250 independent runs. All ex-
periments were performed with the ECJ system [56].

Unless stated otherwise, each population consisted of 32 in-
dividuals. The default collaboration scheme used two collabo-
rators from each population: the best individual in the previous
generation was always selected, and the other individual was
chosen at random.2 Our biasing method combines the a priori
fitness with the better of the results obtained when the individual
was teamed with each of the two collaborators. The default
values of the parameters for the first (suboptimal) peak were

, , , and . The second
(optimal) peak was characterized by , ,

2To reduce noise in the evaluation process, the experiments in this section
employed the same random collaborator for all individuals in the population at
that generation. We later discovered that using different random collaborators
for different individuals results in a slightly better performance due to better
sampling of the search space—but sensitivity to � was unaltered.
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Fig. 4. Convergence ratios for peak height (top), peak coverage (center), and peak relatedness (bottom). x axis shows biasing rate �, and y axis shows ratio of the
250 trials that converged to, or very near to, the global optimum.

, and . With these settings, the two peaks
were nearly at opposite corners of the domain space.

1) Biasing and Domain Features: The first set of experi-
ments investigated the relationship between the biasing rate and
the three problem domain features described previously: the rel-
ative heights, coverages, and locations of the peaks. There were
11 experimental groups for each property, one for each value of

in increments of 0.1. Fig. 4 shows the mean final re-
sults of these 33 groups.

a) Peak Height: We kept constant at 50, and set
to 75, 150, and 300. The results indicated that less than 10%
of runs converged optimally when the rate of biasing was low,
while the ratio increased to greater than 90% when using high
biasing rates. Unfortunately, there was no smooth transition be-
tween these two extremes: rather, small modifications to the bi-
asing rate could change the rate of convergence to the optimum
by as much as 70%–80%. Moreover, the relative difference in
peak height directly affected where these sudden jumps in per-
formance appeared. This suggests that the algorithm may not
only be quite sensitive to with respect to changes in relative
peak height, but also suggests that it may be difficult to predict
where the sudden transitions occur.

b) Peak Coverage: was set to 1/128, 1/64, 1/32, 1/16,
1/8, and 1/4, while was constantly 1.6. Here, the location
of the transition was more consistent among the various values,
but the transitions themselves were still abrupt. It also appears
that the relative peak coverages caused more variation in results
when the bias rate was small, while the curves at the other ex-
treme of the graph appeared close together. The results indi-
cated that certain settings of peak coverage will affect the algo-
rithm’s sensitivity to the parameter: the wider the peak, the
more gradual the transition when varying the bias rate.

c) Peak Relatedness: The parameter was set to 1/4, 3/8,
1/2, 5/8, and 3/4. These settings incrementally transitioned the
relative peak positions from diagonally opposite locations to
ones aligned along one axis. Similar to peak height, the peak
relatedness had a significant effect on the ratio of runs that con-
verged to the global optimum: the more related the peaks, the
less biasing was required to assure good performance. However,
the curves had an abrupt transition between lower and higher
rates of convergence to the optimum. Moreover, the location of
this transition depended on the actual degree of peak related-
ness, which suggests that the algorithm may be highly sensitive
to with respect to this parameter.
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Fig. 5. Convergence ratios for population size (top) and collaboration scheme (bottom). x axis shows biasing rate �, and y axis shows ratio of the 250 trials that
converged to, or very near to, the global optimum.

2) Biasing and Algorithm Features: A second set of experi-
ments investigated the relationship between the biasing rate and
the population size and collaboration scheme. Again, there were
11 groups for each of these two parameters corresponding to
each of the settings. The results are presented in Fig. 5.

a) Population Size: We set the size of each of the two pop-
ulations to 8, 16, 32, 64, 128, 256, and 512. As expected, ex-
tremely small populations were less likely to reach the optimum,
even with high biasing rates. We observed the same abrupt shift
in performance as we saw in the previous experiments. The
results suggested that increasing the population size does not
necessarily alleviate algorithm sensitivity to .

b) Collaboration Scheme: The default setting in all pre-
vious experiments used two collaborators to evaluate the fit-
ness of each individual: the best performing individual from the
other population in the previous generation, and also a random
individual. To test sensitivity to this collaboration scheme, we
varied the number of random individuals from 0 to 4; the best
individual from each population in the previous generation was
always used. Varying the number of collaborators presents a
tradeoff between computational complexity and the efficiency
of the algorithm [14]: more collaborators induce an increased
computational complexity, but the performance of the search
might also be significantly improved. The bottom graph in Fig. 5
shows that the collaboration scheme had some influence over the
performance of the algorithm at low biasing rates, but it had no
effect when higher biasing rates were used. Again, the abrupt
change in performance indicated that the algorithm could be
highly sensitive to the parameter, regardless of the collabo-
ration methodology.

The result of nearly all of these experiments is that the biased
MPS-CEA we have described so far seems to be very sensitive
to , and we cannot alleviate this by adjusting the algorithmic
parameters. It would appear that finding a suitable value for this

parameter in practice may be difficult as it is applied currently.
Fortunately, this does not need to be the case.

C. An Alternative Stochastic Biasing Mechanism

To uncover a possible simple alternative that does not share
this problem, we should recall that for larger differences in peak
heights, a wider range of biasing rates resulted in a high ratio of
convergence; however, when one peak was only slightly higher
than the other, the range of high convergence ratios was much
smaller. The transition was abrupt, but the location of the tran-
sition shifted depending on the peak height differences.

Our hypothesis is that this extreme sensitivity of the algorithm
to the biasing method with respect to the relative peak heights is
caused by the linear combination of the two fitness components:
the fitness when teamed with collaborators, and the fitness when
in combination with the optimal collaborator. The higher the
optimal peak, the lower the bias rate it needs to dominate the
other term. However, if one peak is slightly higher than the other,
the algorithm requires more biasing to locate the optimum.

To counter this, we used a nonparametric comparison method
which considers the relative order of two components rather
than their exact values. The justification for this technique is
similar to that of nonparametric selection methods such as tour-
nament selection [57], rank selection [58], and truncation se-
lection [59]. In our technique, each individual is assigned two
fitnesses: the underlying objective one when combined with the
collaborators from other populations, and another one indicating
the performance of the individual when in combination with
its optimal collaborator. When comparing two individuals, with
probability we compare based on the first “fitness”; else we
compare based on the second.

We performed the same sensitivity analysis for the new algo-
rithm. The results are presented in Figs. 6 and 7. In all cases,
unlike the original, the new algorithm does not exhibit sudden
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Fig. 6. Convergence ratios for probabilistic biasing when varying peak height (top), peak coverage (center), and peak relatedness (bottom). x axis shows biasing
rate �, and y axis shows ratio of the 250 trials that converged to, or very near to, the global optimum.

jumps in performance. This suggests that it is an improvement
resulting in significantly less sensitivity to the settings we have
investigated.

Drawing from research in multiobjective optimization [60],
[61], we experimented with some additional ways to counter
the effects of linear combination. One alternative normalizes
the two components before adding them; but our experiments
using this mechanism still revealed abrupt transitions in perfor-
mance. Another approach is to compare pairs of components
based on Pareto dominance: one pair is better than another if
both of its components are equivalent to or better than the cor-
responding components in the other pair, and at least one of its
components is better than its corresponding component in the
other pair. Our attempts to use Pareto dominance were again not
successful at removing the abrupt transitions in performance as

was changed.

VI. COMPARING REALISTIC IMPLEMENTATIONS OF

TRADITIONAL AND BIASED MPS-CEAS

A. Method of Study

While the previous theoretical discussion, as well as the sen-
sitivity analysis just discussed, helps justify our intuition for bi-
asing the fitness evaluation, neither is immediately applicable

to real problems. In a more realistic setting, simplifying model
assumptions such as infinite populations, lack of variational op-
erators, complete mixing, and a priori knowledge of the max-
imum payoff are not possible.

A previous simplifying assumption (a priori known biasing
information) allowed us to keep the biasing rate constant during
the coevolutionary search. To convert theory into practice, ehe
empirical experiments that will be presented in Section VI em-
ployed a rote learning algorithm for learning the biasing infor-
mation. Specifically, if an individual selects action , we as-
sume its optimal collaborator picks that action which so far
has shown the highest performance when paired with . As evo-
lution progresses, the action chosen by the optimal collabo-
rator changes to reflect the better pairs that have been
evaluated. The main difference between the two representations
in Sections VI-C and VI-D is primarily in how an individual
chooses its actions.

We employed the stochastic biasing mechanism described in
Section V-C. We decided on a simple proof-of-concept rule for
updating the biasing rate. The algorithm started with ,
decreasing linearly until reaching at 75% of the total
number of generations, at which point it stayed at 0 until the
end of the run. While our dynamic adjustment of was ad hoc, it
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Fig. 7. Convergence ratios for probabilistic biasing when varying population size (top) and collaboration scheme (bottom). x axis shows biasing rate �, and y axis
shows ratio of the 250 trials that converged to, or very near to, the global optimum.

was a sufficient method to demonstrate our point in this context.
Indeed, we will show that the biased CEAs outperformed their
unbiased counterparts, even with this ad hoc setting.

We performed several experiments to compare traditional co-
evolution with biased coevolution in this context. We tested on
the Climb and the Penalty coordination games introduced in
Section II-A, and on a variation of MTQ which we call the Two
Peaks domain, with a joint reward function of the form

with and taking values between 0 and 1. Finally, we tested
the methods in a cooperative learning domain with increased
nonlinear interactions: the joint reward function was based on
the 2-D Rosenbrock function

and taking values between 2.048 to 2.048. For simplicity,
we discretized each axis into 16, 32, 64, and 128 segments for
experiments with both the Two Peaks and the Rosenbrock func-
tions. Increased discretization resulted in larger search spaces,
but not necessarily more difficult ones—when searching for
pure strategies for the Rosenbrock domain (Table V), the rate
of finding the global optima for all coevolutionary methods for
32 intervals is lower than that for 64 intervals. The experiments
again used the ECJ software package [56]. In order to establish
statistical significance, all claims of “worse” or “better” were
verified using nonparametric tests. We used the Welch test
(a variation of the Student t-test that does not assume equal
variance for the samples) repeatedly for pairs of samples. Given

that the samples were rarely following a normal distribution,
we first ranked the set of observations from both samples, then
we performed the Welch test on those ranks. We also used
the Bonferroni inequality to adjust the p-value level for each
test such as to obtain 95% confidence over all comparisons;
as a consequence, each Welch test was applied at a 99.95%
confidence level.

B. Competing Techniques

We consider both biased and unbiased versions of three MPS-
CEAs. The first such algorithm is a “traditional” MPS-CEA.
The others are two spatially embedded MPS-CEAs similar to
those discussed in Section II-E. We detail each of these next.

For the traditional MPS-CEA, we chose a common approach
to MPS coevolution fitness assessment: an individual was as-
sessed twice to determine its fitness, once with a collaborator
chosen at random and once partnered with the individual in the
other population that had received the highest fitness in the pre-
vious generation. An individual’s fitness was set to the max-
imum of these two assessments. This is termed Traditional in
the remainder of this section.

In a spatially distributed MPS-CEA, the individuals are po-
sitioned at specified locations in geometric space, such that a
notion of a neighborhood exists among individuals. For consis-
tency across small and moderate population sizes, we embedded
each population in a one-dimensional ring. A neighborhood of
radius 1 for an individual consisted of three individuals in this
case: the specific individual, together with the individuals to its
immediate left and right (on the ring). The spatial embedding of
the populations influences the breeding process as follows: for
each location, a number of individuals are selected with replace-
ment from a local neighborhood (the radius of the neighbor-
hood is detailed for each problem domain later), and the better
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ones are selected for breeding (the best individual is selected
for mutation alone, or the better two individuals are selected for
crossover, followed by mutation). When creating a child for lo-
cation , the parent at location always competed for selection
to breed.

The spatial embedding also influences the scheme to select
collaborators. We experimented with two spatial collaboration
schemes. First, we evaluated each individual with the unique
collaborator from the other population that had the same lo-
cation in space. We refer to this setting as Spatial. We dou-
bled the population size for Spatial to allow it to have the same
total number of evaluations as the other methods. A second
spatially-embedded MPS-CEA algorithm evaluated each indi-
vidual with two collaborators: the collaborator at the same lo-
cation in space (as before), and a random collaborator from a
small neighborhood (the radius of the neighborhood is detailed
later). We term this second technique Spatial2 for the remainder
of this section.

The combination of biasing with each of the three algorithms
is termed Biased Traditional, Biased Spatial, and Biased Spa-
tial2, respectively.

C. Searching for Pure Strategies

A first set of experiments encoded a single action (an integer)
in each individual. In other words, each individual determinis-
tically specified an action. In game-theory parlance, each indi-
vidual thus represented a “pure strategy.” Such an individual
bred children through mutation: the individual’s integer was in-
creased or decreased (the direction chosen at random before-
hand with probability 0.5), while a biased coin came up heads
(with probability 1/8 for Climb and Penalty, and with proba-
bility 1/4 for Two Peaks and Rosenbrock). Evolutionary runs in
the Climb and Penalty problem domain used only three individ-
uals per population (Spatial used six individuals) and they lasted
for 40 generations. Runs in the Two Peaks and Rosenbrock do-
mains used 20 individuals per population (Spatial used 40) and
they lasted for 200 generations. Spatial2 selected the second col-
laborator randomly using a neighborhood of radius 1. Selection
for breeding used tournament selection with size 2. Parents were
selected from neighborhoods of radius 1 using tournament se-
lection with size 2 for each location in the spatially embedded
models. The most fit individual survived automatically from one
generation to the next in the nonspatially embedded models.

Results Summary: The use of the proposed biasing mecha-
nism usually resulted in statistically significant improvements
in the rate of finding the global optima. In the few situations
where biasing did not help, it did not hurt performance either.
As a side-note, the Spatial algorithm consistently outperformed
the traditional MPS-CEA.

Results Specifics: Tables II–V present the average per-
centage (out of 1000 runs) that converged to the global
optimum. Overall, the spatial methods outperformed the tradi-
tional methods—not surprising, given the positive results in the
literature as discussed in Section II-E—but the biased version
of any method generally outperformed the unbiased version of
that method. In the Climb domain, Spatial was significantly
better than Traditional; Spatial was no better than Spatial2 for

at the properly adjusted confidence level of

TABLE II
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

CLIMB DOMAIN WITH PURE STRATEGY REPRESENTATION

TABLE III
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

PENALTY DOMAIN WITH PURE STRATEGY REPRESENTATION

TABLE IV
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

TWO PEAKS DOMAIN WITH PURE STRATEGY REPRESENTATION

TABLE V
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

ROSENBROCK DOMAIN WITH PURE STRATEGY REPRESENTATION

99.95%, but it was superior using only 99.914% confidence.
For all three methods, biasing significantly improved perfor-
mance—Biased Spatial, in particular, converged to the global
optima in about 90% of the runs, significantly better than all
five other methods.

Spatial was better than both Traditional and Spatial2 in
the Penalty domain. Except for significant improvements of
Biased Traditional over Traditional when and

, biasing was not effective at improving
results at the 99.95% confidence level (though it did not damage
results either). We performed three additional tests using all
4000 runs for each of the methods (1000 for each value of the
penalty); the increased number of observations allowed us to
establish that biasing was effective at significantly improving
the performance of Traditional and (with only 99.89% confi-
dence) Spatial2.
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In the Two Peaks domain, Spatial was again better than Spa-
tial2, which was better than Traditional. Enhancing the tech-
niques with the proposed biasing mechanism resulted in signifi-
cant improvements for Traditional (with only 99.4% confidence
for 128 discretization level), and for Spatial2 (only for a dis-
cretization level of 8). All other differences were statistically
insignificant.

In the Rosenbrock domain, Spatial was better than Traditional
(with confidence level 99.95% for discretization level equals
128, and only with confidence levels 99.9% and 99.85% for
discretization levels 8 and, respectively, 16) and Spatial2 (with
confidence level 99.95% for discretization levels of 64 and 128,
and only with confidence levels 99% for discretization level 8).
Additional nonparametric tests using all 4000 runs established
that Spatial was significantly better than Traditional and Spa-
tial2 with 99.95% confidence. The methods in combination with
biasing usually performed better than alone; biasing never de-
creased significantly the performance of a method.

D. Searching for Mixed Strategies

Though using a pure strategy representation provides a clear
connection to theory and emphasizes the problem properties in
which we are interested, using such an encoding in these simple
problems results in very small search spaces. It would be nice
to consider larger problems with similar properties. We accom-
plished this by encoding a “mixed strategy” (to again use game
theory parlance) in each individual. More specifically, individ-
uals consisted now of a probability distribution over the avail-
able actions. When evaluating such individuals with a collabo-
rator (another mixed strategy), 50 independent interactions were
performed, each consisting of a joint action chosen at random
according to the individuals’ mixed strategies. The joint reward
for the two individuals was computed as the average reward over
the 50 joint rewards. Observe that using mixed strategies cre-
ates a potentially more difficult problem domain than using pure
strategies for reasons of both search space size and the stochastic
nature of the fitness result.

Results Summary: The results suggest that the mixed strategy
representation induces a significantly more complex search
space than the pure strategy representation: mixed strategies
usually have a nonzero probability of exploring different ac-
tions that may incur penalties. For this reason, we argue that
the slope around the optimal peak has an abrupt gradient that
may explain the decrease in performance. Consistent with
the previous experiments involving the pure strategy repre-
sentation, the results indicate that biasing never decreases the
performance of a method, but it rather improves it significantly
in many domains.

Results Specifics: Traditional and Biased selected parents via
tournament selection with size 2; breeding involved one-point
crossover, followed by mutation by adding random Gaussian
noise (mean 0 and standard deviation 0.25) with probability

for each of the distribution values (where is the number
of actions in the problem domain), followed by renormaliza-
tion of the distribution. We performed an extensive sensitivity
study to set the parameters of the spatially-embedded CEAs.
We found that lower mutation rates worked better (following
crossover, we added Gaussian random noise to each gene with

TABLE VI
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

CLIMB DOMAIN WITH MIXED STRATEGY REPRESENTATION

TABLE VII
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

PENALTY DOMAIN WITH MIXED STRATEGY REPRESENTATION

probability 0.2 for the Climb and Penalty domains, and only
with probability for Two Peaks and Rosenbrock). When
using the Traditional and the Spatial2 methods, each population
contained 20 individuals for Climb and Penalty, and 100 indi-
viduals for the Two Peaks and Rosenbrock domains (as noted,
Spatial used twice the population size but an equivalent number
of evaluations). The parents were selected using tournament se-
lection with size 2 and with a neighborhood radius of 1 for
Climb and Penalty. Given the larger population sizes for Two
Peaks and Rosenbrock, parents were selected from neighbor-
hoods of radius 3; the sensitivity study also indicated a tourna-
ment selection size of 5 for the Two Peaks domain, and of 3
for the Rosenbrock domain. Runs lasted for 200 generations in
the Climb and Penalty domains, and for 1000 generations in the
Two Peaks and Rosenbrock domains. We performed 1000 runs
for each treatment to obtain statistical significance.

The mixed representation introduces an intriguing problem:
what does the optimal collaborator for a mixed strategy look
like, and how can it be learned? Our estimate for the optimal col-
laborator is done exactly as was done in the pure-strategy case:
after selecting the action (chosen from the individual’s mixed
strategy distribution), we then select based on ’s historical
success when paired with . To update this history information,
we use only the first joint reward (of the total of 50) from each
evaluation of a pair of individuals. To do otherwise would give
the estimation procedure an undue advantage.3

Tables VI–IX present the percentages of runs that converged
to the global optimum when using the mixed strategy represen-
tation in the Climb, Penalty, and the discretized Two Peaks and
Rosenbrock domains. As the evaluation of an individual is aver-
aged over 50 interactions, we considered that a run converged to
the global optimum if the fitness of the best individuals (one per
population) in the last generation was within 10% of the value
of the global optimum—to exceed this threshold, each of the

3We also performed experiments using all 50 joint rewards to improve the
optimal collaborator estimate, and the results improved further—all methods in
combination with biasing found the global optimum in most cases.
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TABLE VIII
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

TWO PEAKS DOMAIN WITH MIXED STRATEGY REPRESENTATION

TABLE IX
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL OPTIMUM,

ROSENBROCK DOMAIN WITH MIXED STRATEGY REPRESENTATION

mixed strategies should have probability close to 1 for picking
the action corresponding to the global optimum, as the joint re-
ward for any other pair of actions was less than this threshold.

In the Climb domain, both Spatial and Spatial2 significantly
outperformed Traditional. However, enhancing any of them
with our biasing method resulted in convergence to the global
optimum in almost every run. The Penalty domain was again
easier then Climb—most runs found the global optimum.

The Two Peaks domain was consistently too difficult for ei-
ther Traditional, Spatial, and Spatial2, but all of them found the
global optima in 100% of the runs when in combination with bi-
asing. The Rosenbrock domain was relatively easier for coevo-
lution, especially at low discretization levels. Traditional was
again significantly worse than Spatial2, which in turn was sig-
nificantly worse than Spatial. However, the performance of all
methods was significantly superior when in combination with
biasing.

VII. CONCLUSION

CEAs offer great potential for concurrent multiagent learning
domains. Their ability to focus on decomposed partitions of a
larger, structured joint problem space make them very natural
algorithms to consider for such problems. Despite this, patholo-
gies resulting from the game-theoretic nature of CEAs, namely
their propensity toward relative overgeneralization, interfere
with finding solutions that correspond to optimal collaborations
of interacting individuals. Some basic changes in the algorithm
are necessary to correct this problem.

Our approach to address this problem was to alter the CEA
such that the fitness of an individual was based partly on the re-
sult of interaction with other individuals, and partly on an es-
timate of the best possible reward for that individual if part-
nered with its optimal collaborator. This form of bias drew its
inspiration from similar methods in reinforcement learning lit-
erature, and its justification from a limited theoretical analysis.

We used a novel visualization technique to help demonstrate
the efficacy of the method from a theoretical viewpoint. Empir-
ically, we explored the sensitivity of the method to the degree of
bias, offering a mechanism to mitigate this sensitivity by proba-
bilistically combining the two parts of the fitness evaluation. Fi-
nally, we provided early experimental evidence that our biasing
method has merit, even as the biasing estimate is also learned
during the search.

This work clearly reflects the early stages of studying bi-
asing methods for CEAs. In more difficult problems, rote
learning methods will be impractical and more complex
learning methods must be employed to establish trustworthy
and computationally efficient estimates of optimal collabora-
tion. Moreover, we have provided no general understanding
about how to adjust dynamically. Finally, a comprehensive
investigation of when such methods are likely to succeed or fail
has not, as yet, been undertaken. We intend to pursue each of
these. Regardless, preliminary empirical evidence suggests that
biasing CEAs toward optimal collaboration may be beneficial
in practice.
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